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f= Z jy,..., jd]l[sjl,tjl) Q- ® l[sjd,tjd) (1)
J1s--rJa=1
where,
® a;,.j, aresuch that, for all permutation o, ay(,).....ojy) = @jy.....5, @Nd

aj,....;, = 0 as soon as two indices ji, . .., jq are equal;
e foralll <+ <d,[sj,t,) NIsj.t,) =0

then the d-multiple Wiener-I1t6 integral of f with respect to the Brownian motion
{B(t)}:cr 0On a probability space (Q, 7, P) is defined as the L?(Q) random variable.

3

Ia(f) = ‘ Z jy....ja (B(tj) = B(sj,)) X ... (B(t;,) — B(s5,))- )

Jis--Ja=1

Functions of the form (1) are dense among symmetric L?(R%) function and the
corresponding sequence of random variables (2) converge in L?(Q).
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Given & € (3,1) and d € N*, we define, for all s > 0, the function
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Given & € (3,1) and d € N*, we define, for all s > 0, the function

h=1_
d

d
filsoo) i R = Ry x| (s —a0), T ®)
=1

t
f fu(s, @) ds
0

is symmetric and belongs to L?(R?).Then, the Hermite process of order d and
Hurst parameter 1 is defined as

{Id ('/Otfh(s, o) ds)}te& . (4)

[SIE

For all t > 0, the function
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t
{Xa(t, h)}ter, = {fd (/ Jn(s,0) ds)}
0 teR,
1. Self-similarity: for all a > 0, the processes {X;(at, h)};er, and
{a"X4(t, h)}icr, are equalin law.
2. Stationarity of increments: for any r > 0, the processes
{Xa(t+7r,h) = Xa(t, h)}rer, and {X4(t, h)}ier, are equal in law.
3. Covariance function: For all s, ¢t € R,,
E[X4(t, h) Xq(s, h)] = cn(t2" + s2 — |t — s]?P).
4. Holder regularity: { X,(t, h)}.cr, has a version with almost sure
(uniform) Hoélder exponent h.
A function f defined on I belongs to the Holder space C%(1) if there exists
¢ > 0suchthat, forall z,y € I

If(z) = f(y)| < clz—y|“.
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{Xi(t, h)}ter, is the Brownian motion of Hurst parameter h.
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t
{Xa(t, h)}ier, = {Id (A fn(s, @) ds)}

teR,

1. Self-similarity: for all « > 0, the processes {X;(at, h)}+er, and
{a"X4(t, h)}ser, are equal in law.

2. Stationarity of increments: for any » > 0, the processes
{Xa(t+r,h) — Xq(t,h)}rer, and {X (¢, h)}ier, are equal in law.

3. Covariance function: For all s, ¢t € R,,
B[ Xq(t, h) Xq(s, h)] = ep(t2 + s2h — |t — s]?P).

4. Holder regularity: { X, (t, h)}.cr, has a version with almost sure
(uniform) Hoélder exponent h.

If d > 1,{Xq(t, h)}ier, is nON-Gaussian.
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Definition
Given d € N*, the generator of the multifractional Hermite process of order d

is the real-valued centred field { X, (¢, h)}(t’h)emx(%’l) defined, for all (¢,h) €
R, X (%, 1), by the multiple Wiener-1t6 integral

t
Xa(t,h) =1y ('/0 Jn(s, ) dS) : (5)
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Proposition

Let d € N*, K be a compact set of (%, 1) and I be a compact interval of R,.
There exist a positive deterministic constant ¢; only depending on d an K and
a positive deterministic constant ¢,, only depending on d, K and I, such that,
forall t,u € I and hy, hy € K,

1 Xa(t, h1) = Xa(u, h2)ll12(q)

is bounded from above by ¢;|t — u|™""-h2} 4 )|y — hy| and from below by
cr|t — ulminthih} — o|hy — hyl.
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Proposition

Let d € N*, K be a compact set of (%, 1) and I be a compact interval of R,.
There exist a positive deterministic constant ¢; only depending on d an K and
a positive deterministic constant ¢,, only depending on d, K and I, such that,

forall t,u € I and hy, hy € K,
1 Xa(t, h1) = Xa(u, h2)ll12(q)
is bounded from above by ¢;|t — u|™"P-h2} 4 )|y — hy| and from below by
cr|t — ulminthih} — o|hy — hyl.
Idea: assume h; < hy and write
| Xa(t, 1) — Xa(u, hi)ll2(q) — 1 Xa(u, ) = Xa(u, h2)|l12(q) <
1 Xa(t, h) = Xa(u, ho)ll 12 (q)
< [ Xa(t, h) = Xa(u, h)ll 2@y + 1 Xa(u, i) = Xa(u, )l 12(q)-
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Proposition

Given d € N* and K a compact set of (%, 1), let I be a compact interval of R,.
For any p > 1 there exists a positive deterministic constant ¢,, only depending
ond, p, K and I, such that, forall ¢,w € T and hy, hy € K,

1Xa(t, h) = Xa(u, bl oy < cp (It = ™™ 08m2) 1y — o). (6)

It is a consequence of the hypercontractivity property: for every p > 0 and
d > 1, there exists a constant 0 < k(p, d) < oo such that, for every random
variable F with the form of a d-multiple Wiener-It6 integral

I1Fllzr @) < k(p, DIF||12(q)-
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Proposition

Given d € N* and K a compact set of (%, 1), let I be a compact interval of R,.
For any p > 1 there exists a positive deterministic constant ¢,, only depending
ond, p, K and I, such that, forall ¢,u € I and hy, hy € K,

1Xa(t, hr) = XaCu, ho)llzo@y < cp (18 = ul™ ™02 4 by — o)) . (6)

Consequence of Kolmogorov Theorem

Given d € N*, there exist a modification of the field {X;(t, h)},n)er,x(1/2,1),
also denoted by { X (%, h)} (¢,n)er,x(1/2,1), and QF, an event of probability 1, such
that, on Q*, given I, a compact interval of R,, and K, a compact set of (%, 1),
forall 0 < a < inf K, there exists a finite positive random variable C such that,
forall t,w € I and hy, hy € K,

| Xa(t, h1) = Xq(u, ho)| < Ot = ul + [l — ho])*. @)
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On the event Q* of probability 1,
| Xa(t, h1) = Xa(u, ho)| < C(|t = ul + [ = h2])*

