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Wiener-Itô integral of a symmetric f ∈ L2(Rd )

f =

n∑︁
j1 ,...,jd=1

aj1 ,...,jd1[sj1 ,tj1 ) ⊗ · · · ⊗ 1[sjd ,tjd ) (1)

where,
• aj1 ,...,jd are such that, for all permutation 𝜎, a𝜎 (j1) ,...,𝜎(jd ) = aj1 ,...,jd and

aj1 ,...,jd = 0 as soon as two indices j1, . . . , jd are equal;
• for all 1 ≤ ℓ ≠ ℓ′ ≤ d , [sjℓ , tjℓ ) ∩ [sjℓ′ , tjℓ′ ) = ∅;

then the d -multiple Wiener-Itô integral of f with respect to the Brownian motion
{B (t)}t ∈R on a probability space (Ω, F , P) is defined as the L2(Ω) random variable.

Id (f ) :=
n∑︁

j1 ,...,jd=1

aj1 ,...,jd (B (tj1) − B (sj1)) × . . . (B (tjd ) − B (sjd )). (2)

Functions of the form (1) are dense among symmetric L2(Rd ) function and the
corresponding sequence of random variables (2) converge in L2(Ω).
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Hermite processes
Given h ∈ ( 12 , 1) and d ∈ N∗, we define, for all s ≥ 0, the function

fh (s , •) : Rd → R+ : x ↦→
d∏

ℓ=1

(s − xℓ)
h−1
d − 1

2
+ . (3)

For all t ≥ 0, the function ∫ t

0
fh (s , •) ds

is symmetric and belongs to L2(Rd ).Then, the Hermite process of order d and
Hurst parameter h is defined as{

Id

(∫ t

0
fh (s , •) ds

)}
t ∈R+

. (4)
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Hermite processes – properties

{Xd (t , h)}t ∈R+ =
{
Id

(∫ t

0
fh (s , •) ds

)}
t ∈R+

.

1. Self-similarity: for all a > 0, the processes {Xd (at , h)}t ∈R+ and
{ahXd (t , h)}t ∈R+ are equal in law.

2. Stationarity of increments: for any r > 0, the processes
{Xd (t + r , h) −Xd (t , h)}t ∈R+ and {Xd (t , h)}t ∈R+ are equal in law.

3. Covariance function: For all s , t ∈ R+,
E[Xd (t , h)Xd (s , h)] = ch (t2h + s2h − |t − s |2h ).

4. Hölder regularity: {Xd (t , h)}t ∈R+ has a version with almost sure
(uniform) Hölder exponent h.

If d > 1, {Xd (t , h)}t ∈R+ is non-Gaussian.
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4. Hölder regularity: {Xd (t , h)}t ∈R+ has a version with almost sure
(uniform) Hölder exponent h.

A function f defined on I belongs to the Hölder space C 𝛼 (I ) if there exists
c > 0 such that, for all x , y ∈ I

|f (x ) − f (y) | ≤ c |x − y |𝛼.

If d > 1, {Xd (t , h)}t ∈R+ is non-Gaussian.

3/34



Hermite processes – properties

{Xd (t , h)}t ∈R+ =
{
Id

(∫ t

0
fh (s , •) ds

)}
t ∈R+

.

1. Self-similarity: for all a > 0, the processes {Xd (at , h)}t ∈R+ and
{ahXd (t , h)}t ∈R+ are equal in law.

2. Stationarity of increments: for any r > 0, the processes
{Xd (t + r , h) −Xd (t , h)}t ∈R+ and {Xd (t , h)}t ∈R+ are equal in law.

3. Covariance function: For all s , t ∈ R+,
E[Xd (t , h)Xd (s , h)] = ch (t2h + s2h − |t − s |2h ).

4. Hölder regularity: {Xd (t , h)}t ∈R+ has a version with almost sure
(uniform) Hölder exponent h.

{X1(t , h)}t ∈R+ is the Brownian motion of Hurst parameter h.

If d > 1,
{Xd (t , h)}t ∈R+ is non-Gaussian.
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Generators of multifractional Hermite processes

Definition
Given d ∈ N∗, the generator of the multifractional Hermite process of order d
is the real-valued centred field {Xd (t , h)} (t ,h) ∈R+×( 12 ,1) defined, for all (t , h) ∈
R+ × ( 12 , 1), by the multiple Wiener-Itô integral

Xd (t , h) := Id

(∫ t

0
fh (s , •) ds

)
. (5)
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Generators of multifractional Hermite processes

Proposition
Let d ∈ N∗, K be a compact set of ( 12 , 1) and I be a compact interval of R+.
There exist a positive deterministic constant c1 only depending on d an K and
a positive deterministic constant c2, only depending on d , K and I , such that,
for all t , u ∈ I and h1, h2 ∈ K ,

∥Xd (t , h1) −Xd (u , h2)∥L2 (Ω)

is bounded from above by c1 |t − u |min{h1,h2 } + c2 |h1 − h2 | and from below by
c1 |t − u |min{h1,h2 } − c2 |h1 − h2 |.
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Generators of multifractional Hermite processes

Proposition
Given d ∈ N∗ and K a compact set of ( 12 , 1), let I be a compact interval of R+.
For any p ≥ 1 there exists a positive deterministic constant cp , only depending
on d , p , K and I , such that, for all t , u ∈ I and h1, h2 ∈ K ,

∥Xd (t , h1) −Xd (u , h2)∥Lp (Ω) ≤ cp

(
|t − u |min{h1,h2 } + |h1 − h2 |

)
. (6)

It is a consequence of the hypercontractivity property: for every p > 0 and
d ≥ 1, there exists a constant 0 < k (p, d ) < ∞ such that, for every random
variable F with the form of a d -multiple Wiener-Itô integral

∥F ∥Lp (Ω) ≤ k (p, d )∥F ∥L2 (Ω) .
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Generators of multifractional Hermite processes

