ANNALES

SCIENTIFIQUES

DE

L'ÉCOLE NORMALE SUPÉRIEURE

DÉTERMINATION DES SINGULARITÉS D'UNE SURFACE MULTIPLE EN CERTAINS POINTS DE DIRAMATION

PAR M. LUCIEN GODEAUX.

Dans un Mémoire récent (1) nous avons exposé une méthode permettant de résoudre le problème suivant : Soit, sur une surface algébrique F, une involution cyclique I_p d'ordre premier p, ne présentant qu'un nombre fini de points unis. Dans le domaine du premier ordre d'un A de ces points unis, la transformation birationnelle de F en soi, génératrice de l'involution, engendre l'identité ou une homographie de période p. Dans le premier cas, nous disons que le point A est uni de première espèce, dans le second qu'il est uni de seconde espèce (2). Considérons d'autre part une surface normale Φ , image de l'invo-

⁽¹⁾ Les points unis des involutions cycliques appartenant à une surface algébrique (Ann. Ec. Norm. sup., 1948, p. 189-210). Voir aussi notre Note: Sur les points de diramation isolés des surfaces multiples (Bull. Acad. de Belgique, 1949, p. 15-30, 262-276, et 277-284), et différentes Notes citées dans le premier Mémoire, en particulier notre exposé sur Les involutions cycliques appartenant à une surface algébrique (Actualités scient., nº 270, Paris, Hermann, 1935).

⁽²⁾ Nous disions souvent, dans nos recherches extérieures, point uni parfait et point uni non parfait. Il nous a paru utile de modifier ces dénominations pour éviter une confusion avec les notations introduites autrefois par Pieri et reprises récemment, avec plus de précision, par M. Severi dans son Ouvrage Serie, Sistemi d'équivalenze e corrispondenze algebriche sulle varietà algebriche (Rome, édit. Cremonese, 1942), voir p. 278 et suivantes.

lution I_p , telle qu'aux points unis correspondent des points isolés : les points de diramation. Si A est uni de première espèce, le point de diramation A' qui lui correspond est multiple d'ordre p pour la surface Φ . Si au contraire A est uni de seconde espèce, la détermination de la singularité de Φ au point A' est beaucoup plus compliquée. Le point A est alors, sur la surface F, l'origine d'une sorte d'arbre de points unis, infiniment voisins de A. La méthode que nous avons exposée dans le Mémoire cité a pour but de déterminer cet arbre et la singularité de Φ au point A'.

Dans cette Note, nous nous proposons d'appliquer cette méthode à la détermination des singularités de points de diramation dans trois cas particuliers. Dans chaque cas, le point de diramation est un point triple triplanaire pour la surface Φ, mais ces points présentent, dans le domaine du premier ordre, des singularités très différentes. Il nous a paru intéressant de montrer la genèse de

ces singularités. Notre Note débute par un bref résumé de la méthode.

1. Soient F une surface algébrique contenant une involution cyclique I_p , d'ordre premier impair p, n'ayant qu'un nombre fini de points unis, T la transformation birationnelle de F en soi génératrice de cette involution. Nous pouvons prendre, pour modèle projectif de F, une surface normale, d'ordre pn, appartenant à un espace linéaire S_r dont la dimension est arbitrairement grande, sur laquelle T est déterminée par une homographie ayant p axes ponctuels $\sigma_0, \sigma_1, \ldots, \sigma_{p-1}$, dont le premier seul rencontre F (aux points unis de l'involution). Le système |C| des sections hyperplanes de F contient p systèmes linéaires partiels $|C_0|, |C_1|, \ldots, |C_{p-1}|$ appartenant à l'involution, le système $|C_i|$ étant découpé par les hyperplans passant par les axes ponctuels de l'homographie, sauf par σ_i .

Le système $|C_0|$ est dépourvu de points-base et sa dimension r_0 peut être supposée aussi grande qu'on le veut. En rapportant projectivement les courbes C_0 aux hyperplans d'un espace linéaire à r_0 dimensions, on obtient, comme transformée de F, une surface Φ , d'ordre n, image de l'involution I_p . Nous désignerons par Γ_0 les sections hyperplanes de Φ ; courbes qui correspondent aux courbes C_0 . Si π est le genre des courbes Γ_0 , les courbes C_0 et par

suite les courbes C sont de genre $p(\pi - 1) + 1$.

Aux axes σ_0 , σ_1 , ..., σ_{p-1} de l'homographie T, nous avons attaché les nombres τ , τ , ..., τ , τ , τ , τ de l'unité.

Soient A un point uni de seconde espèce de l'involution; il appartient à l'axe σ_0 et nous supposons que le plan tangent à F en A n'a que ce point en commun avec σ_0 . Ce plan tangent s'appuie en un point sur deux des espaces $\sigma_1, \sigma_2, \ldots, \sigma_{p-i}$. On peut toujours supposer, sauf à modifier éventuellement les notations, que l'un de ces espaces est σ_1 et nous désignerons l'autre par σ_{α} . Soient a_1 , a_{α} les tangentes à F en A s'appuyant la première sur σ_1 , la seconde sur σ_{α} .

Nous désignerons par C' les courbes Co passant par A; elles ont en ce point la multiplicité $\lambda_1 + \mu_1$, λ_1 tangentes à ces courbes en ce point étant confondues avec a_1 et μ_1 avec a_2 . Nous désignerons par $|C_0|$ le système formé par les courbes C_0 assujetties à toucher en A une droite distincte de a_1 , a_2 . Ces courbes ont en A la multiplicité λ2 + μ2, λ2 de leurs tangentes en ce point étant confondues avec a_1 et μ_2 avec a_{α} . Et ainsi de suite.

