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Abstract
Preserving and restoring terrestrial ecosystems is crucial to halting the collapse of life on Earth. To guide
global conservation and restoration efforts, we present a comprehensive map, encompassing all
ecosystems, revealing the Earth's potential tree, short vegetation, and bareground cover accounting for
various land management scenarios such as prescribed �re frequency and trophic rewilding. Our analysis
indicates that 43% (5678 Mha) of lands could be covered by trees, 39% (5179 Mha) by shrubs and
grasses, and 18% (2347 Mha) by bareground. Approximately 1070 Mha can support alternative land
covers, emphasizing the need to consider diverse outcomes in landscape restoration. Our �ndings also
suggest that management scenarios may signi�cantly outweigh the average impact of climate change
on resulting land covers, underscoring decision-makers' responsibility for nature’s recovery and a
sustainable future.

Main text
During the last decades, several planetary boundaries have been crossed - in particular those related to
biological integrity and climate change1 - stressing the need for increased biodiversity protection,
restoration and adaptation2–6. International organizations have now seized its importance, as re�ected
by the adoption by the General Assembly of the United Nations, on the 1st of March 2019, of a resolution
to establish the 2021–2030 period as the “Decade of Ecosystem Restoration”. This resolution is also
backed by the latest reports of the 6th Assessment Report of the Intergovernmental Panel on Climate
Change2 and by the adoption of global quantitative restoration targets under the Global Biodiversity
Framework adopted by the parties of the Convention on Biological Diversity in Montréal in December
2022. While ecosystem restoration is largely supported by governments, NGOs and stakeholders
worldwide, restoration actions on the ground largely focus on planting trees through reforestation or
afforestation7. This bias toward tree planting can lead to unintended negative outcomes for the
mitigation of climate change itself, the conservation of other life forms (including vegetation, animals,
fungi, and microbes), and the rights and livelihoods of local communities8. Examples of negative
unwanted impacts include, but are not limited to, warming in boreal regions due to tree cover-induced
changes in albedo9, increased evapotranspiration leading to a loss of water availability10, lower carbon
storage in soils when replacing old-growth grasslands with tree plantations11, or a collapse in native
biodiversity with the replacement of native savannahs by exotic plantations7. Hence, developing holistic
methods and approaches for ecosystem restoration considering the wider impacts of this activity on
nature and local communities and the potential of the land to hold multiple vegetation types is essential
to maximize its environmental and socio-economic bene�ts and to avoid critical mistakes.

Restoration activities can lead to alternative ecosystems in a landscape, which can be obtained by
following different management scenarios (e.g., protection, reforestation, reintroduction of keystone
species, and the use of prescribed �re or �re exclusion)12,13. Restoration should consequently begin with
a multiple-choice question: what are the possible alternative ecosystems that can be found within a given
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landscape? Answering this question is crucial to maintain complex landscapes and preserve
biodiversity14. Decision makers who limit the exploration of future possibilities to a single type of
ecosystem, whether considering forests or grasslands, risk overlooking other states that may be better
adapted for the local biophysical conditions, both now and in the future, as well as for the changing
needs and interests of people15. For instance, while reforestation may be a viable option in numerous
dryland regions today, certain areas that used to harbor trees in the past may not sustain forest
ecosystems under future climate conditions4,16,17. To maximize the social, environmental and economic
bene�ts of restoration, it is crucial to move beyond a narrow focus on "forest vs. non-forest" possibilities
and to explore all potential land cover alternatives accounting for factors such as future climate
uncertainty, human livelihoods and the risks and bene�ts that may arise from restoration outcomes18.
While recognizing the importance of considering alternative ecosystems for restoration is not new13,19,20,
the lack of a comprehensive global assessment of alternative land covers continues to impede progress
in the �eld and – more critically – reinforce con�icting views on the matter7,8. A global assessment of the
potential for alternative ecosystems is thus crucial for the development of effective restoration initiatives
that maximize the bene�ts of these actions and minimize undesirable outcomes.

