Multifractional Hermite processes: definition and first properties

Laurent Loosveldt

Lille - Séminaire de probabilités et statistique

21 mars 2023

 $f = \sum_{j_1,...,j_d=1}^{n} a_{j_1,...,j_d} \mathbb{1}_{[s_{j_1},t_{j_1})} \otimes \cdots \otimes \mathbb{1}_{[s_{j_d},t_{j_d})}$

$$f = \sum_{j_1, \dots, j_d=1}^n a_{j_1, \dots, j_d} \mathbb{1}_{[s_{j_1}, t_{j_1})} \otimes \dots \otimes \mathbb{1}_{[s_{j_d}, t_{j_d})}$$

where,

• $a_{j_1,...,j_d}$ are such that, for all permutation σ , $a_{\sigma(j_1),...,\sigma_{j_d}} = a_{j_1,...,j_d}$ and $a_{j_1,...,j_d} = 0$ as soon as two indices j_1, \ldots, j_d are equal;

$$f = \sum_{j_1, \dots, j_d=1}^n a_{j_1, \dots, j_d} \mathbb{1}_{[s_{j_1}, t_{j_1})} \otimes \dots \otimes \mathbb{1}_{[s_{j_d}, t_{j_d})}$$

where,

- $a_{j_1,...,j_d}$ are such that, for all permutation σ , $a_{\sigma(j_1),...,\sigma(j_d)} = a_{j_1,...,j_d}$ and $a_{j_1,...,j_d} = 0$ as soon as two indices j_1, \ldots, j_d are equal;
- for all $1 \leq \ell \neq \ell' \leq d$, $[s_{j_{\ell}}, t_{j_{\ell}}) \cap [s_{j_{\ell'}}, t_{j_{\ell'}}) = \emptyset$;

$$f = \sum_{j_1,\dots,j_d=1}^n a_{j_1,\dots,j_d} \mathbb{1}_{[s_{j_1},t_{j_1})} \otimes \dots \otimes \mathbb{1}_{[s_{j_d},t_{j_d})}$$

where,

• $a_{j_1,...,j_d}$ are such that, for all permutation σ , $a_{\sigma(j_1),...,\sigma_{(j_d)}} = a_{j_1,...,j_d}$ and $a_{j_1,...,j_d} = 0$ as soon as two indices j_1, \ldots, j_d are equal;

• for all
$$1 \leq \ell \neq \ell' \leq d$$
, $[s_{j_\ell}, t_{j_\ell}) \cap [s_{j_{\ell'}}, t_{j_{\ell'}}) = \emptyset$;

then the *d*-multiple Wiener-Itô integral of f with respect to the Brownian motion $\{B(t)\}_{t \in \mathbb{R}}$ on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ is defined as the $L^2(\Omega)$ random variable.

$$I_d(f) := \sum_{j_1,\dots,j_d=1}^n a_{j_1,\dots,j_d} (B(t_{j_1}) - B(s_{j_1})) \times \dots (B(t_{j_d}) - B(s_{j_d})).$$
(2)

$$f = \sum_{j_1, \dots, j_d=1}^n a_{j_1, \dots, j_d} \mathbb{1}_{[s_{j_1}, t_{j_1})} \otimes \dots \otimes \mathbb{1}_{[s_{j_d}, t_{j_d})}$$

where,

• $a_{j_1,...,j_d}$ are such that, for all permutation σ , $a_{\sigma(j_1),...,\sigma_{(j_d)}} = a_{j_1,...,j_d}$ and $a_{j_1,...,j_d} = 0$ as soon as two indices j_1, \ldots, j_d are equal;

• for all
$$1 \leq \ell \neq \ell' \leq d$$
, $[s_{j_{\ell}}, t_{j_{\ell}}) \cap [s_{j_{\ell'}}, t_{j_{\ell'}}) = \emptyset$;

then the *d*-multiple Wiener-Itô integral of f with respect to the Brownian motion $\{B(t)\}_{t \in \mathbb{R}}$ on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ is defined as the $L^2(\Omega)$ random variable.

$$I_d(f) := \sum_{j_1,\dots,j_d=1}^n a_{j_1,\dots,j_d} (B(t_{j_1}) - B(s_{j_1})) \times \dots (B(t_{j_d}) - B(s_{j_d})).$$
(2)

Functions of the form (1) are dense among symmetric $L^2(\mathbb{R}^d)$ function and the corresponding sequence of random variables (2) converge in $L^2(\Omega)$.