Si nous posons $p = 2\nu + 1$, nous obtenons ainsi $\nu + 1$ systèmes linéaires

$$|C'_0| |C''_0|, \ldots, |C''_0|, |C'^{(v)}_0|,$$

dont le dernier est formé de courbes ayant en A la multiplicité p, les tangentes en A étant variables. Nous désignerons par $\lambda_i + \mu_i$ la multiplicité du point A pour les courbes Co, \(\lambda_i\), \(\lambda_i\) des tangentes en ce point à ces courbes étant confondues avec a_1 et μ_i avec a_{α} .

Nous avons

$$\lambda_1 + \mu_1 < \lambda_2 + \mu_2 < \ldots < \lambda_{\nu} + \mu_{\nu} < p.$$

De plus, les nombres λ_i , μ_i satisfont à la congruence

$$\lambda + \alpha \mu \equiv 0 \pmod{p}.$$

Si β est un entier inférieur à p tel que

$$\alpha\beta - 1 \equiv 0 \pmod{p}$$
,

nous avons également

(2)
$$\mu + \beta \lambda \equiv 0 \pmod{p}.$$

Les courbes C_4 passent simplement par A en y touchant a_{α} ; elles rencontrent chacune des courbes C'_0 , C''_0 , ..., $C_0^{(v)}$ en p points confondus en A.

Parmi les solutions de la congruence (1), se trouve la solution $\lambda = p - \alpha$, μ=1. Soient C₀ les courbes qui correspondent à cette solution. Si chacune des courbes Co, le point A est l'origine d'une branche linéaire tangente en A à a_{α} . Cette branche doit avoir p points communs avec les courbes C_1 confondus en A, par conséquent les courbes C₀⁽ⁱ⁾, C₁ ont en commun une suite de α — 1 points fixes en commun, infiniment voisins successifs de A: nous les désignerons par $A_{\alpha,1}, A_{\alpha,2}, \ldots, A_{\alpha,\alpha-1}$. Ces points sont unis de seconde espèce pour l'involution, sauf le dernier qui est uni de première espèce.

De même, en utilisant la solution $\lambda = 1$, $\mu = p - \beta$ de la congruence (2), on voit que les courbes correspondantes ont en commun, avec les courbes Ca, une suite de β-1 points fixes infiniment voisins successifs de A, unis de seconde espèce pour l'involution, sauf le dernier qui est uni de première espèce.

2. Nous désignerons par Γ₀ les courbes qui correspondent sur Φ aux courbes $C_o^{(i)}$. Les systèmes $|C_o^{(i)}|$, $|\Gamma_o^{(i)}|$ ont la dimension r_o — i. En rapportant projectivement les courbes $C_{\scriptscriptstyle 0}^{\scriptscriptstyle (l)}$ aux hyperplans d'un espace linéaire à $r_{\scriptscriptstyle 0}-i$ dimensions, il correspond à la surface F une surface Φ_i , image de l'involution,

dont les sections hyperplanes sont les courbes $\Gamma_{\scriptscriptstyle 0}^{\scriptscriptstyle (l)}$. Nous obtenons ainsi une suite de surfaces

$$(3) \qquad \Phi_1, \quad \Phi_2, \quad \ldots, \quad \Phi_{\nu}, \quad \Phi_{\nu+1},$$

à condition de supposer $r_0 \ge v + 4$.

Soit A' le point de diramation qui correspond sur Φ au point uni A. Sur Φ , les courbes Γ'_0 sont découpées par les hyperplans passant par le point A'. La surface Φ_i est donc la projection, à partir de A', de la surface Φ sur un hyperplan de l'espace ambiant (ou est tout au moins projectivement identique à cette projection). Plus généralement, sur la surface Φ_i , les courbes $\Gamma_0^{(i+1)}$ sont découpées par les hyperplans passant par un point A'_i et la surface Φ_{i+1} est projectivement identique à la projection de la surface Φ_i , à partir de A'_i , sur un hyperplan de l'espace ambiant.

L'utilisation de la suite de surfaces (3) permet d'analyser la singularité de la surface Φ au point A', comme on le verra dans les exemples suivants.

I

3. Supposons en premier lieu p=17, $\alpha=14$ et par suite $\beta=11$. Nous avons

$$\lambda_1 = 3,$$
 $\mu_1 = 1;$ $\lambda_2 = 1,$ $\mu_2 = 6;$ $\lambda_3 = 6,$ $\mu_3 = 2;$ $\lambda_4 = 4,$ $\mu_4 = 7;$ $\lambda_5 = 9,$ $\mu_6 = 3;$ $\lambda_6 = 2,$ $\mu_6 = 12;$ $\lambda_7 = 7,$ $\mu_7 = 8;$ $\lambda_8 = 12,$ $\mu_8 = 4.$

Nous avons actuellement deux suites de points unis infiniment voisins successifs de A: L'une, $A_{4,1}$, $A_{4,2}$, ..., $A_{4,10}$, dont le premier point se trouve sur la tangente a_4 ; l'autre, $A_{\alpha,1}$, $A_{\alpha,2}$, ..., $A_{\alpha,13}$, dont le premier point se trouve sur a_{α} .

Les courbes C'_0 ont un point quadruple en A; elles passent trois fois par $A_{1,1}$, deux fois par $A_{4,2}$, une fois par $A_{4,3}$, ..., $A_{1,10}$ et une fois par un point $A_{4,2,1}$, infiniment voisin de $A_{1,2}$, uni de première espèce pour l'involution. Les courbes C'_0 passent une fois par les points $A_{\alpha,4}$, $A_{\alpha,2}$, ..., $A_{\alpha,43}$.