Here, we �rst created a map showing the potential land area covered by trees, short vegetation
(comprising shrubs and grasses), and bareground (areas devoid of perennial vegetation but which might
harbor biocrusts and annual plants) globally at a resolution of 0.25 degrees per pixel (Fig. 1). This map,
referred as the median potential fractional vegetation cover, is generated using land covers data collected
over 40,000 0.5-hectare plots within all protected areas. We choose protected areas to assess the
reference state of the different potential land covers considered in any location of the planet, and
subsequently guide restoration actions. Many protected areas, however, experience some level of human
degradation that might ultimately lead our model to the misrepresentation of the reference state.
Degradation can relate to historical and current anthropogenic activities like legal and illegal logging, past
defaunation and local extinctions, ongoing poaching or excessive hunting, or increased abundance of
exotic pests and diseases21–23. To limit the potential resulting bias, we further extrapolate our map
considering as a reference state solely those protected areas under conservative IUCN categories I, II and
III (i.e. over 18,000 plots; Fig S1).

To predict the fractional vegetation cover, we combined climate variables, soil properties, �re frequency
and wildlife herbivory within a neural network modeling framework (see Methods). We employed various
climate databases to account for the model’s sensitivity to the choice of climatic data and accounted for
potential model over�tting (see Methods). To encourage further interpretation and comparison of our
results, all datasets were scaled to a pixel resolution of 0.25 degrees. All the models yielded good results,
showing a very limited impact (< 1%) of the modelling framework and of the choice of climate dataset
and a rather limited (~ 5%) impact of the spatial structure of the training dataset (Figs. S2 and S3). We
then generated the �nal map by extrapolating the model beyond protected areas for each climate data
source and calculating the median fractional vegetation cover for each pixel (Fig. S4). Based on the
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climate envelope of our model, we estimate here that 95% of the pixels of the median fractional
vegetation cover map fall within the range of observed values in the training points (see Methods).

Our study reveals that the median potential fractional vegetation cover of the planet (Fig. 1) is comprised
of 5678 (± 79) Mha of trees (43%), 5179 (± 92) Mha of short vegetation (39%), and 2347 (± 66) Mha of
bareground (18%). Interestingly, our maps reveal two distinct patterns at the global level (Fig. 1). From
tropical to desert regions, each biome tends to be dominated by one potential land cover. Tropical biomes
are dominated by trees, subtropical biomes by short vegetation and desert biomes by bareground (Table
S1). From temperate to boreal regions, each biome tends to present a more balanced distribution of the
land cover, in particular for short vegetation and tree cover. This �nding is in line with a recent
assessment of the land covers in Europe during the last interglacial period24, i.e. the youngest period with
a similar climate as today and absence of Homo sapiens. Tropical and subtropical moist forests have the
largest area potentially covered by trees (on average 1,615 Mha), but also present 311 Mha of land
potentially covered by short vegetation. Similarly, tropical and subtropical grasslands have the largest
area potentially covered by short vegetation (1,125 Mha), but also present 723 Mha of land potentially
covered by trees. Desert biomes have signi�cant potential for short vegetation and tree cover, with 1,057
Mha and 408 Mha respectively, with 1307 Mha strictly covered by bareground. This potential for
vegetation is nonetheless expected to shrink in desert biomes in the next decades due to forecasted
climate and land use changes4,16. These results highlight that landscape restoration cannot afford to
overlook any type of land cover. Whether in arid, boreal, temperate, or tropical biomes, a restoration
project should always consider the opportunity, costs and bene�ts of restoring different ecosystems, and
the possibility of letting restored natural processes determine the outcome. This underscores the
remarkable heterogeneity of vegetation on Earth and the intricate challenges associated with their
conservation and restoration.