Definition
Given d € N*, acompact set K of (%, 1) and afunction H : R, — K,the multifractional
Hermite process of order d and Hurst function H is the process {X f O (1)} ter, defined,

forall t € Ry, by
X7TO(t) = Xa(t, H(2)). ®)
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On the event Q* of probability 1,
| Xa(t, h1) = Xa(u, ho)| < C(|t = ul + [ = h2])*

Definition
Given d € N*, acompact set K of (%, 1) and afunction H : R, — K,the multifractional

Hermite process of order d and Hurst function H is the process {X f O (1)} ter, defined,
forall t € Ry, by
X0 () = Xa(t, Ht)). (8)
First observations:

1. Onthe event Q*, {Xj;‘r(')(t)}teR+ is always continuous at 0.
2. If H is a continuous function, on the event Q*, {Xf(') ()} ier, is continuous.

3. If H is discontinuous at a point #, # 0, almost surely, {Xf('>(t)}t€R+ is
discontinuous at .
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On the event Q* of probability 1,
| Xa(t, h1) = Xa(u, ho)| < C(It = ul + [y = ha])?.

X7t = Xa(t, H (1))
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On the event Q* of probability 1,
| Xa(t, ) = Xa(u, he)| < C(|t = ul +[h = h2|)®.

X7t = Xg(t, H(t)

A first Condition for

Given d € N* and a compact set K of (%, 1), we say that the Hurst function
H : R, — K satisfies the uniform min-Holder regularity condition if, for all
compact interval I of R,, there exists y € (H(I),1) such that H € C7(I),
where we set H(I) := min{H (I)}
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On the event Q* of probability 1,
| Xa(t, ) = Xa(u, he)| < C(|t = ul +[h = h2|)®.

X7t = Xg(t, H(t)

A first Condition for

Given d € N* and a compact set K of (%, 1), we say that the Hurst function
H : R, — K satisfies the uniform min-Holder regularity condition if, for all
compact interval I of R,, there exists y € (H(I),1) such that H € C7(I),
where we set H(I) := min{H (I)}

Under this condition, it is clear that, on Q*, for all interval I, the Holder
exponent of {Xf(-)(t)}t€R+ on [ is at least H(I).




Modulus of continuity

UNIVERSITE DU
LUXEMBOURG

Theorem (L.L.)

Given d € N*, a compact set K of (%, 1) and a Hurst function H : R, —» K
satisfying the uniform min-Holder regularity condition, there exists Q7, an event
of probability 1, such that, on Q, for all compact interval I of R,

) SUDy, er Osc(Xf('), [to—r,to+7]NT)
lim sup <

r—0t rﬁ(l) (log r_l)%

+00.

Osc(f, I) = supy ser If (1) = f(5)].
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Theorem (L.L.)

Given d € N*, a compact set K of (%, 1) and a Hurst function H : R, —» K
satisfying the uniform min-Holder regularity condition, there exists QZ, an event
of probability 1, such that, on QZ, for all compact interval I of R,

supgye Ose(X; Tt —rto+ 71N D)
lim sup <

= +00.
r—0* rH(I) (logr=1)2

Important fact
For all d > 1, there exists an universal deterministic constant ¢; > 0 such that,
for any random variable X in the Wiener chaos of order d, and y > 2,

2
POX| 2 gl Xl £2(g)) < exp(=cay?).




Modulus of continuity — Idea of the proof il

1 k& ktl

0 2 27 97 2 1
L]
[




Modulus of continuity — Idea of the proof mni.ln

UNIVERSITE DU

LUXEMBOURG

1 ko k+l ki (8)”
0 2 27 9J 2 1
|
[

If I is a compact interval in [0, n] and ¢ € I, there exists J5 € N such that, for
all j > Js, kj‘(t) e I ork;(t)* € I. We choose k;(t) € {kj‘(t), k;“(t)} such that
k‘j(t) el.
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If I is a compact interval in [0, n] and ¢ € I, there exists J5 € N such that, for
all j > Js, kj‘(t) e I ork;(t)* € I. We choose k;(t) € {kj‘(t), k;“(t)} such that
k‘j(t) el.

On Q*, forall t and j > Jo, we write

H(.
X7 = Xio, ki () + Z(Xj+1,kj+1(t) = Xj k(1)
J=zjo

with X; 5, .= X770 (k277)
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1 ko k+l ki (8)”

0 2 27 9J 2 1
|

\

If I is a compact interval in [0, n] and ¢ € I, there exists J5 € N such that, for
all j > Js, kj‘(t) e I ork;(t)* € I. We choose k;(t) € {kj‘(t), k;“(t)} such that
k‘j(t) el.
On Q*, forall t and j > Jo, we write
H(-
X1 = Xy () + Z (Xjst ka0 = Xjoky (1)
J=jo

| X108 — X5 k]

1 X1 — Xkl z2(q)

Zp(aos k<n2 ke {2k 2k+1,2k 2} :
J
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écalej -1
scale j
scalej+1

(1) = [k:j*(t)Q*j, k;(t)Tj) is the unique dyadic interval at scale j containing ¢
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écalej -1
scale j
scalej+1

31;(t) is A;(t) and its neighbours.




Lower bound for oscillations il

UNIVERSITE DU
LUXEMBOURG

écalej -1
scale j
scalej+1
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écalej -1
scale j
scalej+1

If A =[k277, (k +1)277) is a dyadic interval, we set

G H() k+1 H() k
s x 20 [2) g (£




Lower bound for oscillations

If A =[k277, (k+1)277) is a dyadic interval, we set

oy HO (k] HO) [k
S

sup |A,] < OSC(Xf(.), [t - 22_j,t+22_j])_
AC3; (1)

écalej -1
scale j
scalej +1

UNIVERSITE DU
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k+1 k+1 k k+1
Aj,k = Xd (Q_J’H (2—j))—Xd (2—],[‘[ (2—]))+Xd ( J N




A brilliant idea from Antoine

k+1 k+1 k k+1
a2

() o
927 927 27 27 > 27

UNIVERSITE DU
LUXEMBOURG




A brilliant idea from Antoine il

UNIVERSITE DU
LUXEMBOURG

Given an integer M > 0, for all (j, k) € Nx {0,...,27 — 1}, we consider the enlarged
dyadic interval

o (k=M k1)