Sur la surface Φ_1 , il correspond aux domaines des points $A_{1,10}$, $A_{1,2,1}$, $A_{\alpha,13}$, trois droites σ_1 , τ , σ_{α} . Cette surface est d'ordre n-3 et ses sections hyperplanes Γ_0 sont de genre $\pi-2$. Le point de diramation A' est par conséquent triple triplanaire pour la surface Φ .

4. Les courbes C_0'' ont la multiplicité τ en Λ , une des tangentes à ces courbes en ce point étant confondue avec a_1 et les six autres avec a_2 . Ces courbes passent nécessairement une fois par les points $A_{4,4}, A_{1,2}, \ldots, A_{4,40}$; elles ne passent plus par $A_{4,2,4}$. Sur la surface Φ_4 , les courbes Γ_0'' sont donc découpées par des hyperplans passant par un point A_4' appartenant à la droite τ .

Les courbes C₁ ne pouvant rencontrer les courbes C''₀ en plus de 17 points

confondus en A, ces dernières courbes ne passent plus par Az,13 et par suite le point A' appartient également à la droite σ_z.

Le point A,, peut être sextuple pour les courbes Co; dans ce cas, le point Az, 2 est quadruple pour ces courbes et celles-ci passent encore deux fois par deux points $A_{\alpha,2,1}$, $A_{\alpha,2,1,1}$ infiniment voisins successifs de $A_{\gamma,2}$, Le point A_{2,2,1,4} est uni de première espèce pour l'involution.

Sur la surface Φ_2 , projection de Φ_1 à partir de A_1 , il correspond au domaine du point $A_{\alpha,2,4,4}$ une conique ρ_0 et A_1' est double conique pour Φ_4 . A la droite σ_4 correspond sur Φ_2 une droite σ_1 et aux droites σ_2 , τ des points singuliers pour la surface, appartenant à po.

Puisque A₁ est double conique pour Φ_1 , le système $|\Gamma_0''|$ a le degré n-5 et par conséquent, $|C_0''|$ doit avoir le degré effectif 17 (n-5). Or, dans l'intersection de deux courbes C_0'' , le point A absorbe 7×17 points, alors qu'il ne doit en absorber que 5 × 17. Nous sommes donc conduit à une contradiction et par conséquent, les courbes Contra n'ont pas, en A, le comportement qui vient d'être indiqué.

5. Avant d'étudier le comportement des courbes Co, nous étudierons celui des courbes C...

Ces courbes ont la multiplicité 8 en A, six de leurs tangentes en ce point étant confondues avec a_1 et deux avec a_2 . Elles ne peuvent passer par les points A1,10, A2,13, car alors elles seraient rencontrées en plus de 17 points confondus en A par les courbes C_{α} , C_{1} .

Sur la surface Φ_4 , les courbes Γ_0''' sont découpées par les hyperplans passant par une droite s'appuyant sur les droites σ_1 ; σ_{α} . Ces courbes étant des courbes \(\Gamma^{''}_{0} \) particulières, leurs hyperplans passent par le point \(A'_{1} \), commun aux droites σ_1 , τ .

Observons maintenant que les courbes C passent nécessairement deux fois par les points $A_{\alpha,4}$, $A_{\alpha,2}$, $A_{\alpha,3}$, $A_{\alpha,4}$, une fois par le point $A_{\alpha,5}$ et une fois par un point Az, 5,4, uni de première espèce pour l'involution, infiniment voisin du point A_{a.5}.

Cela étant, supposons que les courbes Com ne passent pas par le point A1,2,4 (qui correspond à la droite τ). Alors ces courbes passent nécessairement quatre fois par A1,1, deux fois par A1,2, A1,3, une fois par A1,4 et par un point A1,4,1, infiniment voisin du précédent; enfin, deux fois par un point A,,,,, infiniment voisin de A1,1. Dans ces conditions, le point A équivaut à 112 points dans l'intersection de deux courbes G... Mais ce nombre doit être multiple de 17, car | C'' | appartient à l'involution. Nous sommes donc conduit à une absurdité, donc les courbes C₀ passent par A_{1,2,1}, c'est-à-dire que sur Φ₁, les hyperplans des courbes Γ_0^m passent par la droite τ . On en conclut aussi que les droites σ_1 et v se rencontrent.

Sur la surface Φ_2 , les courbes Γ_0''' sont découpées par les hyperplans passant

par un point A'_2 qui appartient à la droite σ_1 et coı̈ncide avec le point singulier τ (qui représente la droite τ sur cette surface).

Les courbes C_0''' passent nécessairement six fois par le point $A_{1,1}$ et trois fois par chacun des points $A_{1,2}$, $A_{1,2,1}$.

Sur la surface Φ_3 , il correspond à τ une cubique gauche que nous désignerons toujours par τ . Au domaine du point $A_{\alpha,5,1}$ correspond une droite ρ_2 . A la droite σ_2 correspond un point singulier appartenant à la cubique gauche τ et à σ_{α} correspond également un point singulier dont la position sera fixée plus tard.

La surface Φ_3 est d'ordre n-8 et ses sections hyperplanes Γ_0''' ont le genre $\pi-5$.

6. Retournons aux courbes C_0'' . Comme on l'a vu, aux courbes C_0'' correspondent sur Φ_2 les courbes Γ_0'' découpées par les hyperplans passant par un point A_2' appartenant à σ_4 et coıncidant avec le point singulier τ . Φ_3 est la projection de Φ_2 à partir de ce point A_2' .