Proposition
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)
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Consequence of Kolmogorov Theorem
Given d ∈ N∗, there exist a modification of the field {Xd (t , h)} (t ,h) ∈R+×(1/2,1) ,
also denoted by {Xd (t , h)} (t ,h) ∈R+×(1/2,1) , andΩ∗, an event of probability 1, such
that, on Ω∗, given I , a compact interval of R+, and K , a compact set of ( 12 , 1),
for all 0 < a < inf K , there exists a finite positive random variable C such that,
for all t , u ∈ I and h1, h2 ∈ K ,

|Xd (t , h1) −Xd (u , h2) | ≤ C ( |t − u | + |h1 − h2 |)a . (7) 5/34



Multifractional Hermite processes
On the event Ω∗ of probability 1,

|Xd (t , h1) −Xd (u , h2) | ≤ C ( |t − u | + |h1 − h2 |)a

Definition
Given d ∈ N∗, a compact setK of ( 12 , 1) and a functionH : R+ → K , themultifractional
Hermite process of order d and Hurst functionH is the process {XH ( ·)

d
(t)}t ∈R+ defined,

for all t ∈ R+, by
XH ( ·)

d
(t) = Xd (t ,H (t)). (8)

First observations:

1. On the event Ω∗, {XH ( ·)
d

(t)}t ∈R+ is always continuous at 0.

2. If H is a continuous function, on the event Ω∗, {XH ( ·)
d

(t)}t ∈R+ is continuous.

3. If H is discontinuous at a point t0 ≠ 0, almost surely, {XH ( ·)
d

(t)}t ∈R+ is
discontinuous at t0.

6/34
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Hölder regularity (lower bound)
On the event Ω∗ of probability 1,

|Xd (t , h1) −Xd (u , h2) | ≤ C ( |t − u | + |h1 − h2 |)a .

XH ( ·)
d

(t) = Xd (t ,H (t))

A first Condition for H
Given d ∈ N∗ and a compact set K of ( 12 , 1), we say that the Hurst function
H : R+ → K satisfies the uniform min-Hölder regularity condition if, for all
compact interval I of R+, there exists 𝛾 ∈ (H (I ), 1) such that H ∈ C 𝛾 (I ),
where we set H (I ) := min{H (I )}

Under this condition, it is clear that, on Ω∗, for all interval I , the Hölder
exponent of {XH ( ·)

d
(t)}t ∈R+ on I is at least H (I ).
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XH ( ·)
d

(t) = Xd (t ,H (t))

A first Condition for H
Given d ∈ N∗ and a compact set K of ( 12 , 1), we say that the Hurst function
H : R+ → K satisfies the uniform min-Hölder regularity condition if, for all
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Under this condition, it is clear that, on Ω∗, for all interval I , the Hölder
exponent of {XH ( ·)

d
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Modulus of continuity

Theorem (L.L.)
Given d ∈ N∗, a compact set K of ( 12 , 1) and a Hurst function H : R+ → K
satisfying the uniformmin-Hölder regularity condition, there existsΩ∗

1, an event
of probability 1, such that, on Ω∗

1, for all compact interval I of R+

lim sup
r→0+

supt0∈I Osc(XH ( ·)
d

, [t0 − r , t0 + r ] ∩ I )

rH (I ) (log r−1) d
2

< +∞.

Osc(f , I ) := supt ,s∈I |f (t) − f (s) |.

Important fact
For all d ≥ 1, there exists an universal deterministic constant cd > 0 such that,
for any random variable X in the Wiener chaos of order d , and y ≥ 2,

P( |X | ≥ y ∥X ∥L2 (Ω) ) ≤ exp(−cdy
2
d ).
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Modulus of continuity – Idea of the proof

j = 0

kj (t)−
2j

k+1
2j

k
2j

1
2j

kj (t)+
2j

0 1
t

If I is a compact interval in [0, n] and t ∈ I , there exists J2 ∈ N such that, for
all j ≥ J2, k−j (t) ∈ I or kj (t)+ ∈ I . We choose kj (t) ∈ {k−j (t), k+j (t)} such that
kj (t) ∈ I .

On Ω∗, for all t and j0 ≥ J2, we write

XH ( ·)
d

(t) = Xj0,kj0 (t) +
∑︁
j ≥j0

(Xj+1,kj+1 (t) −Xj ,kj (t) )

∑︁
j

P

(
∃0 ≤ k ≤ n2j , k ′ ∈ {2k , 2k ± 1, 2k ± 2} :

|Xj+1,k ′ −Xj ,k |
∥Xj+1,k ′ −Xj ,k ∥L2 (Ω)

≥ cj
d
2

)
< ∞.
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Lower bound for oscillations

...
scale j − 1

scale j

scale j + 1
...

0 1t
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Lower bound for oscillations

...
scale j − 1

scale j

scale j + 1
...

0 1t

𝜆j (t) = [k−j (t)2−j , k+j (t)2−j ) is the unique dyadic interval at scale j containing t
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Lower bound for oscillations

...
scale j − 1

scale j

scale j + 1
...

0 1t

3𝜆j (t) is 𝜆j (t) and its neighbours.
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Lower bound for oscillations

...
scale j − 1

scale j

scale j + 1
...

0 1t

𝜆 ⊂ 3𝜆j (t).
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Lower bound for oscillations

...
scale j − 1

scale j

scale j + 1
...

0 1t

If 𝜆 = [k2−j , (k + 1)2−j ) is a dyadic interval, we set

Δj ,k := XH ( ·)
d

(
k + 1

2j

)
−XH ( ·)

d

(
k

2j

)
10/34
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scale j

scale j + 1
...