Using multiple realistic �re regimes and wildlife herbivory scenarios, i.e. respecting the observed range of
�re intensity and herbivore biomass in each ecoregion of the world (see Methods), we map the potential
alternative land covers on Earth (Fig. 2). Each pixel of the map represents the standard deviation of the
predictions obtained from the different scenarios for trees, short vegetation, and bareground cover in
green, blue, and red, respectively (Fig. 2). The resulting additive color rendering corresponds to
landscapes where alternatives are found between two dominant land cover types. In total, the map
illustrates that roughly 1070 Mha of the Earth's surface can support alternative land covers, an area
equivalent to the total current expanse of tropical moist forest25. The most substantial hotspots for
alternative potential ecosystems are found in subtropical and temperate biomes, where �re and herbivory
scenarios promote the transition from dense forests to grassy systems and eventually from grassy
systems to deserts (Fig. 2). These hotspots result mostly from an asymptotic relationship between land
cover and �re regime, as an increase of �re will substantially favor short vegetation over trees beyond a
certain threshold of �re frequency (Fig S5). The effect of wildlife herbivory appears more complex, as an
increase of herbivory biomass is not systematically related to a decrease of tree cover (Fig. S5). Indeed,
high herbivore densities can be found both within dense forests (e.g., forest elephants, great apes, etc.)
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and herbaceous savannas26. High herbivore densities can also increase vegetation heterogeneity and
consequently their overall resilience vs. external forcing27.

Our results provide valuable insights to help guide ecosystem restoration efforts while taking into
account the alternative options that together shape complex and heterogeneous landscapes28. They can
assist stakeholders in assessing how climate change, prescribed �re intensity, �re exclusion, and wildlife
herbivory may affect the tree, short vegetation, and bareground cover of a given landscape. This could
help guiding existing restoration initiatives such as natural grazing projects in Europe’s rewilding
landscapes, where we can evaluate the scenario needed to promote more heterogeneous landscapes29

and address the effects of land abandonment30, trophic rewilding experiments in Siberia (e.g. ‘the
Pleistocene park’) where grassy ecosystems might stabilize soil temperatures and limit permafrost
melting31, trophic rewilding experiments in African savannah where elephants help promote semi-open
ecosystems32, or reforestation initiatives in Africa aiming to slow down land degradation and
deserti�cation (e.g., the Great Green Wall33). Using our model considering various �re and herbivory
scenarios, together with the average expected climate change by 205034, we found that an increase of
herbivore biomass up to 30,000 kg.km−² - i.e. close to the upper limit observed in Europe latest interglacial
age35 or about 30 buffalos or six elephants per km2 - can decrease the tree cover from 55–11% in the
Dinaric mountains of Europe, and from 44–8% in the Northeast Siberian Taiga (Fig. 3). Fire prescription
or exclusion in West Sudanian savannah might change the potential tree cover by 23%, shifting between
33% and 56% when passing from 0.5 to 0 �re yr− 1 (Fig. 3). Interestingly, results show that the choice of
management action appears to have a much stronger impact on the �nal land cover than average
climate change alone. In this regard, the effects of the average expected climate change by 2050 only
changed the resulting land cover of the previous examples by less than 3%. While the maps and model
presented here are robust and informative, and given the spatial extent of globally available data, further
re�nement and validation of our models would enhance their accuracy and usefulness for particular
restoration or rewilding initiatives on the ground. Similarly, the inclusion of punctual but extreme climatic
events might improve our understanding of the effect of climate change vs. the effect of management
action on the resulting land cover.

In conclusion, our �ndings emphasize that effective and goal-setting restoration strategies hinge upon
the comprehensive assessment of the various potential land covers that could coexist in a given
landscape. More importantly, they also highlight that land management actions are very likely to
outweigh the average effect of climate change on the resulting restoration outcome. As such, we believe
that our results can help guiding the design of ecologically and socially responsible landscape restoration
initiatives that are required to combat our ongoing climate and biodiversity crises.

Methods
The code used in the present study, including data preparation, model training, validation and evaluation,
and mapping is available as an R project on GitHub (Data File S1).
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1. Set-up of the study
We set-up a data-driven neural network model to map the Earth´s potential fractional vegetation cover.
The model is trained on environmental data in combination with a dataset of land-cover in protected
areas of the globe. We used this model to predict land cover based on a range of climatic data sets,
herbivory, and �re scenarios.