Hermite processes

Given $h \in (\frac{1}{2}, 1)$ and $d \in \mathbb{N}^*$, we define, for all $s \ge 0$, the function

$$f_h(s, \bullet) : \mathbb{R}^d \to \mathbb{R}_+ : \mathbf{x} \mapsto \prod_{\ell=1}^d (s - x_\ell)_+^{\frac{h-1}{d} - \frac{1}{2}}.$$

(3)

Hermite processes

Given $h \in (\frac{1}{2}, 1)$ and $d \in \mathbb{N}^*$, we define, for all $s \ge 0$, the function

$$f_h(s, \bullet) : \mathbb{R}^d \to \mathbb{R}_+ : \mathbf{x} \mapsto \prod_{\ell=1}^d (s - x_\ell)_+^{\frac{h-1}{d} - \frac{1}{2}}.$$

For all $t \ge 0$, the function

$$\int_0^t f_h(s,\bullet) \ ds$$

is symmetric and belongs to $L^2(\mathbb{R}^d)$.

(3)

Hermite processes

Given $h \in (\frac{1}{2}, 1)$ and $d \in \mathbb{N}^*$, we define, for all $s \ge 0$, the function

$$f_h(s, \bullet) : \mathbb{R}^d \to \mathbb{R}_+ : \mathbf{x} \mapsto \prod_{\ell=1}^d (s - x_\ell)_+^{\frac{h-1}{d} - \frac{1}{2}}.$$

For all $t \ge 0$, the function

$$\int_0^t f_h(s,\bullet) \ ds$$

is symmetric and belongs to $L^2(\mathbb{R}^d)$. Then, the Hermite process of order d and Hurst parameter h is defined as

$$\left\{ I_d \left(\int_0^t f_h(s, \bullet) \, ds \right) \right\}_{t \in \mathbb{R}_+}.$$
 (4)

(3)

$$\{X_d(t,h)\}_{t\in\mathbb{R}_+} = \left\{I_d\left(\int_0^t f_h(s,\bullet) \ ds\right)\right\}_{t\in\mathbb{R}_+}.$$

$$\{X_d(t,h)\}_{t\in\mathbb{R}_+} = \left\{I_d\left(\int_0^t f_h(s,\bullet) \ ds\right)\right\}_{t\in\mathbb{R}_+}$$

1. **Self-similarity:** for all a > 0, the processes $\{X_d(at, h)\}_{t \in \mathbb{R}_+}$ and $\{a^h X_d(t, h)\}_{t \in \mathbb{R}_+}$ are equal in law.

$$\{X_d(t,h)\}_{t\in\mathbb{R}_+} = \left\{ I_d\left(\int_0^t f_h(s,\bullet) \ ds\right) \right\}_{t\in\mathbb{R}_+}$$

- 1. **Self-similarity:** for all a > 0, the processes $\{X_d(at, h)\}_{t \in \mathbb{R}_+}$ and $\{a^h X_d(t, h)\}_{t \in \mathbb{R}_+}$ are equal in law.
- 2. Stationarity of increments: for any r > 0, the processes $\{X_d(t+r,h) X_d(t,h)\}_{t \in \mathbb{R}_+}$ and $\{X_d(t,h)\}_{t \in \mathbb{R}_+}$ are equal in law.

$$\{X_d(t,h)\}_{t\in\mathbb{R}_+} = \left\{ I_d\left(\int_0^t f_h(s,\bullet) \ ds\right) \right\}_{t\in\mathbb{R}_+}$$