3.k 20 7
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Given an integer M > 0, for all (j, k) € Nx {0,...,27 — 1}, we consider the enlarged
dyadic interval

(kM k1)
7.k 2 7 2
We define the random variables
o k1
P— 27
Aj’k = Id (]l’l]Mk (/ﬁ] fH(k;—Jl)(s’ 0) ds))
2.

k+1

—— M 27
A= oLy |,

27

fH(’;*—Jl)(s’.) ds))
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We define the random variables

M, (1% (/ﬁ7 Fu(i) ) ds))

2J

— M

27

— k k+1 k k
st (52)) - (o 5)

—_ M @~ M —
Aj’k =Aj,k +A]"k +Aj’k.
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We define the random variables
k+1

27
[ () (85 @) ds
N
— M 27
Aje =1a (IL(—oo,’g—;]d\a}?k (/i fH(?_J:)(s,-) ds))
27

— k k+1 k k
il )

—_ M @ ~M —
Aj,k =Aj,k +Aj,k +Aj’k.

If My, ..., M, are fixed positive real numbers, the random variables
—M — M, . .
Aj ki »...»Aj, 5 areindependent as soon as the condition

— M
Ay =14 (1%(

b+l

/lM[ n /1M€,

; 3 = < ' <
ek OV Oforalll <.t <n

is satisfied.
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Proposition (L.L.)
Given d € N*, a compact set K of (%, 1) and a Hurst function 7 : R, — K,
there exists a positive deterministic constant ¢, only depending on d and K,
such that, forall (,%k) e Nx {0,...,2/ —1} and M > 0, one has
_g (k) — _H (kL)
1 105 < 1A% 2y < €2 A5 )];
H(k—"'.l)—l

— M _H(E2)
2. M85k N2 < M gl )];

3. 1Akl 2@y < ¢ Osc(H, A; 5).
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Proposition (L.L.)

Given d € N*, a compact set K of (%, 1) and a Hurst function H : R, — K,
there exists a positive deterministic constant ¢, only depending on d and K,
such that, forall (,%k) e Nx {0,...,2/ —1} and M > 0, one has

112 ) < 18 e < 25

H| kL)1 ).
2 154 N2 < M %) 2 (5,

3. 1Akl 2@y < ¢ Osc(H, A; 5).

A pointwise Condition for /

Given d € N* and a compact set K of (%, 1), we say that the Hurst function
H : R, — K satisfies the pointwise Holder regularity condition if, for all ¢ € R,
there exists y € (H(t),1) such that H € C7(t).
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Theorem (L.L.)

Given d € N*, a compact set K of (%, 1) and a Hurst function H : R, —» K
satisfying the pointwise regularity condition, there exists Q, an event of proba-
bility 1, such that, on @, for all ) € R,,

Osc(X 1O, [ty —r, to + ] NRy) .
>

-d2 H(ty)
rH (%) (log r—1) 20-H()

lim sup
r—0*

(10)
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Theorem (L.L.)

Given d € N*, a compact set K of (%,1) and a Hurst function H : R, —» K
satisfying the pointwise regularity condition, there exists Q, an event of proba-
bility 1, such that, on @, for all ) € R,,

Osc(X 1O, [ty —r, to + ] NRy) o i@

lim sup

2
0t d2 H(tp)

rH(tO) (1og 'r'—l) 2(1-H(ty))

Important fact
Given d € N¥, there exists an universal deterministic constant y,; € [0, 1) such
that, for any random variable X in the Wiener chaos of order d, one has

1
P([X] < §||X||L2(g) <.




Roadmap through the dyadic intervals mni.lu
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If 2 =4, ; is a dyadic interval and m € N,

S/l,m = Sj,k,m = {/l € Aj+m s Ac Aj’k}'
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If the dyadic interval 1, ;, and m € N are fixed and S € S; i, We define the
sequences of dyadic intervals (/,,)g<,, <., and (7},)1 <, -, in the following way:

LA :ﬂj,k:
® /.=5;
® foralll<n<m,I,.1=1,UT,.
0 1




Roadmap through the dyadic intervals .

Forall 4; 1 € A, we define
d

M= ety 1
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Forany 1 < n < m, there are ¢, dyadic intervals (T¢ = A0 j©)1<e<e, In
STn,UOgQ(fdMTn)J*‘l such that, foralll <¢< lq

() € Tn.

kD = Mr, B 41
2n
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Forany 1 < n < m, there are ¢, dyadic intervals (T¢ = A0 j©)1<e<e, In
STn,Ung(fdMTn)JH such thatif ¢ = ¢/,

(k,(f) - Mz, kL +1) . (k,(f" - Mz, k41

925" 24" 2T 95 =0




Consequences of this construction il
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1<t<ty
1<n<m

. — M .
The random variables (A 7 ™) are independent
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1<t<ty
1<n<m

The random variables (&;5 MT”) are independent so if we define the Bernoulli

random variable

B'k S = l_[ ]1 —M —M
e ’m( ) {lATﬁ T"|<2_1“AT£L Tn”LQ(Q)}’

1<n<m,1<0<l,
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1<t<ty
1<n<m

The random variables (&;5 MT”) are independent so if we define the Bernoulli

random variable

B'k S = l_[ ]1 —M —M
e ’m( ) {lATﬁ T"|<2_1“AT£L Tn”LQ(Q)}’

1<n<m,1<0<l,

E[B).1m(S)] < y7.
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1<t<ty
1<n<m

. — M . . Y
The random variables (A ¢ ™) are independent so if we define the Bernoulli

random variable

B'k S = l_[ ]1 —M —M
7> ’m( ) {|AT5 T"|<2_1“AT£L Tn”LQ(Q)}’

1<n<m,1<l<l,
E[B) 1.m ()] <y
Let us set consider the random variable
Gjkm = Z Bj km(S5),

SESj,k,m

we have E[G; k.m] < (2y5)™
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1<t<ty
1<n<m

. — M . . Y
The random variables (A ¢ ™) are independent so if we define the Bernoulli

random variable

B'k S = l_[ ]1 —M —M
7> ’m( ) {lATﬁ T"|<2_1“AT£L Tn”LQ(Q)}’