La droite ρ_2 de Φ_3 peut provenir soit d'une droite infiniment petite du domaine du point A'_2 , soit d'une droite proprement dite ρ_2 tracée sur Φ_2 .

Dans la première hypothèse, le point A_2 serait quadruple pour Φ_2 et cette surface serait d'ordre n-4, puisque Φ_3 est d'ordre n-8. Sur les courbes C_0'' , le point A devrait être l'origine d'une seule branche contenant, comme dernier point fixe commun à toutes ces courbes, un point uni de première espèce simple pour les courbes en question. On à vu que cela était impossible, le dernier point $A_{\alpha,2,4,4}$ étant double pour les courbes C_0''' . Il existe donc sur Φ_2 une droite ρ_2 proprement dite et le point A_2' est triple pour la surface.

Les courbes C_0'' passent une fois par le point $A_{\alpha,5,4}$ dont le domaine correspond à la droite ρ_2 . Il en résulte que les courbes C_0'' passent nécessairement trois fois par $A_{\alpha,4}$, deux fois par $A_{\alpha,2}$, $A_{\alpha,3}$, $A_{\alpha,4}$, une fois par $A_{\alpha,5}$ et par $A_{\alpha,5,4}$, enfin une fois par trois points $A_{\alpha,4,4}$, $A_{\alpha,4,2}$, $A_{\alpha,4,3}$ infiniment voisins successifs de $A_{\alpha,4}$, le dernier étant uni de première espèce pour l'involution.

Au domaine du point $A_{\alpha,4,3}$ correspond sur Φ_2 une droite ρ_4 et le point A_1' est donc double biplanaire pour Φ_4 . Comme A_1' est le point d'intersection de τ et σ_4 sur Φ_4 et que la droite ρ_2 ne rencontre pas τ , il faut que la droite ρ_4 rencontre τ et la droite ρ_2 , la droite σ_{α} . En d'autres termes, sur la surface Φ_2 , nous avons trois droites σ_4 , ρ_4 , ρ_2 et deux points singuliers τ et σ_{α} . Les droites ρ_4 , ρ_2 se rencontrent; le point singulier τ appartient aux droites σ_4 , ρ_4 et le point singulier σ_{α} à la droite ρ_2 .

7. De ce qui précède résulte que le point de diramation A' de Φ est équivalent à cinq courbes rationnelles

chacune rencontrant la précédente et la suivante en un point, mais ne rencontrant pas les autres. On a

$$\Gamma_0 \equiv \Gamma_0' + \sigma_1 + au +
ho_1 +
ho_2 + \sigma_lpha$$

et les degrés virtuels des courbes σ_1 , τ , ρ_1 , ρ_2 , σ_α sont par suite respectivement égaux à -2, -3, -2, -2, -2.

On a ensuite

$$\begin{split} &\Gamma_0 \equiv \Gamma_0'' + \sigma_1 + \tau + 2\left(\rho_1 + \rho_2\right) + \sigma_\alpha, \\ &\Gamma_0 \equiv \Gamma_0''' + \sigma_1 + 2\left(\tau + \rho_1 + \rho_2\right) + \sigma_\alpha. \end{split}$$

On vérifie, en utilisant ces relations fonctionnelles, que les nombres des points d'intersection des courbes Γ_0'' , Γ_0''' avec σ_1 , τ , ρ_1 , ρ_2 , σ_α sont bien ceux qui ont été rencontrés plus haut.

Le point de diramation A' de la surface D est triple triplanaire pour cette surface. L'un des plans tangents (\tau) à \Phi en A' rencontre chacun des deux autres plans tangents (σ_1) , (σ_2) suivant une droite, mais ces deux derniers plans ne se rencontrent pas en dehors de A'. Au point A' est infiniment voisin, sur la droite commune aux plans (τ) , (σ_x) , un point double biplanaire.

II

8. Nous supposerons en second lieu p = 23, $\alpha = 19$, d'où $\beta = 17$. On a

$$\lambda_1 = 4$$
, $\mu_1 = 1$; $\lambda_2 = 1$, $\mu_2 = 6$; $\lambda_3 = 8$, $\mu_3 = 2$; $\lambda_4 = 5$, $\mu_4 = 7$; $\lambda_5 = 2$, $\mu_5 = 12$; $\lambda_6 = 12$, $\mu_6 = 3$; $\lambda_7 = 9$, $\mu_7 = 8$; $\lambda_8 = 6$, $\mu_8 = 13$; $\lambda_9 = 16$, $\mu_9 = 4$; $\lambda_{10} = 3$, $\mu_{10} = 18$; $\lambda_{11} = 13$, $\mu_{11} = 9$.

Les courbes C'ont en A la multiplicité 5, quatre tangentes étant confondues avec a_t et une avec a_z . Ces courbes passent simplement par une suite de 18 points fixes $A_{\alpha,1}$, $A_{\alpha,2}$, ..., $A_{\alpha,18}$, infiniment voisins successifs de A, unis pour l'involution, le dernier étant uni de première espèce.

Les courbes C' passent par une suite de 16 points fixes A1.1, A1.2, ..., A1.16, infiniment voisins successifs de A, unis pour l'involution, le dernier étant uni de première espèce. Elles passent précisément trois fois par le point A1,1, une fois par les autres. Elles passent en outre une fois par deux points fixes A1,1,1, infiniment voisin de A1,1 et A1,1,1,1, infiniment voisin de A1,1,1. Ces points sont unis pour l'involution et le dernier est de première espèce.