2. Assessment of land cover
The training dataset corresponds to the augmented photo-interpretation of three types of land cover:
trees, short vegetation (including grasses and shrubs), and bare ground. We used data from over 40,000
0.5-hectare plots distributed across the protected areas of the globe (Fig S1) and following a systematic
sampling grid design (20 by 20 km). In the model, we further make the distinction between 18,000 plots
falling under conservative IUCN categories I, II and Ill (category = 1) and the rest of the plots falling under
IUCN categories IV, V and VI (category = 0). The database, which is accessible as a supplementary
material (Data File S1), results from previous studies on the global assessment of dryland forests and the
global tree restoration potential 4,36. Similar to these previous studies, we added plots from the global
dryland assessment falling in desert regions to cover the full range of environmental conditions.

3. Augmented visual interpretation of the three land cover
categories using Collect Earth
The assessment of land cover in each plot was conducted using the Augmented Visual Interpretation
approach with the assistance of Collect Earth 37. Collect Earth, an open-access software developed by the
Open Foris initiative of the Food and Agriculture Organization of the United Nations (FAO), utilizes Google
Earth and Google Earth Engine to provide multi-source and multi-level information to facilitate the photo-
interpretation of land cover. This software enables the operator to perform photo-interpretation of a 70 x
70 m square plot, combining land cover information derived from satellite images with very high spatial
(pixel size ≤ 1 meter) and temporal (daily data acquisition) resolution. To interpret the land cover, the
operator utilizes freely accessible, very high spatial resolution, satellite images which can be visualized
on Google Earth. Simultaneously, the operator cross-references the interpretations with spectral
information obtained from medium-to-high resolution satellite images, including MODIS, Landsat 7/8
from USGS mission, and Sentinel 2 from Copernicus mission, which have been automatically compiled
over the past 20 years. In our case, each plot consists of a systematic grid of 7-by-7 points (49 points),
allowing convenient and direct estimations of tree cover, short vegetation cover, and bare ground cover.
Each point on the grid represents 2% of the plot area. The three land cover values range from 0 to 100%
and sum up to 100% for each plot. Distinguishing trees from short vegetation was based on visual
assessment of crown size, where crowns width below 2 meters considered as non-tree woody cover. More
details on the photo-interpreted inventories we use are provided in previous studies 4,36.

4. Environmental determinants of land cover
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To build the global potential distribution of the three land covers and the subsequent global potential
alternative land cover map, we further develop an empirical model based on neural network approaches
38 to predict the relationship between environmental determinants (climate, soil, �re regime, and wildlife
herbivory) and land cover within protected areas. We detail hereafter the preprocessing of each of the
datasets used.

Protected areas

Similarly to previous studies, we identi�ed regions of the world with limited human activity using the
World Database on Protected Areas 39 (WDPA), developed by the United Nations Environmental Program
(UNEP) and the International Union for Conservation of Nature (IUCN). These regions are nonetheless not
entirely exempt from human activity 40. Therefore, we distinguish conservative protected areas, from
IUCN category I, II and III (category = 1) and the rest (category = 0). Our extrapolated maps, i.e. outside
protected areas, are produced considering only the restrictive IUCN categories I, II and III to estimate the
potential land cover of the planet with limited human activity.

Climate data

In the present study, we consider that global climate databases, whether derived from meteorological
station records or satellite mission predictions, are prone to uncertainties and biases. To address this
potential issue, we have incorporated six global climate reference datasets, namely CHELSA, CRU TS4,
ERA5, MODIS, NEX historical and Worldclim 41–45.

For each dataset, we examined four climate variables aggregated over a signi�cant time span of 10 to 30
years (between 1980 and 2010), depending on the availability of the data in each speci�c database. We
considered the total yearly precipitation, the average yearly temperature, and the yearly standard
deviation of monthly temperature and precipitation. These variables have been carefully chosen to
capture both the annual average conditions and the seasonal patterns in temperature and precipitation.
The code for the preparation of these climate dataset and their accessibility are available as a
supplementary data �le (Data File S1).

Soil and Topography

To characterize soil properties, we used the ClustOfVar R package 46, to select three soil and two
topographic variables out of a total of 34 quantitative soil descriptors derived from soilgrids 47 and �ve
topographic properties derived from GMTED2010 48. The �nal selection of soil and topographic variables
include the soil organic carbon stock from 0-to-15 cm, depth to bedrock, sand content from 0-to-15 cm,
elevation, and hillshade.