- 1. **Self-similarity:** for all a > 0, the processes $\{X_d(at, h)\}_{t \in \mathbb{R}_+}$ and $\{a^h X_d(t, h)\}_{t \in \mathbb{R}_+}$ are equal in law.
- 2. Stationarity of increments: for any r > 0, the processes $\{X_d(t+r,h) X_d(t,h)\}_{t \in \mathbb{R}_+}$ and $\{X_d(t,h)\}_{t \in \mathbb{R}_+}$ are equal in law.
- 3. Covariance function: For all $s, t \in \mathbb{R}_+$, $\mathbb{E}[X_d(t,h)X_d(s,h)] = c_h(t^{2h} + s^{2h} - |t-s|^{2h}).$

$$\{X_d(t,h)\}_{t\in\mathbb{R}_+} = \left\{I_d\left(\int_0^t f_h(s,\bullet) \ ds\right)\right\}_{t\in\mathbb{R}_+}.$$

- 1. Self-similarity: for all a > 0, the processes $\{X_d(at, h)\}_{t \in \mathbb{R}_+}$ and $\{a^h X_d(t, h)\}_{t \in \mathbb{R}_+}$ are equal in law.
- 2. Stationarity of increments: for any r > 0, the processes $\{X_d(t+r,h) X_d(t,h)\}_{t \in \mathbb{R}_+}$ and $\{X_d(t,h)\}_{t \in \mathbb{R}_+}$ are equal in law.
- 3. Covariance function: For all $s, t \in \mathbb{R}_+$, $\mathbb{E}[X_d(t,h)X_d(s,h)] = c_h(t^{2h} + s^{2h} - |t-s|^{2h}).$
- 4. Hölder regularity: $\{X_d(t,h)\}_{t \in \mathbb{R}_+}$ has a version with almost sure (uniform) Hölder exponent *h*.

A function f defined on I belongs to the Hölder space $C^{\alpha}(I)$ if there exists c>0 such that, for all $x,y\in I$

$$|f(x) - f(y)| \le c|x - y|^{\alpha}.$$

$$\{X_d(t,h)\}_{t\in\mathbb{R}_+} = \left\{ I_d\left(\int_0^t f_h(s,\bullet) \ ds\right) \right\}_{t\in\mathbb{R}_+}$$

- 1. **Self-similarity:** for all a > 0, the processes $\{X_d(at, h)\}_{t \in \mathbb{R}_+}$ and $\{a^h X_d(t, h)\}_{t \in \mathbb{R}_+}$ are equal in law.
- 2. Stationarity of increments: for any r > 0, the processes $\{X_d(t+r,h) X_d(t,h)\}_{t \in \mathbb{R}_+}$ and $\{X_d(t,h)\}_{t \in \mathbb{R}_+}$ are equal in law.
- 3. Covariance function: For all $s, t \in \mathbb{R}_+$, $\mathbb{E}[X_d(t,h)X_d(s,h)] = c_h(t^{2h} + s^{2h} - |t-s|^{2h}).$
- 4. **Hölder regularity:** $\{X_d(t,h)\}_{t \in \mathbb{R}_+}$ has a version with almost sure (uniform) Hölder exponent *h*.

 $\{X_1(t,h)\}_{t \in \mathbb{R}_+}$ is the Brownian motion of Hurst parameter h.

$$\{X_d(t,h)\}_{t\in\mathbb{R}_+} = \left\{ I_d\left(\int_0^t f_h(s,\bullet) \ ds\right) \right\}_{t\in\mathbb{R}_+}$$

- 1. **Self-similarity:** for all a > 0, the processes $\{X_d(at, h)\}_{t \in \mathbb{R}_+}$ and $\{a^h X_d(t, h)\}_{t \in \mathbb{R}_+}$ are equal in law.
- 2. Stationarity of increments: for any r > 0, the processes $\{X_d(t+r,h) X_d(t,h)\}_{t \in \mathbb{R}_+}$ and $\{X_d(t,h)\}_{t \in \mathbb{R}_+}$ are equal in law.
- 3. Covariance function: For all $s, t \in \mathbb{R}_+$, $\mathbb{E}[X_d(t,h)X_d(s,h)] = c_h(t^{2h} + s^{2h} - |t-s|^{2h}).$
- 4. **Hölder regularity:** $\{X_d(t,h)\}_{t \in \mathbb{R}_+}$ has a version with almost sure (uniform) Hölder exponent *h*.
- If d > 1, $\{X_d(t, h)\}_{t \in \mathbb{R}_+}$ is non-Gaussian.