Sur la surface Φ_4 , il correspond aux domaines des points $A_{1,16}$, $A_{1,1,1,4}$, $A_{\alpha,18}$, des droites σ_1 , τ , σ_{α} . Le point A' est donc triple triplanaire pour la surface Φ . La surface Φ_4 est d'ordre n-3 et ses sections hyperplanes Γ_0' sont de genre $\pi - 2$.

9. Les courbes C_0'' passent sept fois par A, une de leurs tangentes en ce point est confondue avec a_4 . Ces courbes passent simplement par les seize points $A_{1,4}$, $A_{1,2}$, ..., $A_{1,46}$. Par conséquent, les courbes Γ_0'' qui leur correspondent sont découpées sur la surface Φ_4 par les hyperplans passant par un point A_4' appartenant à la droite τ .

Les courbes C_0'' ne peuvent plus passer par le point $A_{\alpha,48}$, car autrement elles seraient rencontrées par les courbes C_4 en plus de 23 points confondus en A. Par conséquent, les hyperplans des courbes Γ_0'' sur Φ_4 passent par un point appartenant à σ_{α} . Le point A_4' appartient donc aux droites τ , σ_{α} .

Les courbes C_0'' peuvent passer six fois sur les points $A_{\alpha,1}$, $A_{\alpha,2}$, quatre fois par le point $A_{\alpha,3}$ et deux fois par un point $A_{\alpha,3,1}$ infiniment voisin de $A_{\alpha,3}$ et par un point $A_{\alpha,3,1,1}$ infiniment voisin du précédent. Le point A_1' serait alors double conique pour la surface Φ_1 et la surface Φ_2 serait d'ordre n-5. Or, dans l'intersection de deux courbes C_0'' , le point A absorbe 7×23 unités, de sorte que la surface Φ_2 devrait être n-7. L'absurdité à laquelle nous parvenons prouve que les courbes C_0' ne peuvent avoir en A le comportement qui vient d'être considéré.

10. Comme dans le cas précédent, nous étudierons d'abord le comportement des courbes C_0''' au point A.

Les courbes C_0''' ont en A la multiplicité 10, huit tangentes en ce point étant confondues avec a_1 et deux avec a_{α} . Ces courbes passent nécessairement deux fois par les six points $A_{\alpha,1}$, $A_{\alpha,2}$, ..., $A_{\alpha,6}$, une fois par $A_{\alpha,7}$ et une fois par un point $A_{\alpha,3,4}$ infiniment voisin du précédent. Le point $A_{\alpha,7,4}$ est uni de première espèce pour l'involution. Au domaine de ce point correspond, sur la surface Φ_3 , dont les sections hyperplanes sont les courbes Γ_0''' , une droite ρ_2 .

Les courbes C_0''' ne peuvent passer par $A_{1,10}$, car autrement elles seraient rencontrées sur plus de 23 points confondus en A par les courbes C_{α} . Il en résulte que sur la surface Φ_1 , les courbes Γ_0''' sont découpées par des hyperplans passant par une droite s'appuyant sur σ_1 et passant par le point A_1' (car les courbes Γ_0''' sont des courbes Γ_0''' particulières).

Supposons en premier lieu que les courbes C_0''' ne passent pas par $A_{1,1,1,1}$. Alors, ces courbes passent huit fois par $A_{1,4}$, cinq fois par $A_{1,2}$, trois fois par un point $A_{1,2,1}$ infiniment voisin de $A_{1,2}$, deux fois par un point $A_{1,2,1,4}$ infiniment voisin du précédent, enfin une fois par un point $A_{1,2,1,4}$ infiniment voisin de $A_{1,2,1,4}$. Le point A absorbe 103 points dans l'intersection de deux courbes C_0''' . Ces courbes forment un système linéaire appartenant à l'involution, ce nombre devrait être multiple de 23. Il en résulte que les nombres C_0''' passent par $A_{1,4,4,4}$, c'est-à-dire que les hyperplans découpant sur Φ_4 les courbes Γ_0''' passent par la droite τ . Celle-ci doit donc s'appuyer sur σ_1 en un point que nous désignerons par A_1'' .

Les courbes Γ₀ rencontrent τ en trois points variables au plus, c'est-à-dire que A1,1,1,1 est au plus triple pour les courbes C".

Si A_{1,1,1,1} est triple pour les courbes C₀, il en est de même de A_{1,1,1} et le point A_{1,1} est multiple d'ordre 6 pour ces courbes. Cela est impossible, car la somme des multiplicités des points A1,1, A1,1,1 pour les courbes C" est en plus égale à 8, nombre des tangentes en A à ces courbes confondues avec a1.

Si A_{1,1,1,1} est double pour les courbes C₀, A_{1,1,1} est également double pour ces courbes. Le point A1,1 est sextuple pour les courbes C" et celles-ci passent deux fois par A_{1,2}, A_{1,3}, A_{1,4}, une fois par A_{1,5} et une fois par un point A_{1,5,1}, uni de première espèce pour l'involution. Au domaine de ce point correspond sur Φ_3 une droite τ_4 . Φ_3 est d'ordre n=8.

Si A_{1,4,4,4} est simple pour les courbes C₀, A_{4,4,4} est également simple et A_{1,4} est multiple d'ordre 7; A1,2 est multiple d'ordre 5, A1,3 est simple et les courbes C_0''' passent encore simplement par quatre points $A_{4,3,4}$, $A_{4,3,2}$, $A_{4,3,3}$, A1,3,4 infiniment voisins successifs de A1,3. Au domaine de ce dernier point correspond encore sur Φ_3 une droite τ_4 . Φ_3 est d'ordre n-9.