0 1t

If 𝜆 = [k2−j , (k + 1)2−j ) is a dyadic interval, we set

Δj ,k := XH ( ·)
d

(
k + 1

2j

)
−XH ( ·)

d

(
k

2j

)
sup

𝜆⊆3𝜆j (t)
|Δ𝜆 | ≤ Osc(XH ( ·)

d
, [t − 22−j , t + 22−j ]).
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A brilliant idea from Antoine

Δj ,k = Xd

(
k + 1

2j
,H

(
k + 1

2j

))
−Xd

(
k

2j
,H

(
k + 1

2j

))
+Xd

(
k

2j
,H

(
k + 1

2j

))
−Xd

(
k

2j
,H

(
k

2j

))
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XH ( ·)

d

(
k + 1

2j
,H

(
k + 1

2j

))
−Xd

(
k

2j
,H

(
k + 1

2j

))
= Id

(
1(−∞, k+1

2j
]d

(∫ k+1
2j

k
2j

f
H

(
k+1
2j

) (s , •) ds
))
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A brilliant idea from Antoine
Given an integer M ≥ 0, for all (j , k ) ∈ N × {0, . . . , 2j − 1}, we consider the enlarged
dyadic interval

𝜆Mj ,k :=

(
k −M

2j
,
k + 1

2j

]d
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We define the random variables

Δ̃j ,k
M

:= Id

(
1𝜆M
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f
H
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(
k
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Δj ,k = Δ̃j ,k
M + }Δj ,k

M
+ yΔj ,k .
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−Xd

(
k

2j
,H

(
k

2j
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.

Δj ,k = Δ̃j ,k
M + }Δj ,k

M
+ yΔj ,k .

If M1, . . . ,Mn are fixed positive real numbers, the random variables�Δj1 ,k1

M1
, . . . , �Δjn ,kn

Mn are independent as soon as the condition

𝜆
Mℓ

jℓ ,kℓ
∩ 𝜆

Mℓ′
jℓ′ ,kℓ′

= ∅ for all 1 ≤ ℓ, ℓ′ ≤ n (9)

is satisfied. 11/34



Dominent random variables

Proposition (L.L.)
Given d ∈ N∗, a compact set K of ( 12 , 1) and a Hurst function H : R+ → K ,
there exists a positive deterministic constant c, only depending on d and K ,
such that, for all (j , k ) ∈ N × {0, . . . , 2j − 1} and M > 0, one has

1. c−12
−H

(
k+1
2j

)
j ≤ ∥Δ̃j ,k

M ∥L2 (Ω) ≤ c2
−H

(
k+1
2j

)
j ;

2. ∥}Δj ,k
M
∥L2 (Ω) ≤ cM

H

(
k+1
2j

)
−1

d 2
−H

(
k+1
2j

)
j ;

3. ∥yΔj ,k ∥L2 (Ω) ≤ c Osc(H , 𝜆j ,k ).

A pointwise Condition for H
Given d ∈ N∗ and a compact set K of ( 12 , 1), we say that the Hurst function
H : R+ → K satisfies the pointwise Hölder regularity condition if, for all t ∈ R+,
there exists 𝛾 ∈ (H (t), 1) such that H ∈ C 𝛾 (t).
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Lower bound for oscillations

Theorem (L.L.)
Given d ∈ N∗, a compact set K of ( 12 , 1) and a Hurst function H : R+ → K
satisfying the pointwise regularity condition, there exists Ω, an event of proba-
bility 1, such that, on Ω, for all t0 ∈ R+,

lim sup
r→0+

Osc(XH ( ·)
d

, [t0 − r , t0 + r ] ∩ R+)

rH (t0) (log r−1)
−d2H (t0 )
2(1−H (t0 ) )

> 0 (10)

Important fact
Given d ∈ N∗, there exists an universal deterministic constant 𝛾d ∈ [0, 1) such
that, for any random variable X in the Wiener chaos of order d , one has

P

(
|X | ≤ 1

2
∥X ∥L2 (Ω)

)
≤ 𝛾d .
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Roadmap through the dyadic intervals
If 𝜆 = 𝜆j ,k is a dyadic interval and m ∈ N,

S𝜆,m = Sj ,k ,m := {𝜆 ∈ Λj+m : 𝜆 ⊂ 𝜆j ,k }.

0 1

14/34



Roadmap through the dyadic intervals
If the dyadic interval 𝜆j ,k and m ∈ N are fixed and S ∈ Sj ,k ,m , we define the
sequences of dyadic intervals (In )0≤n≤m and (Tn )1≤n≤m in the following way:
• I0 = 𝜆j ,k :
• Im = S ;
• for all 1 ≤ n ≤ m , In−1 = In ∪ Tn .

0 1
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Roadmap through the dyadic intervals
For all 𝜆j ,k ∈ Λ, we define

M𝜆 := (8c2c ′j d
2 )

d

1−H
(
k+1
2j

)
. (11)

0 1
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Roadmap through the dyadic intervals
For any 1 ≤ n ≤ m , there are ℓd dyadic intervals (T ℓ

n = 𝜆
j
(ℓ)
n ,k

(ℓ)
n
)1≤ℓ≤ℓd in

STn , ⌊log2 (ℓdMTn ) ⌋+1 such that, for all 1 ≤ ℓ ≤ ℓd(
k (ℓ)
n −MTn

2j
(ℓ)
n

,
k (ℓ)
n + 1

2j
(ℓ)
n

)
⊆ Tn .

0 1
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For any 1 ≤ n ≤ m , there are ℓd dyadic intervals (T ℓ

n = 𝜆
j
(ℓ)
n ,k

(ℓ)
n
)1≤ℓ≤ℓd in

STn , ⌊log2 (ℓdMTn ) ⌋+1 such that if ℓ ≠ ℓ′,(
k (ℓ)
n −MTn

2j
(ℓ)
n

,
k (ℓ)
n + 1

2j
(ℓ)
n

)
∩

(
k (ℓ′)
n −MTn

2j
(ℓ′)
n

,
k (ℓ′)
n + 1

2j
(ℓ′)
n

)
= ∅.

0 1

14/34



Consequences of this construction
The random variables (Δ̃T ℓ

n

MTn )1≤ℓ≤ℓd1≤n≤m are independent

so if we define the Bernoulli
random variable

Bj ,k ,m (S ) =
∏

1≤n≤m ,1≤ℓ≤ℓd
1
{ |�Δ

Tℓ
n

MTn |<2−1 ∥�Δ
Tℓ
n

MTn ∥L2 (Ω) }
,

E[Bj ,k ,m (S )] ≤ 𝛾
mℓd
d

.