Definition

Given $d \in \mathbb{N}^*$, the generator of the multifractional Hermite process of order d is the real-valued centred field $\{X_d(t,h)\}_{(t,h)\in\mathbb{R}_+\times(\frac{1}{2},1)}$ defined, for all $(t,h)\in\mathbb{R}_+\times(\frac{1}{2},1)$, by the multiple Wiener-Itô integral

$$X_d(t,h) := I_d\left(\int_0^t f_h(s,\bullet) \, ds\right).$$
(5)

Definition

Given $d \in \mathbb{N}^*$, the generator of the multifractional Hermite process of order d is the real-valued centred field $\{X_d(t,h)\}_{(t,h)\in\mathbb{R}_+\times(\frac{1}{2},1)}$ defined, for all $(t,h)\in\mathbb{R}_+\times(\frac{1}{2},1)$, by the multiple Wiener-Itô integral

$$X_d(t,h) := I_d\left(\int_0^t f_h(s,\bullet) \, ds\right).$$
(5)

Proposition

Let $d \in \mathbb{N}^*$, K be a compact set of $(\frac{1}{2}, 1)$ and I be a compact interval of \mathbb{R}_+ . There exist a positive deterministic constant c_1 only depending on d an K and a positive deterministic constant c_2 , only depending on d, K and I, such that, for all $t, u \in I$ and $h_1, h_2 \in K$,

 $||X_d(t, h_1) - X_d(u, h_2)||_{L^2(\Omega)}$

is bounded from above by $c_1|t - u|^{\min\{h_1,h_2\}} + c_2|h_1 - h_2|$ and from below by $c_1|t - u|^{\min\{h_1,h_2\}} - c_2|h_1 - h_2|$.

Proposition

Let $d \in \mathbb{N}^*$, K be a compact set of $(\frac{1}{2}, 1)$ and I be a compact interval of \mathbb{R}_+ . There exist a positive deterministic constant c_1 only depending on d an K and a positive deterministic constant c_2 , only depending on d, K and I, such that, for all $t, u \in I$ and $h_1, h_2 \in K$,

 $||X_d(t, h_1) - X_d(u, h_2)||_{L^2(\Omega)}$

is bounded from above by $c_1|t - u|^{\min\{h_1,h_2\}} + c_2|h_1 - h_2|$ and from below by $c_1|t - u|^{\min\{h_1,h_2\}} - c_2|h_1 - h_2|$.

Idea: assume $h_1 < h_2$ and write

$$\begin{split} \|X_d(t,h_1) - X_d(u,h_1)\|_{L^2(\Omega)} - \|X_d(u,h_1) - X_d(u,h_2)\|_{L^2(\Omega)} &\leq \\ \|X_d(t,h_1) - X_d(u,h_2)\|_{L^2(\Omega)} \\ &\leq \|X_d(t,h_1) - X_d(u,h_1)\|_{L^2(\Omega)} + \|X_d(u,h_1) - X_d(u,h_2)\|_{L^2(\Omega)}. \end{split}$$

Proposition

Given $d \in \mathbb{N}^*$ and K a compact set of $(\frac{1}{2}, 1)$, let I be a compact interval of \mathbb{R}_+ . For any $p \ge 1$ there exists a positive deterministic constant c_p , only depending on d, p, K and I, such that, for all t, $u \in I$ and $h_1, h_2 \in K$,

$$\|X_d(t,h_1) - X_d(u,h_2)\|_{L^p(\Omega)} \le c_p \left(|t-u|^{\min\{h_1,h_2\}} + |h_1 - h_2| \right).$$
(6)

It is a consequence of the hypercontractivity property: for every p > 0 and $d \ge 1$, there exists a constant $0 < k(p, d) < \infty$ such that, for every random variable F with the form of a d-multiple Wiener-Itô integral