Observons que sur la surface Φ_2 , à la droite σ_1 de Φ_1 correspond une droite σ_1 , à τ correspond un point singulier situé sur σ_1 . Les courbes Γ_0''' sont découpées sur Φ2 par les hyperplans passant par un point A'2 qui coïncide avec τ. D'une manière précise, le domaine de A', sur Φ2 est équivalent à l'ensemble des courbes τ_4 , τ et éventuellement ρ_2 .

Si la droite ρ2 de Φ3 provenait d'une droite infiniment petite, infiniment voisine de A'_2 , les courbes C''_0 ne passeraient pas par $A_{\alpha,7,1}$ et sur ces courbes, le point A serait l'origine d'une seule branche tangente à a_{α} . On a vu que dans ce cas, A' est double conique pour Φ_1 et que l'on est conduit à une contradiction. Donc ρ_2 provient d'une droite ρ_2 tracée sur Φ_2 . Dans ces conditions, A_2' est au plus triple pour Φ_2 et d'autre part, A_1' est au plus double pour Φ_1 ; l'ordre de la surface Φ_3 est au moins égal à n=8. On en conclut que c'est la première hypothèse envisagée plus haut qui est valable, c'est-à-dire que le point A_{1,1,1,1} est double pour les courbes C₀.

Sur la surface Φ_2 , τ est une conique et τ_1 une droite. A σ_1 correspond un point singulier appartenant à τ ou τ₄. On verra plus loin qu'il appartient à τ₄.

11. Sur Φ_2 , φ_2 est une droite, donc les courbes C_0'' passent simplement par le point $A_{\alpha,7,4}$. Il en résulte que ces courbes passent simplement par $A_{\alpha,7}$ et au moins deux fois par $A_{\alpha,6}$, $A_{\alpha,5}$, ..., $A_{\alpha,4}$. Il est aisé de voir qu'elles doivent précisément passer cinq fois par $A_{\alpha,1}$ et deux fois par $A_{\alpha,2}$, $A_{\alpha,3}$, ..., $A_{\alpha,6}$. De plus, elles passent une fois par un point $A_{\alpha,1,1}$ infiniment voisin de $A_{\alpha,1}$ et par deux points Ax,1,1,1, Ax,1,1,2 infiniment voisins successifs du précédent. Au domaine du point $A_{\alpha,4,4,2}$ correspond sur Φ_2 une droite φ_4 et le point A'_1 est double biplanaire pour Φ₁.

Des deux droites ρ₁, ρ₂, l'une, par exemple ρ₁, rencontre τ et l'autre ρ₂ Ann. Éc. Norm., (3), LXVII. - FASC. 1.

rencontre σ_{α} . Sur la surface Φ_2 , σ_{α} est un point singulier appartenant à la droite ρ_2 et τ un point singulier appartenant à la droite ρ_4 . Il en résulte que c'est τ_4 qui rencontre σ_4 .

12. Le point de diramation A' de Φ est équivalent à l'ensemble de six courbes rationnelles

$$\sigma_1$$
, τ_1 , τ , ρ_1 , ρ_2 , σ_{α} ,

dont chacune rencontre la suivante et la précédente en un point, mais ne rencontre pas les autres.

On a

$$\Gamma_0 \equiv \Gamma_0' + \sigma_1 + \tau_1 + \tau + \rho_1 + \rho_2 + \sigma_{\alpha}$$

et l'on en conclut que les courbes $\sigma_1, \tau_1, \ldots, \sigma_{\alpha}$ ont respectivement pour degré virtuel -2, -2, -3, -2, -2, -2.

Les courbes Γ_0'' , Γ_0''' satisfont aux relations fonctionnelles

$$\begin{split} &\Gamma_0 \stackrel{.}{\equiv} \Gamma_0'' + \sigma_1 + \tau_1 + \tau + 2(\rho_1 + \rho_2) + \sigma_{\alpha}, \\ &\Gamma_0 \stackrel{.}{\equiv} \Gamma_0''' + \sigma_1 + 2(\tau_1 + \tau + \rho_1 + \rho_2) + \stackrel{.}{\sigma}_{\alpha}. \end{split}$$

Le domaine du point A_1'' intersection des droites σ_4 , τ sur Φ_4 , est équivalent à la droite τ_4 . Ce point est double conique pour Φ_4 , car lorsque l'on passe de Φ_4 à Φ_2 par projection à partir de A_1' , à la conique infiniment petite du domaine de A_1'' sur Φ_4 , correspond une droite infiniment petite infiniment voisine de A_2' .

Le point de diramation A' de la surface Φ est triple triplanaire pour cette surface; le cône tangent en ce point se compose de trois plans (σ_1) , (τ) , (σ_{α}) , le second rencontrant les deux autres chacun suivant une droite, mais (σ_1) , (σ_{α}) ne se rencontrant pas en dehors de A'. Au point A' sont infiniment voisins un point double biplanaire sur la droite commune à (τ_1) , (σ_{α}) et un point double conique situé sur la droite commune à (τ) , (σ_1) .

III.