Let us set consider the random variable

Gj ,k ,m =
∑︁

S ∈Sj ,k ,m

Bj ,k ,m (S ),

we have E[Gj ,k ,m ] ≤ (2𝛾ℓd
d
)m . It follows from Fatou Lemma that

E
[
lim inf
m→+∞

Gj ,k ,m

]
= 0.

As a consequence, Ω1 =
⋂

j ∈N,0≤k<2j {𝜔 : lim infm→+∞ Gj ,k ,m (𝜔) = 0} is an event of
probability 1.

15/34



Consequences of this construction
The random variables (Δ̃T ℓ

n

MTn )1≤ℓ≤ℓd1≤n≤m are independent so if we define the Bernoulli
random variable

Bj ,k ,m (S ) =
∏

1≤n≤m ,1≤ℓ≤ℓd
1
{ |�Δ

Tℓ
n

MTn |<2−1 ∥�Δ
Tℓ
n

MTn ∥L2 (Ω) }
,

E[Bj ,k ,m (S )] ≤ 𝛾
mℓd
d

.

Let us set consider the random variable

Gj ,k ,m =
∑︁

S ∈Sj ,k ,m

Bj ,k ,m (S ),

we have E[Gj ,k ,m ] ≤ (2𝛾ℓd
d
)m . It follows from Fatou Lemma that

E
[
lim inf
m→+∞

Gj ,k ,m

]
= 0.

As a consequence, Ω1 =
⋂

j ∈N,0≤k<2j {𝜔 : lim infm→+∞ Gj ,k ,m (𝜔) = 0} is an event of
probability 1.

15/34



Consequences of this construction
The random variables (Δ̃T ℓ

n

MTn )1≤ℓ≤ℓd1≤n≤m are independent so if we define the Bernoulli
random variable

Bj ,k ,m (S ) =
∏

1≤n≤m ,1≤ℓ≤ℓd
1
{ |�Δ

Tℓ
n

MTn |<2−1 ∥�Δ
Tℓ
n

MTn ∥L2 (Ω) }
,

E[Bj ,k ,m (S )] ≤ 𝛾
mℓd
d

.

Let us set consider the random variable

Gj ,k ,m =
∑︁

S ∈Sj ,k ,m

Bj ,k ,m (S ),

we have E[Gj ,k ,m ] ≤ (2𝛾ℓd
d
)m . It follows from Fatou Lemma that

E
[
lim inf
m→+∞

Gj ,k ,m

]
= 0.

As a consequence, Ω1 =
⋂

j ∈N,0≤k<2j {𝜔 : lim infm→+∞ Gj ,k ,m (𝜔) = 0} is an event of
probability 1.

15/34



Consequences of this construction
The random variables (Δ̃T ℓ

n

MTn )1≤ℓ≤ℓd1≤n≤m are independent so if we define the Bernoulli
random variable

Bj ,k ,m (S ) =
∏

1≤n≤m ,1≤ℓ≤ℓd
1
{ |�Δ

Tℓ
n

MTn |<2−1 ∥�Δ
Tℓ
n

MTn ∥L2 (Ω) }
,

E[Bj ,k ,m (S )] ≤ 𝛾
mℓd
d

.

Let us set consider the random variable

Gj ,k ,m =
∑︁

S ∈Sj ,k ,m

Bj ,k ,m (S ),

we have E[Gj ,k ,m ] ≤ (2𝛾ℓd
d
)m

. It follows from Fatou Lemma that

E
[
lim inf
m→+∞

Gj ,k ,m

]
= 0.

As a consequence, Ω1 =
⋂

j ∈N,0≤k<2j {𝜔 : lim infm→+∞ Gj ,k ,m (𝜔) = 0} is an event of
probability 1.

15/34



Consequences of this construction
The random variables (Δ̃T ℓ

n

MTn )1≤ℓ≤ℓd1≤n≤m are independent so if we define the Bernoulli
random variable

Bj ,k ,m (S ) =
∏

1≤n≤m ,1≤ℓ≤ℓd
1
{ |�Δ

Tℓ
n

MTn |<2−1 ∥�Δ
Tℓ
n

MTn ∥L2 (Ω) }
,

E[Bj ,k ,m (S )] ≤ 𝛾
mℓd
d

.

Let us set consider the random variable

Gj ,k ,m =
∑︁

S ∈Sj ,k ,m

Bj ,k ,m (S ),

we have E[Gj ,k ,m ] ≤ (2𝛾ℓd
d
)m . It follows from Fatou Lemma that

E
[
lim inf
m→+∞

Gj ,k ,m

]
= 0.

As a consequence, Ω1 =
⋂

j ∈N,0≤k<2j {𝜔 : lim infm→+∞ Gj ,k ,m (𝜔) = 0} is an event of
probability 1.

15/34



Consequences of this construction
The random variables (Δ̃T ℓ

n

MTn )1≤ℓ≤ℓd1≤n≤m are independent so if we define the Bernoulli
random variable

Bj ,k ,m (S ) =
∏

1≤n≤m ,1≤ℓ≤ℓd
1
{ |�Δ

Tℓ
n

MTn |<2−1 ∥�Δ
Tℓ
n

MTn ∥L2 (Ω) }
,

E[Bj ,k ,m (S )] ≤ 𝛾
mℓd
d

.

Let us set consider the random variable

Gj ,k ,m =
∑︁

S ∈Sj ,k ,m

Bj ,k ,m (S ),

we have E[Gj ,k ,m ] ≤ (2𝛾ℓd
d
)m . It follows from Fatou Lemma that

E
[
lim inf
m→+∞

Gj ,k ,m

]
= 0.