Fire frequency
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We computed �re frequency through Google Earth Engine using the Terra and Aqua combined MCD64A1
Version 6 Burned Area MODIS data product 49. It is a monthly, global gridded 500 m product containing
per-pixel burned-area and quality information. The MCD64A1 burned-area mapping approach employs
500 m MODIS Surface Re�ectance imagery coupled with 1 km MODIS active �re observations. Here, we
converted the map into a binary yearly information, counting whether a �re was detected or not each year
of the period 2001–2020 (Data File S1). We then computed a single map to assess the yearly �re
frequency over the 2000–2020 period. The map shows that the African continent is the most subject to
�re, particularly in the inter-tropical regions.

Herbivory dataset

The herbivory dataset is compiled from the study of Berzaghi et al. of 2021 26, where the authors studied
the global distribution of mammal herbivore biomass using dynamic vegetation models calibrated on
observed datasets gathered over protected areas. To account for the general trends of herbivore biomass
and daily intake in natural systems, we merged the data, that was originally structured in 24 functional
groups, into three levels of information, i.e. the estimated dry biomass in kilogram of wet weight per km2

(i.e., the biomass), the estimated total biomass intake in kg of dry mass· km− 2 (i.e., the intake) and, �nally,
the estimated daily litter intake in kg of dry mass per square kilometer. Accounting for the litter intake
allows to focus on the impact of herbivores being very dependent of seasonal source of intake (i.e. the
littler). The herbivore datasets are available in the Data File S1.

List of selected variables

Based on aforementioned steps, we select a total of 13 variables, listed as follows: annual average
precipitation, average annual temperature, standard deviation of precipitation, standard deviation of
temperature, bedrock depth, elevation, hillshade, soil organic carbon content, sand content, �re frequency,
herbivore total biomass, herbivore total intake, and herbivore litter intake.

5. The representativity of the training dataset
To assess the representativity of the training dataset, we �rst assessed the range of the four climatic
variables (mean temperature, annual precipitation, precipitation seasonality, and temperature
seasonality) used within and outside protected areas per biomes. These ranges illustrate that the
protected areas cover well the global variation of these four climatic values (Figs S6-S7). Additionally, we
performed a convex hull analysis to account for the co-variations between the four climatic variables. The
results obtained show that less than 5% of the terrestrial land on the planet fall beyond the limits of the
convex hull, meaning that our counterfactual map is the result of 95% of interpolation and 5% of
extrapolation (Data File S1).

6. The neural network model
Neural network architecture
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Our base model is a multilayer perceptron (MLP) based on simple neural networks. The model is
composed of two hidden layers (64 features each). Between hidden layers, a “tanh” activation function
and a dropout of 0.75 were applied. At the end of the MLP, a "softmax” activation function was applied to
reconstruct proportions of the three land covers: trees, short vegetation and bare ground. Input and output
data are tabular with one line per photo-interpreted plot for training and one line per pixel of 0.25 degrees
for prediction.

Model training, prediction, and assessment of variabilities

The methodology is de�ned to avoid model over�tting, to ensure prediction robustness, and to evaluate
four potential sources of variability in the mapping of the three land covers: the choice of the climate data
source, the effect of the spatial structure of the training dataset, the model uncertainty, and the sensitivity
to the scenario of �re and herbivory.

The weighted mean square error (MSE) was used as loss function for training. The weights of the neural
networks were computed for balancing the number of samples between continents, IUCN categories (0/1)
and vegetation cover classes (highest proportions). The training parameters (number of epochs, learning
rate, etc.) were set trough trials and error considering the k-folds cross-validation.

In total, 66 MLPs were trained: 10 (spatial folds) + 1 (all folds) for each of the six climate data sources
(CHELSA, CRU TS4, ERA5, MODIS, NEX historical, and Worldclim). The use of the different climate
datasets allowed us assessing the sensitivity to the choice of the climate source (Fig. S8 bottom).
Similarly, the use of the 10 folds, corresponding to spatially and environmentally separated areas (Fig.
S9), generated using the blockCV package in R 50, allowed assessing the sensitivity of our model to the
spatial structure of the training dataset (Fig. S8 middle). After training, for each of the 66 MLPs, 10
(dropout activated) + 1 (dropout deactivated) repetitions of predictions were done. These 10 repetitions
were used to assess the model variability (uncertainty) (Fig. S8 top). Finally, the predictions were also
done considering the �re and herbivory scenarios (5 x 5) to assess the scenario variability (Fig. 2).