1<n<m,1<0<ly

E[Bj km ()] <y
Let us set consider the random variable

Gikm= D Birm(),

SESj,k,m

we have E[G; k.m] < (2y)™. It follows from Fatou Lemma that

E [liminf gj,k,m] = 0.

m—+0o
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1<t<ty
1<n<m

. — M . . Y
The random variables (A ¢ ™) are independent so if we define the Bernoulli

random variable

B'k S = l_[ ]1 —M —M
7> ’m( ) {lATﬁ T"|<2_1“AT£L Tn”LQ(Q)}’

1<n<m,1<0<ly

E[Bj km ()] <y
Let us set consider the random variable

Gikm= D Birm(),

SESj,k,m

we have E[G; k.m] < (2y)™. It follows from Fatou Lemma that
E [liminf gj,k,m] - 0.
m—>+00

As a consequence, Q1 = ;e g<k<2 {@ @ liminf,, i Gj x.m(w) = 0} is an event of
probability 1.
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For all w € Qq and {y € [0, 1), there exist infinitely many j € N such that there is
A€ 3/lj(t0) and A’ € S, Llogs (€4 M) J+1 for which

_ 1 —~
M M
A ()] = §|IA,1IA”L2(Q)~
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For all w € Qq and {y € [0, 1), there exist infinitely many j € N such that there is
A€ S/lj(t()) and A’ € S, Llogs (€4 M) J+1 for which

_ L=
AV @) 2 S8y 2 @) )

We deduce from Borel-Cantelli Lemma the existence of Qo, an event of probability 1
such that, for all w € Q,, there exists J> € N such that, forall j > J5, 1 € A; and

A" € 83 llogy (64 M) |41
— M,
Ay

ij,M%w)\ < ¢/js (12)

L2(Q)
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For all w € Qq and {y € [0, 1), there exist infinitely many j € N such that there is
A€ S/lj(t()) and A’ € S, Llogs (€4 M) J+1 for which

_ L=
AV @) 2 S8y 2 @) )

We deduce from Borel-Cantelli Lemma the existence of Qo, an event of probability 1
such that, for all w € Q,, there exists J> € N such that, forall j > J5, 1 € A; and

A" € 83 llogy (64 M) |41
— M,
Ay

ij,%)\ < ¢/js (12)

L2(Q)

and Qg3, an event of probability 1 such that, for all w € Q3, there exists J3 € N such
that, forall j > J3, 1 € A; and A’ € Sa. Llogs (£q M) ]+1s
Ay (13)

|8 (@)| <

2@
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There exist infinitely many j € N such that there is A € 34;(¢) and
A’ € Sy, llog, (¢, My) +1 fOr which

dH( k41 )
7

+1

-1 -
M@ 2 St 1

—_

o IH () )
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There exist infinitely many j € N such that there is A € 34;(t) and
A’ € Sy, llog, (¢, My) +1 fOr which

dH(k’+1)
J

k+1

-1
M@ =2 Soseeih 1

—_

—jH(k;.*,'l).

As a consequence

Osc(X'V, [tg — 227, t0+22—ﬂ]nR+)

lim sup IS
; _dZH(tg)
Joe 2-7H (to) j ™ Z(T-H (i)




Law of iterated logarithm — upper bound
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A local Condition for 7

Given d € N* and a compact set K of (%, 1), we say that the Hurst function
H : R, — K satisfies the local Holder regularity condition if, for all ¢t € R,
thereexistt € I, C R, and y € (H(t),1) suchthat H € C7(L).
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A local Condition for 7

Given d € N* and a compact set K of (%, 1), we say that the Hurst function
H : R, — K satisfies the local Holder regularity condition if, for all ¢t € R,
there exist t € I; C R, and y € (H(t),1) such that H € C”(I;).

Proposition (L.L.)
Given d € N*, a compact set K of (%,1) and a Hurst function H : R, —» K

satisfying the_IocaI Hélder condition, there exists Q;, an event of probability 1,
such that on Q, for (Lebesgue) almost every ¢, € R,, we have

‘ Osc(X', [ty — r, to + 1] NRY)
lim sup <

r—0t rH (to) (log(log r—l))%

- (12)
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If s,t € [ty — 7, tg + ] with 2-00+D) < - < 270, forany j > jo and = € {s, t},
A;(z) € 345, (tp) and we write

H( H(-
X0 = X" 5) = Xy 0 = Xt (9

) (Xj+1,k;+1<t) = Xjsrk, () — Xjkr () + Xj,k;(s)) -

J=jo
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If s,t € [ty — 7, tg + 7] with 2700+ < < 270, forany j > jyand z € {s, t},
A;(z) € 345, (tp) and we write

H( H(-
X0 = X" 5) = Xy 0 = Xt (9

) (Xj+1,k;+1<t) = Xjsrk, () — Xjkr () + Xj,k;(s>) -
JZzjo
| X0 = Xkl
X5 = Xj kll 2@
. 2
< D327 exp(—cac log(jo) (G — jo + 1))
JZjo

< c’exp(—CdC% log(j0))

. . N A . d
P (3.7 > o Ao iy € 35 (10) ¢ > clog(io)? (G — o+ 1) )
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If s,t € [ty — 7, tg + 7] with 2700+ < < 270, forany j > jyand z € {s, t},
A;(z) € 345, (tp) and we write

H( H(-
X0 = X" 5) = Xy 0 = Xt (9

) (Xj+1,k;+1<t) = Xjsrk, () — Xjkr () + Xj,k;(s>) -
JZzjo
| X0 = Xkl
X5 = Xj kll 2@
. 2
< D327 exp(—cac log(jo) (G — jo + 1))
JZjo

< C'eXp(—CdC% log(j0))

. . N A . d
P (3.7 > o Ao iy € 35 (10) ¢ > clog(io)3 (i — jo + 1>2)

and we conclude using Borel-Cantelli Lemma and Fubini Theorem.



Law of iterated logarithm — lower bound (for
probabilities)

We want to bound from below the probabilities
— iy kL
B(AM,| 2 y2 7 15))

for (j,k) e Nx{0,..., 2/ —1}and M > 0.