As a consequence, Ω1 =
⋂

j ∈N,0≤k<2j {𝜔 : lim infm→+∞ Gj ,k ,m (𝜔) = 0} is an event of
probability 1. 15/34



Consequences of this construction
For all 𝜔 ∈ Ω1 and t0 ∈ [0, 1), there exist infinitely many j ∈ N such that there is
𝜆 ∈ 3𝜆j (t0) and 𝜆′ ∈ S𝜆, ⌊log2 (ℓdM𝜆) ⌋+1 for which

|Δ̃M𝜆

𝜆′ (𝜔) | ≥ 1

2
∥Δ̃M𝜆

𝜆′ ∥L2 (Ω) . (11)
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and Ω3, an event of probability 1 such that, for all 𝜔 ∈ Ω3, there exists J3 ∈ N such
that, for all j ≥ J3, 𝜆 ∈ Λj and 𝜆′ ∈ S𝜆, ⌊log2 (ℓdM𝜆) ⌋+1,��� xΔ𝜆′ (𝜔)

��� ≤ c ′j
d
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8
(8c2c ′j d
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−

dH

(
k′+1
j ′

)
1−H

(
k+1
2j

)
2
−jH

(
k′+1
j ′

)
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1−H
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2
−jH

(
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)
. (11)

As a consequence

lim sup
j→+∞

Osc(XH ( ·)
d

, [t0 − 22−j , t0 + 22−j ] ∩ R+)

2−jH (t0) j
− d2H (t0 )

2(1−H (t0 ) )

> 0.
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Law of iterated logarithm – upper bound

A local Condition for H
Given d ∈ N∗ and a compact set K of ( 12 , 1), we say that the Hurst function
H : R+ → K satisfies the local Hölder regularity condition if, for all t ∈ R+,
there exist t ∈ It ⊆ R+ and 𝛾 ∈ (H (t), 1) such that H ∈ C 𝛾 (It ).

Proposition (L.L.)
Given d ∈ N∗, a compact set K of ( 12 , 1) and a Hurst function H : R+ → K

satisfying the local Hölder condition, there exists Ω1, an event of probability 1,
such that on Ω1, for (Lebesgue) almost every t0 ∈ R+, we have

lim sup
r→0+

Osc(XH ( ·)
d

, [t0 − r , t0 + r ] ∩ R+)

rH (t0) (log(log r−1)) d
2

< ∞. (12)
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Ideas of the proof
If s , t ∈ [t0 − r , t0 + r ] with 2−(j0+1) ≤ r ≤ 2−j0 , for any j ≥ j0 and x ∈ {s , t},
𝜆j (x ) ⊆ 3𝜆j0 (t0) and we write

XH ( ·)
d

(t) −XH ( ·)
d

(s) = Xj0,k
−
j0
(t) −Xj0,k

−
j0
(s)

+
∑︁
j ≥j0

(
Xj+1,k−j+1 (t) −Xj+1,k−j+1 (s) −Xj ,k−j (t) +Xj ,k−j (s)

)
.

P

(
∃j ≥ j0, 𝜆k ,j , 𝜆k ′,j ⊆ 3𝜆j0 (t0) :

|Xj ,k ′ −Xj ,k |
∥Xj ,k ′ −Xj ,k ∥L2 (Ω)

≥ c log(j0)
d
2 (j − j0 + 1) d

2

)
≤

∑︁
j ≥j0

32j−j0 exp(−cdc
2
d log(j0) (j − j0 + 1))

≤ c ′ exp(−cdc
2
d log(j0))

and we conclude using Borel-Cantelli Lemma and Fubini Theorem.
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Law of iterated logarithm – lower bound (for
probabilities)
We want to bound from below the probabilities

P( |Δ̃M
j ,k | ≥ y2

−jH
(
k+1
2j

)
) (13)

for (j , k ) ∈ N × {0, . . . , 2j − 1} and M > 0.
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j ,k | ≥ y2

−jH
(
k+1
2j

)
) (13)

for (j , k ) ∈ N × {0, . . . , 2j − 1} and M > 0. We know that for any random
variable X in the Wiener chaos of order d , there exist two deterministic
constants y0 ≥ 0 and c > 0 such that, for all y ≥ y0,

P( |X | ≥ y) ≥ exp(−cy 2
d ).
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variable X in the Wiener chaos of order d , there exist two deterministic
constants y0 ≥ 0 and c > 0 such that, for all y ≥ y0,

P( |X | ≥ y) ≥ exp(−cy 2
d ).

But, unfortunately, these constants depend on the law of X and are not
universal, which is undesirable in our context.

19/34



Law of iterated logarithm – lower bound (for
probabilities)

Lemma
Let d ∈ N∗, K be a compact set of ( 12 , 1) and H : R+ → K be a continuous
Hurst function. For all t0 ∈ R+, there exist four deterministic constants ct0 > 0,
yt0 > 0, j0 ∈ N andM0 > 0 such that, for all 𝜆j ,k ⊆ 3𝜆j0 (t0),M ≥ M0 and y > yt0 ,
we have

P( |Δ̃M
j ,k | ≥ y2

−jH
(
k+1
2j

)
) ≥ exp(−ct0y

2
d ). (13)
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Law of iterated logarithm – lower bound

Proposition (L.L.)
Given d ∈ N∗, a compact set K of ( 12 , 1) and a Hurst function H : R+ → K

satisfying the pointwise Hölder regularity Condition, there exists Ω2, an event
of probability 1, such that on Ω2, for (Lebesgue) almost every t0 ∈ R+, we have

0 < lim sup
r→0+

Osc(XH ( ·)
d

, [t0 − r , t0 + r ] ∩ R+)

rH (t0) (log(log r−1)) d
2

.
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Law of iterated logarithm

Theorem (L.L.)
Given d ∈ N∗, a compact set K of ( 12 , 1) and a Hurst function H : R+ →
K satisfying the local Hölder regularity Condition, there exists Ω, an event of
probability 1, such that on Ω, for (Lebesgue) almost every t0 ∈ R+, we have

0 < lim sup
r→0+

Osc(XH ( ·)
d

, [t0 − r , t0 + r ] ∩ R+)

rH (t) (log(log r−1)) d
2

< ∞. (14)
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Local asymptotic self-similiraty