 $||F||_{L^p(\Omega)} \le k(p, d) ||F||_{L^2(\Omega)}.$

Proposition

Given $d \in \mathbb{N}^*$ and K a compact set of $(\frac{1}{2}, 1)$, let I be a compact interval of \mathbb{R}_+ . For any $p \ge 1$ there exists a positive deterministic constant c_p , only depending on d, p, K and I, such that, for all t, $u \in I$ and $h_1, h_2 \in K$,

$$\|X_d(t,h_1) - X_d(u,h_2)\|_{L^p(\Omega)} \le c_p \left(|t-u|^{\min\{h_1,h_2\}} + |h_1 - h_2|\right).$$
(6)

Consequence of Kolmogorov Theorem

Given $d \in \mathbb{N}^*$, there exist a modification of the field $\{X_d(t,h)\}_{(t,h)\in\mathbb{R}_+\times(1/2,1)}$, also denoted by $\{X_d(t,h)\}_{(t,h)\in\mathbb{R}_+\times(1/2,1)}$, and Ω^* , an event of probability 1, such that, on Ω^* , given *I*, a compact interval of \mathbb{R}_+ , and *K*, a compact set of $(\frac{1}{2}, 1)$, for all $0 < a < \inf K$, there exists a finite positive random variable *C* such that, for all $t, u \in I$ and $h_1, h_2 \in K$,

$$|X_d(t,h_1) - X_d(u,h_2)| \le C(|t-u| + |h_1 - h_2|)^a.$$
(7)

On the event Ω^* of probability 1,

$$|X_d(t, h_1) - X_d(u, h_2)| \le C(|t - u| + |h_1 - h_2|)^a$$

Definition

Given $d \in \mathbb{N}^*$, a compact set K of $(\frac{1}{2}, 1)$ and a function $H : \mathbb{R}_+ \to K$, the multifractional Hermite process of order d and Hurst function H is the process $\{X_d^{H(\cdot)}(t)\}_{t \in \mathbb{R}_+}$ defined, for all $t \in \mathbb{R}_+$, by

$$X_d^{H(\cdot)}(t) = X_d(t, H(t)).$$
(8)

On the event Ω^* of probability 1,

$$|X_d(t, h_1) - X_d(u, h_2)| \le C(|t - u| + |h_1 - h_2|)^a$$

Definition

Given $d \in \mathbb{N}^*$, a compact set K of $(\frac{1}{2}, 1)$ and a function $H : \mathbb{R}_+ \to K$, the multifractional Hermite process of order d and Hurst function H is the process $\{X_d^{H(\cdot)}(t)\}_{t \in \mathbb{R}_+}$ defined, for all $t \in \mathbb{R}_+$, by

$$X_d^{H(\cdot)}(t) = X_d(t, H(t)).$$
 (8)

First observations:

1. On the event Ω^* , $\{X_d^{H(\cdot)}(t)\}_{t \in \mathbb{R}_+}$ is always continuous at 0.

On the event Ω^* of probability 1,

$$|X_d(t, h_1) - X_d(u, h_2)| \le C(|t - u| + |h_1 - h_2|)^a$$

Definition

Given $d \in \mathbb{N}^*$, a compact set K of $(\frac{1}{2}, 1)$ and a function $H : \mathbb{R}_+ \to K$, the multifractional Hermite process of order d and Hurst function H is the process $\{X_d^{H(\cdot)}(t)\}_{t \in \mathbb{R}_+}$ defined, for all $t \in \mathbb{R}_+$, by

$$X_d^{H(\cdot)}(t) = X_d(t, H(t)).$$
 (8)

First observations:

- 1. On the event Ω^* , $\{X_d^{H(\cdot)}(t)\}_{t \in \mathbb{R}_+}$ is always continuous at 0.
- 2. If *H* is a continuous function, on the event Ω^* , $\{X_d^{H(\cdot)}(t)\}_{t \in \mathbb{R}_+}$ is continuous.