Law of iterated logarithm — lower bound (for
probabilities)
We want to bound from below the probabilities

B(AM,| > 2 (5))
for (j,k) e Nx {0,...,2/ =1} and M > 0. We know that for any random
variable X in the Wiener chaos of order d, there exist two deterministic

constants iy > 0 and ¢ > 0 such that, for all y > ,

2
P(|X| > y) > exp(—cyd).

UNIVERSITE DU
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(13)



Law of iterated logarithm — lower bound (for
probabilities)

We want to bound from below the probabilities
— iy kL
B(AM,| 2 y2 7 15))

for (j,k) e Nx {0,...,2/ =1} and M > 0. We know that for any random
variable X in the Wiener chaos of order d, there exist two deterministic
constants iy > 0 and ¢ > 0 such that, for all y > ,

2
P(|X| > y) > exp(—cyd).

But, unfortunately, these constants depend on the law of X and are not
universal, which is undesirable in our context.

UNIVERSITE DU

LUXEMBOURG




Law of iterated logarithm — lower bound (for il

probabilities)

Lemma

Let d € N*, K be a compact set of (%, 1) and H : R, — K be a continuous
Hurst function. For all ¢ € R, there exist four deterministic constants ¢, > 0,
Y, > 0,70 € Nand My > 0 such that, forall 4, 1, € 34, (t9), M > My and y > yy,,

we have
k+1

PORY,) 2 127" (5)) 2 exp(-ayyd). (13)
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Proposition (L.L.)

Given d € N*, a compact set K of (%, 1) and a Hurst function H : R, —» K
satisfying the pointwise Hélder regularity Condition, there exists Qj, an event
of probability 1, such that on Q,, for (Lebesgue) almost every t, € R,, we have

Ose(X,"", [to = 7, %o + 7] NRy)
0 < limsup .

r—0* rH (%) (log(log 7’_1))%
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Theorem (L.L.)
Given d € N*, a compact set K of (%,1) and a Hurst function H : R, —

K satisfying the local Holder regularity Condition, there exists Q, an event of
probability 1, such that on Q, for (Lebesgue) almost every #, € R,, we have

Osc(X 1, [ty —r,to + ] NRy)
0 < limsup <

- 00, (14)
r—0* rH(® (log(log r~1))2




Local asymptotic self-similiraty il
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Definition

A real-valued stochastic process {X(¢)}:cr, is weakly locally asymptotically self-
similar of order h > 0 at the point #, with tangent process { Y (¢)};»¢ if the sequence
of process {&™" (X (to +&t) — X () }+er, cOnverges to the process { Y (t)}ex, in finite
dimensional distributions, as £ — 0.
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Proposition (L.L.)

Let d € N*, K be a compact set of (%, 1)and H : R, — K be a Hurst function. If
H satisfies the pointwise Holder regularity Condition then, for all ¢, > 0, the multifrac-
tional Hermite process {Xf(')(t) : t > 0} is weakly locally asymptotically self-similar
of order H (ty) at ty with tangent process {X,(t, H(ty)) : t > 0}, the Hermite process
of order d and Hurst parameter H (t).

We write
e (X110 1o+ £) = X710 (19)) = &™) (Xq(to + 1, H (o + 1)) = Xalto + &t, H (1))
+& B0 (X, (tg + £t, H(to)) — Xq(to, H(tp))) .
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Proposition (L.L.)
Let d € N*, K be a compact set of (%, 1)and H : R, — K be a Hurst function. If
H satisfies the pointwise Holder regularity Condition then, for all ¢, > 0, the multifrac-
tional Hermite process {Xf(')(t) : t > 0} is weakly locally asymptotically self-similar
of order H (ty) at ¢y with tangent process {X,(t, H(ty)) : t > 0}, the Hermite process
of order d and Hurst parameter H ().

We write

&0 (X 11O (g + 2t) = X[10 (1)) = 6771 (Xy (to + st, H 1o +51)) = Xalto +t, H(4)))
+e7H00) (X, (1o + et, H(to)) — Xa(to, H(1p))).

We know that
{e 1) (Xg(to + &t, H(1o)) = Xalto, H(t0))}e20
is equal in finite-dimensional distribution to
{Xa(t, H(10))}120-
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Proposition (L.L.)

Let d € N*, K be a compact set of (%, 1)and H : R, — K be a Hurst function. If
H satisfies the pointwise Holder regularity Condition then, for all ¢, > 0, the multifrac-
tional Hermite process {Xf(')(t) : t > 0} is weakly locally asymptotically self-similar
of order H (ty) at ¢y with tangent process {X,(t, H(ty)) : t > 0}, the Hermite process
of order d and Hurst parameter H ().

We write
&0 (X1 (g + 8t) = X1V (10)) = &7 (Xa(to + et H(to + &) = Xallo +&t, H(%)))
+e 100 (Xy(to + et, H(1o)) — Xa(to, H(1))) -

On the other hand,

lle™H ) (Xq(to +£t, H(lo +8t)) = Xallo +st, H(t))) |l 12 ()
< s MO | H (1o + 8t) - H(to)] -
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Proposition (L.L.)

Let d € N*, K be a compact set of (%, 1)and H : R, — K be a Hurst function. If
H satisfies the pointwise Holder regularity Condition then, for all ¢, > 0, the multifrac-
tional Hermite process {Xf(')(t) : t > 0} is weakly locally asymptotically self-similar
of order H (ty) at ty with tangent process {X,(t, H (%)) : t > 0}, the Hermite process
of order d and Hurst parameter H ().