Definition
A real-valued stochastic process {X (t)}t ∈R+ is weakly locally asymptotically self-
similar of order h > 0 at the point t0 with tangent process {Y (t)}t≥0 if the sequence
of process {𝜀−h (X (t0 + 𝜀t) −X (t0))}t ∈R+ converges to the process {Y (t)}t ∈R+ in finite
dimensional distributions, as 𝜀 → 0+.
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Local asymptotic self-similiraty

Proposition (L.L.)
Let d ∈ N∗, K be a compact set of ( 12 , 1) and H : R+ → K be a Hurst function. If
H satisfies the pointwise Hölder regularity Condition then, for all t0 ≥ 0, the multifrac-
tional Hermite process {XH ( ·)

d
(t) : t ≥ 0} is weakly locally asymptotically self-similar

of order H (t0) at t0 with tangent process {Xd (t ,H (t0)) : t ≥ 0}, the Hermite process
of order d and Hurst parameter H (t0).

We write

𝜀−H (t0)
(
XH ( ·)

d
(t0 + 𝜀t) −XH ( ·)

d
(t0)

)
= 𝜀−H (t0) (Xd (t0 + 𝜀t ,H (t0 + 𝜀t)) −Xd (t0 + 𝜀t ,H (t0)))

+ 𝜀−H (t0) (Xd (t0 + 𝜀t ,H (t0)) −Xd (t0,H (t0))) .
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We know that

{𝜀−H (t0) (Xd (t0 + 𝜀t ,H (t0)) −Xd (t0,H (t0)))}t≥0
is equal in finite-dimensional distribution to

{Xd (t ,H (t0))}t≥0.
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Local asymptotic self-similiraty

Proposition (L.L.)
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+ 𝜀−H (t0) (Xd (t0 + 𝜀t ,H (t0)) −Xd (t0,H (t0))) .

On the other hand,

∥𝜀−H (t0) (Xd (t0 + 𝜀t ,H (t0 + 𝜀t)) −Xd (t0 + 𝜀t ,H (t0))) ∥L2 (Ω)

≤ c2𝜀
−H (t0) |H (t0 + 𝜀t) −H (t0) | .
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In particular, for all fixed t ≥ 0, the sequence of random variables(
𝜀−H (t0) (Xd (t0 + 𝜀t ,H (t0 + 𝜀t)) −Xd (t0 + 𝜀t ,H (t0)))

)
𝜀>0

converges to 0 in L2(Ω), and thus in probability, when 𝜀 → 0+. 22/34



Strong local asymptotic self-similiraty

Definition
When {X (t)}t ∈R+ and {Y (t)}t ∈R+ have, almost surely, continuous path and if the pre-
vious convergence also holds in the sense of continuous function over an arbitrary
compact set ofR+, we say that {X (t)}t ∈R+ is strongly locally asymptotically self-similar
of order h > 0 at the point t0, with tangent process {Y (t)}t ∈R+ .

If {X (t)}t ∈R+ is weakly locally asymptotically self-similar of order h > 0 at the point t0
with tangent process {Y (t)}t ∈R+ , it suffices to show that, for all a > 0 and 𝛿 > 0

lim
𝜂→0+

lim sup
𝜀→0+

P

(
sup

s ,t ∈[0,a ], |t−s | ≤𝜂

����X (t0 + 𝜀t) −X (t0 + 𝜀s)
𝜀h

���� ≥ 𝛿

)
= 0. (15)

It is the so-called Prohorov’s criterion.
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Markov and Garsia-Rodemich-Rumsey
inequalities
The Markov inequality entails, for any p ≥ 1,

P(𝜀, 𝜂, 𝛿) ≤ 𝛿−p𝜀−pH (t0)E

[
sup

s ,t ∈[0,a ], |t−s | ≤𝜂

���XH ( ·) (t0 + 𝜀t) −XH ( ·) (t0 + 𝜀s)
���p ] .

Now, we use the so called Garsia-Rodemich-Rumsey inequality to write, for 𝛼 ≥ 1
p ,

E

[
sup

s ,t ∈[0,a ], |t−s | ≤𝜂

���XH ( ·) (t0 + 𝜀t) −XH ( ·) (t0 + 𝜀s)
���p ]

≤ ca ,p,𝛼𝜂
𝛼p−1

∬
[0,a ]2

E
[���XH ( ·) (t0 + 𝜀t) −XH ( ·) (t0 + 𝜀s)

���p ] |t − s |−𝛼p−1 dsdt .

If H satisfies the local Hölder regularity Condition,

P(𝜀, 𝜂, 𝛿) ≤ 2ca ,p,𝛼𝛿
−p𝜂𝛼p−1

∬
[0,a ]2

|t − s |p (infK−𝛼)−1 dsdt .
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���XH ( ·) (t0 + 𝜀t) −XH ( ·) (t0 + 𝜀s)
���p ]

≤ ca ,p,𝛼𝜂
𝛼p−1

∬
[0,a ]2

E
[���XH ( ·) (t0 + 𝜀t) −XH ( ·) (t0 + 𝜀s)

���p ] |t − s |−𝛼p−1 dsdt .