13. Supposons maintenant que nous ayons p = 23, $\alpha = 20$, d'où $\beta = 15$. Nous ayons

Les courbes C'_0 ont en A la multiplicité 4, trois tangentes en ce point étant confondues avec a_4 et une avec a_{α} . Elles ont en commun une suite de 19 points $A_{\alpha,4}, A_{\alpha,2}, \ldots, A_{\alpha,49}$, infiniment voisins suscessifs de A, simples pour les

Les points $A_{1,1}$, $A_{1,2}$ sont triples pour les courbes C'_0 , le point $A_{1,3}$ est double et les points $A_{1,4}$, ..., $A_{1,44}$ sont simples. Les courbes C'_0 ont en outre en commun un point simple $A_{1,3,4}$ infiniment voisin de $A_{1,3}$.

Les points $A_{1,14}$, $A_{1,3,1}$ et $A_{\alpha,19}$ sont unis de première espèce pour l'involution et il leur correspond, sur la surface Φ_1 , trois droites σ_1 , τ , σ_{α} . Le point de diramation A' est donc triple triplanaire pour la surface Φ .

Les sections hyperplanes Γ_0 de Φ , sont de genre $\pi-2$ et la surface est d'ordre n-3.

14. Les courbes C_0'' ont la multiplicité 8 en A, six tangentes en ce point étant confondues avec a_1 et les deux autres avec a_{α} . Ces courbes passent nécessairement deux fois par $A_{1,1}$ et une fois par $A_{1,2}$, $A_{1,3}$, ..., $A_{1,14}$; elles ne passent plus par $A_{1,3,1}$. Ces courbes ne peuvent plus passer par $A_{\alpha,19}$; elles passent précisément deux fois par sept points $A_{\alpha,1}$, $A_{\alpha,2}$, ..., $A_{\alpha,7}$, une fois par $A_{\alpha,8}$.

Les courbes C_0'' doivent passer par quatre points $A_{1,1,4}$, $A_{4,1,2}$, $A_{4,1,3}$, $A_{4,1,4}$ infiniment voisins successifs de $A_{1,4}$ et une fois par un point $A_{\alpha,8,4}$ infiniment voisin de $A_{\alpha,8}$.

Sur la surface Φ_4 , les courbes Γ_0'' sont découpées par les hyperplans passant par un point A_4' appartenant aux droites τ et σ_{α} .

Les points $A_{1,1,4}$ et $A_{\alpha,8,1}$ sont unis de première espèce pour l'involution et il correspond à leurs domaines, sur la surface Φ_2 , deux droites ρ_{11} , ρ_{21} . Il en résulte que A'_1 est double biplanaire pour la surface Φ_1 , les plans tangents à cette surface en ce point étant obtenus en projetant les droites ρ_{11} , ρ_{21} de A'_1 .

A la droite τ correspond sur Φ_2 un point singulier appartenant à la droite ρ_{11} et à σ_{α} , un point singulier appartenant à la droite $\hat{\rho}_{21}$. A σ_1 correspond une droite σ_1 .

La surface Φ_2 est d'ordre n-5 et ses sections hyperplanes Γ_0'' sont de genre $\pi-3$.

15. Les courbes C_0''' ont en A la multiplicité 9, une de leurs tangentes en ce point étant confondue avec a_1 et 8 avec a_{α} . Elles passent simplement par les points $A_{1,1}, A_{1,2}, \ldots, A_{1,14}$. Sur Φ_2 , il leur correspond des courbes Γ_0''' découpées par les hyperplans passant par un point A_2' appartenant à ρ_{11} , distinct du point singulier τ .

Si le point A est, sur une courbe C_0''' , l'origine d'une seule branche tangente à a_x , ces courbes passant huit fois par $A_{\alpha,4}$, six fois par $A_{\alpha,2}$, deux fois par trois points $A_{\alpha,2,4}$, $A_{\alpha,2,4,4}$, $A_{\alpha,2,4,2}$ infiniment voisins successifs de $A_{\alpha,2}$. Mais dans ces conditions, le point A absorbe 9×23 points dans l'intersection de deux courbes C_0''' et la surface Φ_3 est donc d'ordre n-9. D'autre part, les

courbes C_0''' ne passant pas par $A_{\alpha,8,1}$, il correspond à ces courbes sur Φ_2 les sections par les hyperplans passant par un point A_2' appartenant à ρ_{21} . On a vu que A_2' appartient également à ρ_{11} . Ce point A_2' devrait être multiple d'ordre 4 pour Φ_2 , ce qui est absurde, car il donnerait sur Φ_1 un point quadruple infiniment voisin d'un point double.

On en conclut que sur une courbe C_0''' , le point A est l'origine de deux branches tangentes en ce point à a_{α} . L'examen des cas possibles, en tenant compte que les courbes C_0''' coupent les courbes C_1 en 23 points confondus en A et que $|C_0'''|$ appartient à l'involution, conduit à une seule solution acceptable.

Les courbes C_0''' passent six fois par $A_{\alpha,4}$, trois fois par $A_{\alpha,2}$, $A_{\alpha,3}$, deux fois par $A_{\alpha,4}$ et en outre deux fois par un point $A_{\alpha,4,4}$ infiniment voisin de $A_{\alpha,4}$, une fois par deux points $A_{\alpha,4,2}$, $A_{\alpha,4,2,4}$ infiniment voisins successifs de $A_{\alpha,4,4}$, enfin une fois par deux points $A_{\alpha,4,1}$, $A_{\alpha,4,4,4}$ infiniment voisins successifs de $A_{\alpha,4,4}$.

Les points $A_{\alpha,4,2,4}$ et $A_{\alpha,4,1,4}$ sont unis de première espèce pour l'involution et il leur correspond, sur Φ_3 , deux droites ρ_{12} , ρ_{22} . Le point A_2 est donc double biplanaire pour Φ_2 . La surface Φ_3 est d'ordre n-7 et ses sections hyperplanes Γ_0^m sont de genre $\pi-4$.

