qu'une espèce d'objets), a_n est le nombre des alcools C_nH_{2n+1} OH isomères (sans tenir compte de la stéréoisomérie). On a donc

$$f(x) = 1 + x + x^2 + 2x^3 + 4x^4 + 8x^5 + 17x^6 + \dots$$

Je prends p=6 points, sommets d'un hexagone régulier, \mathcal{H} est le groupe des h=12 rotations de l'hexagone. Le coefficient de x^n dans le développement

$$\begin{split} &\frac{1}{12} \big[f^6 + 4 f_2^3 + 3 f_1^2 f_2^2 + 2 f_3^2 + 2 f_6 \big] \\ &= 1 + x + 4 x^2 + 8 x^3 + 22 x^6 + 51 x^5 + 136 x^6 + \dots \end{split}$$

est le nombre des dérivés isomères $C_{6+n}H_{6+2n}$ du benzène.

GÉOMÉTRIE ALGÉBRIQUE. — Sur les involutions du second ordre appartenant à certaines variétés algébriques à trois dimensions. Note de M. LUCIEN GODEAUX, présentée par M. Élie Cartan.

Soit V une variété algébrique à trois dimensions contenant un système linéaire |F| de surfaces F qui soit son propre adjoint. V possède des surfaces canonique et pluricanoniques d'ordre zéro, ses genre géométrique et plurigenres sont égaux à l'unité et tout système linéaire de surfaces de V est son propre adjoint. Supposons que V contienne une involution I_2 d'ordre deux, n'ayant qu'un nombre fini ou simplement infini de points unis. Il est possible de construire sur V un système linéaire complet |F|, simple, dépourvu de points-base, de dimension aussi grande qu'on le veut, transformé en lui-même par l'involution et possédant les propriétés suivantes : |F| contient deux systèmes linéaires partiels, $|F_4|$, $|F_2|$, composés au moyen de I_2 ; $|F_4|$ est dépourvu de points-base; $|F_2|$ a comme points-base les points unis de I_2 .

Désignons par Ω une variété image de l'involution I_2 . Aux surfaces F_4 , F_2 correspondent sur Ω des surfaces Φ_4 , Φ_2 formant des systèmes complets, linéaires, $|\Phi_4|$, $|\Phi_2|$. Si l'on désigne par A la surface équivalente, au point de vue des transformations birationnelles, aux points de diramation de Ω , on a

$$2\,\Phi_1 \equiv 2\,\Phi_2 + A.$$

Aux courbes canoniques des surfaces Φ_1 , Φ_2 correspondent des courbes canoniques des surfaces F_1 , F_2 respectivement; par conséquent, les

adjoints des systèmes $|\Phi_1|$, $|\Phi_2|$ sont, dans un certain ordre, ces systèmes eux-mêmes. Examinons les trois cas qui peuvent se présenter.

- a. L'involution I_2 est dépourvue de points unis. Soient r_1 , $r_2 \le r_1$ les dimensions des systèmes $|\Phi_1|$, $|\Phi_2|$. Sur une surface F_2 , le système canonique comprend deux systèmes linéaires composés au moyen de I_2 : l'un est découpé par les surfaces F_1 et a la dimension r_1 ; l'autre, découpé par les surfaces F_2 , a la dimension $r_2-1 < r_1$. C'est ce dernier système qui est le transformé du système canonique de Φ_2 (voir notre Note dans les Bull. de l'Acad. roy. de Belgique, 1932, p. 672). Par suite $|\Phi_2|$ est son propre adjoint et il en est de même de $|\Phi_1|$. On a $r_1=r_2$ et la variété Ω possède des surfaces canonique et pluricanoniques d'ordre zéro.
- b. L'involution I_2 possède un nombre fini, non nul, de points unis. Aux courbes canoniques d'une surface Φ_2 correspondent sur la surface F_2 homologue, des courbes canoniques ne passant pas par les points unis de I_2 , c'est-à-dire les courbes canoniques découpées par les surfaces F_1 . L'adjoint de $|\Phi_2|$ est donc le système $|\Phi_1|$ et l'adjoint de $|\Phi_1|$ le système $|\Phi_2|$. Par conséquent, les systèmes $|\Phi_1|$, $|\Phi_2|$ sont leurs propres bi-adjoints. La variété Ω ne possède pas de surfaces canonique ou (2i+1)-canoniques, mais elle possède des surfaces 2i-canoniques d'ordre zéro.
- c. L'involution I_2 possède une courbe unie. A une courbe canonique d'une surface Φ_2 correspond, sur la surface F_2 homologue, une courbe qui, augmentée de la courbe unie de l'involution, donne une courbe canonique. Par conséquent $|\Phi_2|$ est son propre adjoint et il en est de même de $|\Phi_1|$. La variété Ω possède des surfaces canonique et pluricanoniques d'ordre zéro.

ASTROPHYSIQUE. — Méthode nouvelle pour l'étude de l'absorption de la lumière dans l'espace interstellaire. Note (¹) de MM. DANIEL BARBIER et VICTOR MAITRE, présentée par M. Ernest Esclangon.

1. Les excès de couleur des étoiles B ont été attribués par van de Kamp (²) à une absorption de la lumière par diffusion dans une couche localisée au voisinage du plan galactique. A priori, ils pourraient aussi bien provenir d'un effet de magnitude absolue. Cette dernière hypothèse a été rejetée car le coefficient de corrélation est plus grand entre les excès de couleur et

⁽¹⁾ Séance du 2 décembre 1935.

⁽²⁾ Astronomical Journal, 40, 1930, p. 145.