If H satisfies the local Hölder regularity Condition,

P(𝜀, 𝜂, 𝛿) ≤ 2ca ,p,𝛼𝛿
−p𝜂𝛼p−1

∬
[0,a ]2

|t − s |p (infK−𝛼)−1 dsdt .
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Fractal dimensions

Definition
Given d ∈ N∗, a set A ⊆ Rd and 𝜀, h > 0, the quantity

Hh
𝜀 (A) := inf{

∑︁
j

diamh (Aj ) : A ⊆
⋃
j

Aj and, ∀j , diam(Aj ) < 𝜀}

where, as usual, diam stands for the diameter, is called the (h , 𝜀)-Hausdorff
outer measure of A. Moreover, for all h > 0, the application 𝜀 ↦→ Hh

𝜀 (A) is
decreasing and it follows that the h-dimensional Hausdorff outer measure

Hh (A) := lim
𝜀→0+

Hh
𝜀 (A)

is well-defined.
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Fractal dimensions

Definition
Given d ∈ N∗ and a non-empty set A ⊆ Rd , the Hausdorff dimension of A is

dimH (A) = sup{h > 0 : Hh (A) = ∞} = inf{h > 0 : Hh (A) = 0},

while, by convention, dimH (∅) = −∞.
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Fractal dimensions

Definition
Given d ∈ N∗, a non-empty bounded set A ⊆ Rd and 𝜀 > 0, let N𝜀 (A) be the
smallest number of sets of diameter at most 𝜀 which can cover A. The quan-
tities

dimB (A) := lim inf
𝜀→0+

log(N𝜀 (A))
− log(𝜀) and dimB (A) := lim sup

𝜀→0+

log(N𝜀 (A))
− log(𝜀)

are, respectively, the lower and upper box-counting dimensions of A. If they are
equal, the common value is refereed as the box-counting dimension of A and
we denote it dimB (A).
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equal, the common value is refereed as the box-counting dimension of A and
we denote it dimB (A).

Given d ∈ N∗, a compact set K of ( 12 , 1), a Hurst function H : R+ → K and a
compact interval I ⊂ R+, we are interested in the dimensions of the graph

Gd (I ) := {(t ,XH ( ·)
d

(t)) : t ∈ I }.
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(A ⊆ B ) ⇒ dimH (A) ≤ dimH (B ). (17)
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Upper bound for box-counting dimension

Lemma (Falconer)
Let I ⊂ R+ be a compact interval and f : I → R be a continuous function for
which there exist c ≥ 0 and 1 ≤ 𝛼 ≤ 2 such that, for all s , t ∈ I ,

|f (s) − f (t) | ≤ c |t − s |2−𝛼,

then
dimB

(
{(t ,XH ( ·)

d
(t)) : t ∈ I }

)
≤ 𝛼.

Proposition (L.L.)
Given d ∈ N∗, a compact set K of ( 12 , 1), a Hurst function H : R+ → K satisfy-
ing the uniform min-regularity Condition and a compact interval I ⊂ R+, there
exists Ω̃1, an event of probability 1, such that, on Ω̃1, we have

dimB (Gd (I )) ≤ 2 −H (I ).
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Lower bound for Hausdorff dimension
Let t0 ∈ I be such that H (t0) = H (I ), for j ∈ N, we have, for all t , r ≥ 0 such that
t , t + r ∈ [t0 − j −1, t0 + j −1] ∩ I and s > 0

E

[(
|XH ( ·)

d
(t + r ) −XH ( ·)

d
(t) |2 + r2

)− s
2

]
=

∫ r−s

0
P

((
|XH ( ·)

d
(t + r ) −XH ( ·)

d
(t) |2 + r2

)− s
2 ≥ x

)
dx

= s

∫ +∞

0
y (y2 + r2)− s

2−1P
(
|XH ( ·)

d
(t + r ) −XH ( ·)

d
(t) | ≤ y

)
dy
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0
y (y2 + r2)− s

2−1P
(
|XH ( ·)

d
(t + r ) −XH ( ·)

d
(t) | ≤ y

)
dy

Lemma (Carbery- Wright)
There is an absolute deterministic constant c > 0 such that, for any n , d ≥ 1, 1 < p <

∞ any polynomial Q : Rd → R of degree at most n , any Gaussian random vector
(X1, . . . ,Xd ) and any x > 0,

E[|Q (X1, . . . ,Xd ) |
p
n ]

1
p P( |Q (X1, . . . ,Xd ) | ≤ x ) ≤ cpx

1
n .
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Lower bound for Hausdorff dimension
For all t , u ∈ I , we write

f H ( ·)
t ,u : Rd → R : w ↦→

∫ t

0
fH (t) (s ,w) ds −

∫ u

0
fH (u) (s ,w) ds

Given {ej }j ∈N an orthonormal basis of L2(R), the sequence of functions(
f H ( ·) ,J
t ,u :=

J∑︁
j1 ,...,jd=1

⟨f H ( ·)
t ,u , ej1 ⊙ · · · ⊙ ejd ⟩ej1 ⊙ · · · ⊙ ejd

)
J

converges to f H ( ·)
t ,u in L2(Rd ).

Id
(
ej1 ⊙ · · · ⊙ ejd

)
=

p∏
ℓ=1

Hnℓ

(∫
R
ej̃ℓ (x ) dB (x )

)
,

Wiener isometry, Fatou’s Lemma and Carbery- Wright inequality give

P
(
|XH ( ·)

d
(t) −XH ( ·)

d
(u) | ≤ x

)
≤ c2dx

1
d




XH ( ·)
d

(t) −XH ( ·)
d

(u)



− 1

d

L2 (Ω)
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Lower bound for Hausdorff dimension
As H (t0) = H (I ), one can find 𝜉 > 0 such that, for all 0 < 𝜀 < 𝜉 and
t , u ∈ I ∩ [t0 − 𝜀, t0 + 𝜀]


XH ( ·)

d
(t) −XH ( ·)

d
(u)





L2 (Ω)

≥ c1 |t − u |min{H (t) ,H (u) } − c2 |H (t) −H (u) |

≥ c1
2
|t − u |H (t0 , 𝜀) .

Therefore,

E

[(
|XH ( ·)

d
(t + r ) −XH ( ·)

d
(t) |2 + r2

)− s
2

]
≤ c ′′r

1
d −s−

H (t0 ,j−1 )
d .

Thus, if we consider the random measure 𝜇X ,j defined for all Borel sets A ⊆ R2 by

𝜇X ,j (A) := L{t ∈ [t0 − j −1, t0 + j −1] ∩ I : (t ,XH ( ·)
d

(t)) ∈ A},

E

(∬
d𝜇X ,j (x )d𝜇X ,j (y)

|x − y |s

)
< ∞

for all s < 1 + 1−H (t0 ,j−1)
d .
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Fractal dimensions of the graph

Theorem (L.L.)
Given d ∈ N∗, a compact set K of ( 12 , 1), a Hurst function H : R+ → K satisfying the
uniformmin-Hölder regularity Condition and a compact interval I ⊂ R+, there exists Ω̃,
an event of probability 1, such that on Ω̃, we have

1 +
1 −H (I )

d
≤ dimH (Gd (I )) ≤ dimB (Gd (I )) ≤ 2 −H (I ).