Sur la surface Φ_3 existent deux points singuliers : l'un appartenant à la droite ρ_{12} représente les courbes τ et ρ_{14} , l'autre appartenant à la droite ρ_{22} représente les courbes σ_{α} , ρ_{24} . A σ_4 correspond une droite σ_4 .

16. Les courbes $C_0^{(4)}$ ont en A la multiplicité 12, neuf tangentes étant confondues avec a_4 et trois avec a_{α} . Ces courbes ne peuvent plus passer par $A_{4,44}$.

Si les courbes $C_0^{(3)}$ passaient deux fois par $A_{\alpha,4,*}$ le point $A_{\alpha,4,*}$ leur appartiendrait et serait uni de première espèce pour l'involution. Or, les courbes $C_0^{(n)}$ passent par ce point et par $A_{\alpha,4,2}$ et par conséquent $A_{\alpha,4,4}$ ne peut être qu'un point uni de seconde espèce. Les courbes $C_0^{(4)}$ passent donc trois fois par $A_{\alpha,4}$. Elles passent nécessairement trois fois par $A_{\alpha,2}$, $A_{\alpha,3}$, deux fois par $A_{\alpha,4}$ et une fois par $A_{\alpha,4,4}$, $A_{\alpha,4,4,4}$. Il en résulte que les courbes $\Gamma_0^{(4)}$, sur Φ_3 , rencontrent ρ_{22} en un point variable, mais ρ_{42} en un point fixe. Ces courbes sont découpées sur cette surface par les hyperplans passant par un point A_3' appartenant aux droites ρ_{42} et σ_4 .

Si les courbes $C_0^{(4)}$ passaient neuf fois par $A_{1,4}$, elles passeraient deux fois par $A_{1,2}$, deux fois par trois points et une fois par deux points infiniment voisins successifs de $A_{1,2}$. Le point A_3' serait simple pour Φ_3 . Par contre, le degré de $|\Gamma_0^{(4)}|$ serait égal à n-12 et devrait être quifftuple pour Φ_3 . Donc les courbes $C_0^{(4)}$ ne peuvent passer neuf fois par $A_{1,4}$.

Si les courbes $C_0^{(4)}$ passaient plus de cinq fois par $A_{4,4}$, l'un des points $A_{4,4,4}$, $A_{1,4,2}$, $A_{1,4,3}$ serait uni de première espèce pour l'involution, alors que ces points, qui appartiennent aux courbes C_0'' , sont unis de seconde espèce. On vérifie aisément que si elles passaient moins de cinq fois par $A_{4,4}$, le degré

effectif de $|C_0^{(4)}|$ ne pourrait être multiple de 23. On en conclut que les courbes $C_0^{(4)}$ passent cinq fois par $A_{4,4}$, quatre fois par $A_{4,2}$, deux fois $A_{1,3}$, une fois par chacun des points $A_{4,4,4}$, $A_{4,4,2}$, $A_{4,4,3}$, $A_{4,4,4}$ et enfin deux fois par $A_{4,3,4}$. Par conséquent, le point A_3' coıncide avec le point singulier de ρ_{12} qui représente les courbes τ , ρ_{44} .

Sur la surface Φ_4 , la courbe τ est une conique, la courbe ρ_{11} une droite, σ_4 est un point singulier appartenant à la conique τ , ρ_{12} un point singulier appartenant à la droite ρ_{11} , ρ_{22} est une droite passant par ce point singulier et contenant un point singulier représentant les courbes ρ_{21} et σ_{α} .

La surface Φ_4 est d'ordre n-10 et ses sections hyperplanes $\Gamma_0^{(4)}$ sont de genre $\pi-6$.

17. Le point de diramation A' de Φ est équivalent à un ensemble de sept courbes rationnelles

$$\sigma_1$$
, τ , ρ_{11} , ρ_{12} , ρ_{22} , ρ_{21} , σ_{α}

et l'on a

$$\Gamma_{0} \equiv \Gamma_{0}' + \sigma_{1} + \tau + \rho_{11} + \rho_{12} + \rho_{22} + \rho_{21} + \sigma_{\alpha}.$$

On en conclut que ces courbes ont le degré virtuel — 2, sauf τ qui a le degré virtuel — 3.

On a ensuite

$$\begin{split} &\Gamma_0 \equiv \Gamma_0'' + \sigma_1 + \tau + 2(\rho_{11} + \rho_{12} + \rho_{22} + \rho_{21}) + \sigma_{\alpha}, \\ &\Gamma_0 \equiv \Gamma_0''' + \sigma_1 + \tau + 2\rho_{11} + 3(\rho_{12} + \rho_{22}) + 2\rho_{21} + \sigma_{\alpha}, \\ &\Gamma_0 \equiv \Gamma_0^{(4)} + \sigma_1 + 2\tau + 3(\rho_{11} + \rho_{12} + \rho_{22}) + 2\rho_{21} + \sigma_{\alpha}. \end{split}$$

On en conclut que:

Le point de diramation A' de la surface Φ est triple triplanaire pour cette surface; le cône tangent à ce point se compose de trois plans (σ_1) , (τ) , (σ_{α}) , le second rencontrant chacun des deux autres suivant une droite, mais ceux-ci ne se rencontrant pas en dehors de A'. Au point A' sont infiniment voisins successifs deux points doubles biplanaires dont le premier est sur la droite commune aux plans (τ) , (σ_x) , le second étant ordinaire.