We write

&0 (X 11O (1 + 2t) = X,10 (1)) = 6771 (Xq (to + st, H(to + 51)) = Xalto +t, H(4)))
+ 10 (Xy(to + 6t, H1o)) — Xa(lo, H(1p)) -

In particular, for all fixed ¢ > 0, the sequence of random variables

(8—H(to> (Xa(to+&t, H(tg + £t)) — Xa(to + &t, H(to))))

>0

converges to 0 in L?(Q), and thus in probability, when & — 0*.
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UNIVERSITE DU
LUXEMBOURG

Definition
When {X (t)}er, and { Y (¢)}+er, have, almost surely, continuous path and if the pre-

vious convergence also holds in the sense of continuous function over an arbitrary
compact set of R, we say that { X (¢) }+<r, is strongly locally asymptotically self-similar
of order i > 0 at the point ¢, with tangent process { Y (¢)}+er, -
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Definition

When {X (t)}er, and { Y (¢)}+er, have, almost surely, continuous path and if the pre-
vious convergence also holds in the sense of continuous function over an arbitrary
compact set of R, we say that { X (¢) }+<r, is strongly locally asymptotically self-similar
of order i > 0 at the point ¢, with tangent process { Y (¢)}+er, -

If {X (t)}:er, is weakly locally asymptotically self-similar of order 4 > 0 at the point
with tangent process { Y (¢)}+er,, it suffices to show that, forall « > 0and § > 0

X(tg+et) — X(tg +&s)
&h

> 6) =0. (15)

lim limsupP sup
n—=0"  c0+ s,te[0,al,|t-s|<n
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Definition

When {X (t)}er, and { Y (¢)}+er, have, almost surely, continuous path and if the pre-
vious convergence also holds in the sense of continuous function over an arbitrary
compact set of R, we say that { X (¢) }+<r, is strongly locally asymptotically self-similar
of order i > 0 at the point ¢, with tangent process { Y (¢)}+er, -

If {X (t)}:er, is weakly locally asymptotically self-similar of order 4 > 0 at the point
with tangent process { Y (¢)}+er,, it suffices to show that, forall « > 0and § > 0

X(tg+et) — X(tg +&s)
&h

lim limsupP ( sup > 6) =0. (15)

n—=0"  c0+ s,te[0,al,|t-s|<n

It is the so-called Prohorov’s criterion.



Markov and Garsia-Rodemich-Rumsey il

inequalities

The Markov inequality entails, for any p > 1,

P(e,n,6) < § P PH g

sup XH(‘)(tO+8t)—XH(')(t0+8s)|pl .

s.tef0,al.|t-s[<n
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inequalities

The Markov inequality entails, for any p > 1,

P(e,n,6) < § P PH g

sup
s,tel0,al,|t-s[<n

XHO (tg +et) - XHO (1 + 8s)|pl .

Now, we use the so called Garsia-Rodemich-Rumsey inequality to write, for o > %,

E

sup
s,t€[0,a],|t—-s|<n

P
< Capa®™ //[ LE ([ X770 o+ 1) = X1 (tg +.29)| | 1t = sI7o7 dsar
0,a

XHO (1 +8t) = X 7O (1 + ss)|pl
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inequalities
The Markov inequality entails, for any p > 1,

P(e,n,6) < § P PH g sup

s.tef0,al.|t-s[<n

XHO (t+et) - XHO (1 + 8s)|pl .

Now, we use the so called Garsia-Rodemich-Rumsey inequality to write, for o > %,

E sup

s,te[0,al,|t-s|<n

P
< Cap.an®! //[ LE [|XH<'>(t0 +et) - XHO (4 +gs)( ] It — s|~*P1 dsdt.
0,a

XHO (1 +8t) - X 1O (1 + ss)|pl

If H satisfies the local Holder regularity Condition,

P(e,n,6) < ZCa,p,aé_pr]‘”’_l [/ [t — s|Pnf K=a)=1 goqp.
[0,a]?
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Definition
Given d € N*, aset A c R? and ¢, h > 0, the quantity

H(A) = inf{z diam”(4;) : A € U A; and, Vj, diam(4;) < £}
J J
where, as usual, diam stands for the diameter, is called the (h, &)-Hausdorff

outer measure of A. Moreover, for all h > 0, the application & — H"(A) is
decreasing and it follows that the h-dimensional Hausdorff outer measure

H"(A) = lim, HE(4)

is well-defined.




Fractal dimensions il

UNIVERSITE DU
LUXEMBOURG

Definition
Given d € N* and a non-empty set A C R¢, the Hausdorff dimension of A is

dimgg(A) = sup{h > 0 : H"(A) = o} = inf{h > 0: H"(A) = 0},

while, by convention, dimg/(0) = —co.
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Definition

Given d € N¥, a non-empty bounded set A ¢ R% and & > 0, let N.(A) be the
smallest number of sets of diameter at most ¢ which can cover A. The quan-
tities

—log(Ng(A)) and dimg(A) := lim sup —log(Ng(A))

di A) := liminf
dim(4) it —log(e) esor —log(e)

are, respectively, the lower and upper box-counting dimensions of A. If they are
equal, the common value is refereed as the box-counting dimension of A and
we denote it dimg(A).
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Definition
Given d € N¥, a non-empty bounded set A ¢ R? and ¢ > 0, let N.(A) be the
smallest number of sets of diameter at most £ which can cover A. The quan-
tities

. 10g(Ns(4))

dimg(4) := lim inf and dimg(A) := lim sup log(N+(4))
-0

—log(e) so0r  —log(e)

are, respectively, the lower and upper box-counting dimensions of A. If they are
equal, the common value is refereed as the box-counting dimension of A and
we denote it dimg(A).
Given d € N*, a compact set K of (%, 1), a Hurst function H : R, — K and a
compact interval I c R,, we are interested in the dimensions of the graph

Ga(D) = {(t, X"V (1)) : tel}.
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Given d € N*, a compact set K of (%, 1), a Hurst function H : R, —» K and a
compact interval I c R,, we are interested in the dimensions of the graph

Ga(D) = {(t, X' (1)) = tel}.

dimg(A) < dimg(A) < dimg(A). (16)
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Given d € N*, a compact set K of (%, 1), a Hurst function H : R, —» K and a
compact interval I c R,, we are interested in the dimensions of the graph

Ga(D) = {(t, X' (1)) = tel}.
dimg(A) < dimg(A) < dimg(A). (16)

(A C B) = dimgy(A) < dimgy(B). (17)
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Lemma (Falconer)
Let I c R, be a compact interval and f : I — R be a continuous function for
which there exist ¢ > 0 and 1 < @ < 2 such that, forall s, ¢ € I,

If(s) = F(D)] < elt = s[>,

then
dimg ({(4 X0 ) - te}) sa.
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Lemma (Falconer)
Let I c R, be a compact interval and f : I — R be a continuous function for
which there exist ¢ > 0 and 1 < @ < 2 such that, forall s, ¢ € I,

If(s) = F(D)] < elt = s[>,

then
dimg ({(4 X0 ) - te}) sa.