To sum up, the six predictions with all folds, dropout disactivated, and median �re and median herbivory
scenarios were used to generate the global maps (Fig. 1 and Fig. S4). Other predictions were used to
assess the four types of variabilities (Fig. 2 and Fig. S11). For a more detailed description of these
variabilities see points 7 to 10 of this supplementary material.

Finally, to consider climate change (CC), supplementary predictions were done using ‘NEX historical’
model 51. The extrapolations for 2050 were done considering the average of all models considered in the
NEX CMIP6 product (i.e. ACCESS-CM2', 'ACCESS-ESM1-5', 'BCC-CSM2-MR', 'CESM2', 'CESM2-WACCM',
'CMCC-CM2-SR5', 'CMCC-ESM2', 'CNRM-CM6-1', 'CNRM-ESM2-1', 'CanESM5', 'EC-Earth3', 'EC-Earth3-Veg-
LR', 'FGOALS-g3', 'GFDL-CM4', 'GFDL-ESM4', 'GISS-E2-1-G', 'HadGEM3-GC31-LL', 'HadGEM3-GC31-MM',
'IITM-ESM', 'INM-CM4-8', 'INM-CM5-0', 'IPSL-CM6A-LR', 'KACE-1-0-G', 'KIOST-ESM', 'MIROC-ES2L', 'MIROC6',
'MPI-ESM1-2-HR', 'MPI-ESM1-2-LR', 'MRI-ESM2-0', 'NESM3', 'NorESM2-LM', 'NorESM2-MM', 'TaiESM1',
'UKESM1-0-LL') under the scenario ssp5 (Fig. 3).



Page 12/20

Model evaluation

Model validation was done progressively by analyzing the residuals, the variable importance, and their
pro�les. A �rst assessment of the model is presented through the averages and ranges of the model part
pro�les (Fig S5). This �gure shows how, at the global level, each land cover type responds to the variation
of standardized model parameters. Interestingly, and despite being an empirical machine-learning model,
the �gure presents biologically meaningful relationships between the predictive and the response
variables, providing con�dence in the quality of the model. The comparison of predicted and observed
values (Fig. S2) revealed that the models generally present a good and unbiased prediction of each land
cover type, yet with a small systematic underestimation of the prediction of high bare ground values.

Scenarios of �re regime and wildlife herbivory

To model the potential land cover beyond the geographic limits of the world’s protected areas, it is
necessary to consider potential scenarios of �re regime and herbivory that are currently not present
outside protected areas, i.e. counterfactuals. To consider realistic situations, we propose scenarios based
on the observed frequency distributions of �re frequency and herbivory within protected areas, calculated
for each ecoregion and each biome. For each distribution, we identi�ed very low (5th percentile), low (25th
percentile), median (50th percentile), high (75th percentile) and very high values (95th percentile 95th ).

Biomes and terrestrial ecoregions

The scenarios of �re regime and wildlife herbivory are built from observations within protected areas and
are considered per biome and terrestrial ecoregion -as de�ned by Olson and colleagues 52-, as these
consist of large units of land containing distinct natural communities and species. We therefore assume
that the �re regime and the wildlife herbivory observed within the protected areas of these
biomes/ecoregions are realistic scenarios of �re and herbivory that could be implemented for a
restoration project at the scale of the biomes/ecoregions.

7. The median potential fractional vegetation cover map
The median potential fractional vegetation cover represents the median case scenario of the distribution
of bare ground (red), tree (green) and short vegetation (blue) cover (Fig. 1), produced considering the
different climate source data and considering a median scenario of �re and herbivory. One map was
produced for each climate reference database, and the resulting �nal map corresponds to the median
pixel value calculated from these maps (Fig S4).