On the event Ω^* of probability 1,

$$|X_d(t, h_1) - X_d(u, h_2)| \le C(|t - u| + |h_1 - h_2|)^a$$

Definition

Given $d \in \mathbb{N}^*$, a compact set K of $(\frac{1}{2}, 1)$ and a function $H : \mathbb{R}_+ \to K$, the multifractional Hermite process of order d and Hurst function H is the process $\{X_d^{H(\cdot)}(t)\}_{t \in \mathbb{R}_+}$ defined, for all $t \in \mathbb{R}_+$, by

$$X_d^{H(\cdot)}(t) = X_d(t, H(t)).$$
 (8)

First observations:

- 1. On the event Ω^* , $\{X_d^{H(\cdot)}(t)\}_{t \in \mathbb{R}_+}$ is always continuous at 0.
- 2. If *H* is a continuous function, on the event Ω^* , $\{X_d^{H(\cdot)}(t)\}_{t \in \mathbb{R}_+}$ is continuous.
- 3. If *H* is discontinuous at a point $t_0 \neq 0$, almost surely, $\{X_d^{H(\cdot)}(t)\}_{t \in \mathbb{R}_+}$ is discontinuous at t_0 .

Hölder regularity (lower bound)

On the event Ω^* of probability 1,

 $\begin{aligned} |X_d(t,h_1) - X_d(u,h_2)| &\leq C(|t-u| + |h_1 - h_2|)^a. \\ X_d^{H(\cdot)}(t) &= X_d(t,H(t)) \end{aligned}$

Hölder regularity (lower bound)

On the event Ω^* of probability 1,

$$\begin{aligned} X_d(t,h_1) - X_d(u,h_2) &| \le C(|t-u| + |h_1 - h_2|)^a. \\ X_d^{H(\cdot)}(t) &= X_d(t,H(t)) \end{aligned}$$

A first Condition for H

Given $d \in \mathbb{N}^*$ and a compact set K of $(\frac{1}{2}, 1)$, we say that the Hurst function $H : \mathbb{R}_+ \to K$ satisfies the uniform min-Hölder regularity condition if, for all compact interval I of \mathbb{R}_+ , there exists $\gamma \in (\underline{H}(I), 1)$ such that $H \in C^{\gamma}(I)$, where we set $\underline{H}(I) := \min\{H(I)\}$

Hölder regularity (lower bound)

On the event Ω^* of probability 1,

$$\begin{aligned} X_d(t,h_1) - X_d(u,h_2) &| \le C(|t-u| + |h_1 - h_2|)^a. \\ X_d^{H(\cdot)}(t) &= X_d(t,H(t)) \end{aligned}$$

A first Condition for H

Given $d \in \mathbb{N}^*$ and a compact set K of $(\frac{1}{2}, 1)$, we say that the Hurst function $H : \mathbb{R}_+ \to K$ satisfies the uniform min-Hölder regularity condition if, for all compact interval I of \mathbb{R}_+ , there exists $\gamma \in (\underline{H}(I), 1)$ such that $H \in C^{\gamma}(I)$, where we set $\underline{H}(I) := \min\{H(I)\}$

Under this condition, it is clear that, on Ω^* , for all interval *I*, the Hölder exponent of $\{X_d^{H(\cdot)}(t)\}_{t \in \mathbb{R}_+}$ on *I* is at least $\underline{H}(I)$.

Modulus of continuity

Theorem (L.L.)

Given $d \in \mathbb{N}^*$, a compact set K of $(\frac{1}{2}, 1)$ and a Hurst function $H : \mathbb{R}_+ \to K$ satisfying the uniform min-Hölder regularity condition, there exists Ω_1^* , an event of probability 1, such that, on Ω_1^* , for all compact interval I of \mathbb{R}_+

$$\limsup_{r \to 0^+} \frac{\sup_{t_0 \in I} \operatorname{Osc}(X_d^{H(\cdot)}, [t_0 - r, t_0 + r] \cap I)}{r\underline{H}^{(I)}(\log r^{-1})^{\frac{d}{2}}} < +\infty$$

 $\operatorname{Osc}(f, I) := \sup_{t,s \in I} |f(t) - f(s)|.$

Modulus of continuity

Theorem (L.L.)