Proposition (L.L.)

Given d € N*, a compact set K of (%, 1), a Hurst function H : R, — K satisfy-
ing the uniform min-regularity Condition and a compact interval I c R,, there
exists Q;, an event of probability 1, such that, on Q,, we have

dimg (Ga(1)) <2 - H(I).




Lower bound for Hausdorff dimension il
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Let ¢y € I be such that H(#y) = H(I), for j € N, we have, for all ¢, » > 0 such that
tt+relto—j Lo+ ]nTands >0

E [(|Xf<'>(t )= XTO @24 7“2)_%]

/ P((|Xf<‘)(t+r) —Xf(')(t)|2+r2)_2 > z) dx
0

400
s[} y(y2+7"2)_5_1P(|X;I(‘)(t+r)—XdH(')(t)I < y) dy
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Let ¢y € I be such that H(#y) = H(I), for j € N, we have, for all ¢, » > 0 such that
tt+relto—j Lo+ ]nTands >0

-4
2

E [(|Xj”'>(t )= XTO @24 r2)

+00
= s‘/o y(y? +r2)"27lp (|Xf(')(t +7)— Xf(')(t)l < y) dy

Lemma (Carbery- Wright)

There is an absolute deterministic constant ¢ > 0 such that, forany n,d > 1,1 < p <
oo any polynomial @ : R* — R of degree at most n, any Gaussian random vector
(X1,...,Xg)and any z > 0,

E[1Q(X1,..., X)|*17P(1Q(X1, ..., Xa)| < @) < cpa™.
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Forall t,u € I, we write

t U
tﬁ(') ‘RY SR w HL fe (s, w) ds —L JH(w (s, W) ds
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Forall t,u € I, we write
H() :RY SR wv—>/ S (s, w) ds—/ JH(w (s, W) ds

Given {e;};ew an orthonormal basis of L2(R), the sequence of functions
H J
( o = Z <ftu > €jp © 'erd>ej1®"'®ejd)
J

converges to fH() in L2(Rd).
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Forall t,u € I, we write
H() :RY SR wv—>/ S (s, w) ds—/ JH(w (s, W) ds

Given {e;};ew an orthonormal basis of L2(R), the sequence of functions
H J
( o = Z <ftu > €jp © 'erd>ej1®"'®ejd)
J

converges to fH() in L2(Rd).

P
Iq (6]1 ‘O ejd l_[ Hy, (/ e}(l') dB(fL')) >
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Forall ¢, u € I, we write

H() :RY SR Wl—)/fH(t)(S w)ds—/ JH(w (s, W) ds

Given {e;};ew an orthonormal basis of L2(R), the sequence of functions
H J
( o = Z <ftu > €jp © 'erd>ej1®"'®ejd)
J

converges to fH() in L2(Rd).

Iq (6]1 ‘O ejd l_[ Hy, (/R ej}(l') dB(fL')) >

Wiener isometry, Fatou’s Lemma and Carbery- Wright inequality give

P(|Xf<‘)(t)—xf<'>(u)|s:p)s(;zdxd X700 1) XH“()

L2(Q)
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As H(ty) = H(I),one can find £ > 0 such that, forall 0 < ¢ < ¢ and
t,uelIN|[ty—e,ty+e]

2 coft = uMHOHCON — o) H (8) — H ()]

H() H()
”Xd () =Xy () L2(Q)

> St = a0,
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As H(ty) = H(I),one can find £ > 0 such that, forall 0 < ¢ < ¢ and
t,uelIN|[ty—e,ty+e]

2 coft = uMHOHCON — o) H (8) — H ()]

H() H()
HXd () =Xy () L2(Q)

> ﬂ|t _ u|ﬁ(to,a)'
2
Therefore,

E [(|Xf<'>(t +1) =X O WP +r2)
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As H(ty) = H(I),one can find £ > 0 such that, forall 0 < ¢ < ¢ and
t,uelIN|[ty—e,ty+e]

crlt = u P OHOO) — oy | (1) — H (u)]

[\

|xO @ - x 7O w

L2(Q)

€1 H(to,&)
—|t—u 0.87,
Lt

v

Therefore,

) ) -5 H(t ’v—l)
E [(|Xf< () = X[ O +1?) ] < prs T

Thus, if we consider the random measure p x ; defined for all Borel sets A C R2 by

px,j(A) = L{t e [to—j Lt +i7 0T (X170 (1) e A},

dﬂx,j(fl»’)dﬂx,j(y)) -
= (// TR <

“H (tg.5
forall s < 1+ =00 )
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Theorem (L.L.)
Given d € N*, a compact set K of (%, 1), a Hurst function H : R, — K satisfying the

uniform min-Hélder regularity Condition and a compact interval I c R,, there exists Q,
an event of probability 1, such that on Q, we have

1-H(I)
+—

—— < dimy (Ga(])) < dimg (Ga(1)) < 2- H(I).
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Theorem (L.L.)
Given d € N*, a compact set K of (%, 1), a Hurst function H : R, — K satisfying the

uniform min-Hélder regularity Condition and a compact interval I c R,, there exists Q,
an event of probability 1, such that on Q, we have

1-H(I)

+ ————

—— < dimy (Ga(])) < dimg (Ga(1)) < 2- H(I).

When d = 2, any symmetric function f € L?(R?) can be written as

f= Zﬁf,j €. ® €5
jeN

with convergence in L?(R?), where {¢f ; } ;e are the eigenvectors with corresponding
eigenvalues {1y ;},en of the Hilbert-Schmidt operator

Ap : P(R) = L*(R) : g - /Rf(u ¥g(y) dy.
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If ' is a cylindrical random variables of the form

F=g(L(f),.. .. h(fn)) (18)

with n > 1, f; € L*(R) and g infinitely differentiable such that all its partial
derivatives have polynomial growth, the mth Malliavin derivative of F' is the
element of L?(Q, L?(R™)) defined by

n m

0
DE = > : mwm, G ®
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If ' is a cylindrical random variables of the form

F=g(L(f),.. .. h(fn)) (18)

with n > 1, f; € L*(R) and g infinitely differentiable such that all its partial
derivatives have polynomial growth, the mth Malliavin derivative of F' is the
element of L?(Q, L?(R™)) defined by

n m

0
DE = > mul(fl), G ®

Forall m > 1 and p > 1, D™? denote the closure of S (the set of cylindrical
random variables) with respect to the norm