When d = 2, any symmetric function f ∈ L2(R2) can be written as

f =
∑︁
j ∈N

𝜆f ,j ef ,j ⊗ ef ,j ,

with convergence in L2(R2), where {ef ,j }j ∈N are the eigenvectors with corresponding
eigenvalues {𝜆f ,j }j ∈N of the Hilbert-Schmidt operator

Af : L2(R) → L2(R) : g ↦→
∫
R
f (·, y)g (y) dy .
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The language of Malliavin calculus
If F is a cylindrical random variables of the form

F = g (I1(f1), . . . , I1(fn )) (18)

with n ≥ 1, fj ∈ L2(R) and g infinitely differentiable such that all its partial
derivatives have polynomial growth, the mth Malliavin derivative of F is the
element of L2(Ω,L2(Rm )) defined by

DmF =

n∑︁
j1,...,jm=1

𝜕mg

𝜕xj1 . . . 𝜕xjm
(I1(f1), . . . , I1(fn ))fj1 ⊗ · · · ⊗ fjm .

For all m ≥ 1 and p ≥ 1, Dm ,p denote the closure of S (the set of cylindrical
random variables) with respect to the norm

∥ · ∥m ,p : F ↦→
(
E[|F |p] +

m∑︁
j=1

E[∥D jF ∥p
L2 (Rj ) ]

) 1
p

. (19)
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Boundedness and continuity of density

Lemma (Hu-Lu-Nualart)
If F ∈ D2,s is such that E[|F |2p] < ∞ and E[∥DF ∥−2r

L2 (R) ] < ∞ for p, r , s > 1 satisfying
1
p + 1

r + 1
s = 1, then F has continuous and bounded density fF with

sup
x ∈R

|fF (x ) | ≤ cp




∥DF ∥−2
L2 (R)





Lr (Ω)

∥F ∥2,s ,

where cp > 0 is a deterministic constant only depending on p.
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I2(f ) =
∑︁
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I1(ef ,j )2 − 1

)
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In our context,
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(∑︁
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𝜆2f ,j I1(ef ,j )
2

) 1
2

. (20)
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where cp > 0 is a deterministic constant only depending on p.

Lemma (Hu-Lu-Nualart)
Let G :=

(∑
j ∈N 𝜆jX

2
j

) 1
2 where {𝜆j }j ∈N satisfies |𝜆j | ≥ |𝜆j+1 | for all j ≥ 1 and {Xj }j ∈N

are i.i.d. standard normal. For all r > 1, E[G−2r ] < ∞ if and only if there exists N > 2r
such that |𝜆N | > 0 and, in this case,

E[G−2r ] ≤ cpN
−r |𝜆 |−2r , (20)

with cr > 0 a deterministic constant only depending on r . 32/34



The case of the multifractional Rosenblatt
process
We keep the notation

f H ( ·)
t ,u : R2 → R : w ↦→

∫ t

0
fH (t) (s ,w) ds −

∫ u

0
fH (u) (s ,w) ds

and also write
f H (t)
t ,u : R2 → R : w ↦→

∫ t

u
fH (t) (s ,w) ds .

If {𝜆j }j ∈N are the eigenvalues of the Hilbert-Schmidt operator A
f
H (t )
1,0

,

{|t − u |H (t)𝜆j }j ∈N are the eigenvalues of A
f
H (t )
t ,u

. We also know that 𝜆3 ≠ 0. Thus, if

{𝜉t ,uj }j ∈N are the eigenvalues of the Hilbert-Schmidt operator A
f
H (u )
t ,u

ordered with

|𝜉t ,uj | ≥ |𝜉t ,uj+1 |
|𝜉t ,u3 | > |t − u |H (t) |𝜆3 | − ∥f H ( ·)

t ,u − f H (t)
t ,u ∥L2 (R2) .
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f H (t)
t ,u : R2 → R : w ↦→

∫ t

u
fH (t) (s ,w) ds .

If {𝜆j }j ∈N are the eigenvalues of the Hilbert-Schmidt operator A
f
H (t )
1,0

,

{|t − u |H (t)𝜆j }j ∈N are the eigenvalues of A
f
H (t )
t ,u

. We also know that 𝜆3 ≠ 0. Thus, if

{𝜉t ,uj }j ∈N are the eigenvalues of the Hilbert-Schmidt operator A
f
H (u )
t ,u

ordered with

|𝜉t ,uj | ≥ |𝜉t ,uj+1 |
|𝜉t ,u3 | > |t − u |H (t) |𝜆3 | − ∥f H ( ·)

t ,u − f H (t)
t ,u ∥L2 (R2) .
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As H (t0) = H (I ), one can find 𝜉 > 0 such that, for all 0 < 𝜀 < 𝜉 and
t , u ∈ I ∩ [t0 − 𝜀, t0 + 𝜀]

|𝜉t ,u3 | > |𝜆3 |
2

|t − u |H (t0 , 𝜀) .

On the other hand, 


(XH ( ·)
d

(t) −XH ( ·)
d

(u)
)




2,2
≤ c1 |t − u |H (t0 , 𝜀) .

In total,

P( |XH ( ·)
d

(t) −XH ( ·)
d

(u) | ≤ x ) ≤ cx |t − u |−H (t0 , 𝜀) .

Theorem (L.L.)
Given a compact set K of ( 12 , 1), a Hurst function H : R+ → K satisfying the uniform
min-Hölder regularity Condition and a compact interval I ⊂ R+, there exists Ω̃2, an
event of probability 1, such that on Ω̃2, we have

dimH (G2(I )) = dimB (G2(I )) = 2 −H (I ).
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