8. Variability maps and variability assessment
From the structure of our neural network model (point 5 above), we can generate potential land cover
maps activating or disactivating any of the four sources of variability. This enables to map each type of
variability independently or together and to quantify their impact on the �nal estimations of the total land
covered by bare ground, trees, and short vegetation.
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Variability maps were produced by calculating the standard deviation of the prediction of each land cover
at the pixel level for each source of variability independently (Fig S8). They were quanti�ed in terms of
area by assessing the total area of land covered by bare ground, trees, and short vegetation for each
iteration.

A map propagating the variability associated to the choice of the climate source data, the spatial
structure, and the model uncertainty was also generated in Fig S9.

9. Con�dence interval of the median potential global
fractional vegetation cover map.
The con�dence interval for the prediction of each potential land cover type was calculated from the
standard deviation of each land cover type resulting from the propagation of uncertainty of the model,
from the in�uence of the spatial structure, and from the choice of the climate reference dataset. In total,
we generated 600 maps per land cover type, with ten replicates for the model, ten folds for the spatial
structure, and six climate reference datasets. One standard deviation map was produced for each land
cover type (Fig S10). We then summed all the pixels values multiplied by their area to estimate the area
concerned by the uncertainty. Here, we estimated that the area of land concerned by the uncertainty in
bare ground cover equals 750 Mha, 895 Mha for the tree cover, and 1052 Mha for the short vegetation
cover (Data File S1). The con�dence interval (CI) was then calculated with the following equation:

Considering a con�dence interval of 95%, z equals 1.96;  corresponds to the area concerned by the
uncertainty of the land cover type i, and n (the number of land cover maps) equals 600. The con�dence
interval is therefore 60 Mha for the prediction of the potential bare ground cover, 72 Mha for the
prediction of the potential tree cover, and 84 Mha for the prediction of the potential short vegetation cover.

10. The global potential of alternative ecosystems
We estimated the potential of alternative land cover by evaluating the standard deviation per pixel for
each land cover type when changing the �re and herbivory scenario (Fig. 2). This map was generated
using the full database, i.e., without considering the various sources of uncertainty considered in the
present study. Here, we produced one map per climate reference dataset and per potential combination of
�re regime and herbivory, i.e. considering the �re and herbivory values for the percentiles 5th, 25th, 50th,
75th and 95th per terrestrial ecoregion (Fig. S11).
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The global potential fractional vegetation cover. The map displays the median potential fractional
vegetation cover per pixel, based on the observed �re regime and herbivory per ecoregion within protected
areas of IUCN class I, II, and III. The sum of potential tree (T), short vegetation (SV), and bareground (BG)
cover (top left) equals 100% for each pixel. The remaining sub�gures display each potential land cover
separately for enhanced clarity.

Figure 2

Global map of potential alternative ecosystems. This map depicts the potential for alternative
ecosystems on a global scale, based on the changes in �re regime (prescribed or excluded) and herbivore
intensity scenarios 53. Each pixel of the map represents the standard deviation (SD) of the predictions for
bare ground (BG), tree (T) and short vegetation (SV) cover. The resulting additive color rendering
corresponds to pixels where alternatives are found between two dominant land cover types (cyan for
trees and short vegetation, magenta for short vegetation and bareground, and in yellow for trees and
bareground). A Venn diagram summarizes this color legend.
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Figure 3

Examples of potential alternative tree cover distributions resulting from different management scenarios
and climate change at the ecoregion level. The effect of three scenarios (�re, herbivory, and climate
change SSP5 [CC]) is illustrated on the potential tree cover of three ecoregions, i.e. the Northeast Siberian
Taiga, the Dinaric Mountains Mixed Forests and the West Sudanian Savanna. Each panel compares
different scenarios including (i) the current potential without changing the �re regime, herbivory, or
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climate change, (ii) the current herbivory biomass and the expected climate change by 2050 (current
herbivory + CC), (iii) 30 tons of herbivory biomass per km2 and the expected climate change by 2050
(high herbivory + CC), (iv) the current �re regime and the expected climate change by 2050 (current �re +
CC), and (v) a prescribed �re of 0.5 yr-1 and the expected climate change by 2050 (�re exclusion + CC).
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