==

-l : F o |BIFPT+ Y EID FIE, 1] (19)
j=1
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Lemma (Hu-Lu-Nualart)
If F € D% is such that E[|F|?P] < c and E[||DF||L2(R)

<+ 1+ = 1, then F has continuous and bounded density f with

] < oo for p,r, s > 1 satisfying

sup U/ (@)1 < ¢ [|IDF I g [, o) 1F 2.0

where ¢, > 0 is a deterministic constant only depending on p.
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Lemma (Hu-Lu-Nualart)

If F € D% is such that E[|F|??] < o and E[”DF”Z%T(R)] < oo for p,r, s > 1 satisfying

&+ + 1 = 1, then F has continuous and bounded density fr with

F b}
i 11

sup Ifr (2)] < ¢ [IDFII3
TeR

where ¢, > 0 is a deterministic constant only depending on p.
In our context,

B =Y s (hler)?-1)

jeN
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Lemma (Hu-Lu-Nualart)
If F € D%¢ is such that E[|F|?P] < « and E[||DF||E§T(R)] < oo for p, r, s > 1 satisfying
1,1

syt % =1, then F' has continuous and bounded density fz with

su a:Sc“DF_2 || F s
sup ()1 < ep [IDFU 3|, ) 17020

where ¢, > 0 is a deterministic constant only depending on p.
In our context,

DI(f) =2 ) AL (er )er,
JEeN
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Lemma (Hu-Lu-Nualart)
If F € D% is such that E[|F|??] < o and IE«:[||DF||L2(]R

5 + 1+ 1 =1,then F has continuous and bounded density fz with

)] < oo for p, r, s > 1 satisfying

sup /e (2)| < ¢ [IDFIZ g, g 1€

where ¢, > 0 is a deterministic constant only depending on p.
In our context,

DL ()l 2wy =2 (Z /l]%,jll(ef,j)Z) : (20)

JeN
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Lemma (Hu-Lu-Nualart)

If F € D>¢ is such that E[|F|??] < « and E[||DF||z§T(R)] < oo for p, r, s > 1 satisfying

L +14+1 =1 then F has continuous and bounded density f» with

T

i .’]:SC|DF_2 || Flio.s,
z€§|fF( )] P Il ”LQ(R) L7(Q) I ”2,8

where ¢, > 0 is a deterministic constant only depending on p.

Lemma (Hu-Lu-Nualart)

AL
Let G := (ZjeN /lef) * where {4;};en satisfies |4;] > [A,.1] forall j > 1 and {X;};ey
arei.i.d. standard normal. For all » > 1, E[ G~2"] < o if and only if there exists N > 2r
such that |1y | > 0 and, in this case,

E[G™?"] < ¢, N[, (20)

with ¢, > 0 a deterministic constant only depending on r.
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process LUXEMBOURG
We keep the notation

t U
tli(.) "R2Z SR w H£ Ja@(s,w) ds —/(; TH () (s, W) ds
and also write .
ftﬂ(t) :R* >R : W"’/ fr (s, w) ds.
u
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process LUXEMBOURG

We keep the notation

t u
tli(‘) ‘R25R:w H£ frw (s, w) ds —/(; S (s, W) ds

and also write .
ft{_i(t) : R2 — R : WI—)/ fH(t)(syw) ds.
U
If {1,}; e are the eigenvalues of the Hilbert-Schmidt operator A,
1,0
{It — u| M 2,1}, are the eigenvalues of Apna
t,u
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process LUXEMBOURG

We keep the notation

t u
tli(‘) ‘R25R:w H£ frw (s, w) ds —/(; S (s, W) ds

and also write .
ftli(t) ‘R? SR :we / T (s, w) ds.
U
If {1,}; e are the eigenvalues of the Hilbert-Schmidt operator A,
1,0
{It — u| M 2,1}, are the eigenvalues of A nw. We also know that A3 # 0
t,u




The case of the multifractional Rosenblatt mni.ln

process LUXEMBOURG
We keep the notation

H() :R? SR : wv—>/ Jr@)(s,w) ds—/ S (s, W) ds
and also write .
ftli(t) ‘R2o5R:w |—>/ T (s, w) ds.
U

If {1,}; e are the eigenvalues of the Hilbert-Schmidt operator A,
1.0

{It — u| M 2,1}, are the eigenvalues of Agn. We also know that A5 # 0. Thus, if

t,u

{ft’“}jeN are the eigenvalues of the Hilbert-Schmidt operator A ordered with

t,u

€5 2 1€
H
L > 1t = ul T ONs = 152 = £ O 2 gy,




As H(ty) = H(I),one can find & > 0 such that, forall 0 < ¢ < ¢ and
tbueln[ty—e, .
velntio=etorel Gl .|

| ulH(to,e) . UNIVERSITE DU

€51 >
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As H(ty) = H(I),one can find & > 0 such that, forall 0 < ¢ < ¢ and
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velntio=etorel Gl .|
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On the other hand,

HO) H) Hto,
”(Xd () - X! (u))“2’2 < 1t — w109,




As H(ty) = H(I),one can find & > 0 such that, forall 0 < ¢ < ¢ and
tueln[ty—e, .
velntio=etorel Gl .|

| ulH(to,e) . UNIVERSITE DU

€51 >
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On the other hand,

IA

|(xi0w-xOw)],,

et - ulﬁ(to’a).

In total,

PIXTO (1) - X O (w)] < 2) < calt —u| 02,




As H(ty) = H(I),one can find & > 0 such that, forall 0 < ¢ < ¢ and
t,uelINn[ty—eg,ty+e]

Wl il
|§ | 2 | ul . LUXEMBOURG
On the other hand,
|(x70@® - x 7O )| | < et = ulo,
In total,

PIXTO (1) - X O (w)] < 2) < calt —u| 02,

Theorem (L.L.)
Given a compact set K of (%, 1), a Hurst function H : R, — K satisfying the uniform

min-Holder regularity Condition and a compact interval I c R,, there exists Q, an
event of probability 1, such that on Q,, we have

dimg (G2(1)) = dimg (G2(1)) =2 - H(I).
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