Given $d \in \mathbb{N}^*$, a compact set K of $(\frac{1}{2}, 1)$ and a Hurst function $H : \mathbb{R}_+ \to K$ satisfying the uniform min-Hölder regularity condition, there exists Ω_1^* , an event of probability 1, such that, on Ω_1^* , for all compact interval I of \mathbb{R}_+

$$\limsup_{r \to 0^+} \frac{\sup_{t_0 \in I} \operatorname{Osc}(X_d^{H(\cdot)}, [t_0 - r, t_0 + r] \cap I)}{r\underline{H}^{(I)}(\log r^{-1})^{\frac{d}{2}}} < +\infty.$$

Important fact

For all $d \ge 1$, there exists an universal deterministic constant $c_d > 0$ such that, for any random variable X in the Wiener chaos of order d, and $y \ge 2$,

$$\mathbb{P}(|X| \ge y ||X||_{L^2(\Omega)}) \le \exp(-c_d y^{\frac{2}{d}}).$$

Modulus of continuity – Idea of the proof

Modulus of continuity - Idea of the proof

If *I* is a compact interval in [0, n] and $t \in I$, there exists $J_2 \in \mathbb{N}$ such that, for all $j \geq J_2$, $k_j^-(t) \in I$ or $k_j(t)^+ \in I$. We choose $k_j(t) \in \{k_j^-(t), k_j^+(t)\}$ such that $k_j(t) \in I$.

Modulus of continuity - Idea of the proof

If *I* is a compact interval in [0, n] and $t \in I$, there exists $J_2 \in \mathbb{N}$ such that, for all $j \ge J_2$, $k_j^-(t) \in I$ or $k_j(t)^+ \in I$. We choose $k_j(t) \in \{k_j^-(t), k_j^+(t)\}$ such that $k_j(t) \in I$.

On Ω^* , for all t and $j_0 \ge J_2$, we write

$$X_d^{H(\cdot)}(t) = X_{j_0,k_{j_0}(t)} + \sum_{j \ge j_0} (X_{j+1,k_{j+1}(t)} - X_{j,k_j(t)})$$

with $X_{j,k} := X_d^{H(\cdot)}(k2^{-j})$

Modulus of continuity – Idea of the proof

If *I* is a compact interval in [0, n] and $t \in I$, there exists $J_2 \in \mathbb{N}$ such that, for all $j \ge J_2$, $k_j^-(t) \in I$ or $k_j(t)^+ \in I$. We choose $k_j(t) \in \{k_j^-(t), k_j^+(t)\}$ such that $k_j(t) \in I$.

On Ω^* , for all t and $j_0 \ge J_2$, we write

$$X_d^{H(\cdot)}(t) = X_{j_0,k_{j_0}(t)} + \sum_{j \ge j_0} (X_{j+1,k_{j+1}(t)} - X_{j,k_j(t)})$$

$$\sum_{j} \mathbb{P}\left(\exists 0 \le k \le n2^{j}, k' \in \{2k, 2k \pm 1, 2k \pm 2\} : \frac{|X_{j+1,k'} - X_{j,k}|}{\|X_{j+1,k'} - X_{j,k}\|_{L^{2}(\Omega)}} \ge cj^{\frac{d}{2}}\right) < \infty.$$

9/34

 $\lambda_j(t) = [k_i^-(t)2^{-j}, k_i^+(t)2^{-j})$ is the unique dyadic interval at scale j containing t

 $3\lambda_j(t)$ is $\lambda_j(t)$ and its neighbours.

 $\lambda \subset 3\lambda_j(t).$

10/34

If $\lambda = [k2^{-j}, (k+1)2^{-j})$ is a dyadic interval, we set

$$\Delta_{j,k} := X_d^{H(\cdot)} \left(\frac{k+1}{2^j}\right) - X_d^{H(\cdot)} \left(\frac{k}{2^j}\right)$$

10/34

If $\lambda = [k2^{-j}, (k+1)2^{-j})$ is a dyadic interval, we set

$$\Delta_{j,k} := X_d^{H(\cdot)} \left(\frac{k+1}{2^j}\right) - X_d^{H(\cdot)} \left(\frac{k}{2^j}\right)$$
$$\sup_{\lambda \subseteq \Im \lambda_j(t)} |\Delta_\lambda| \le \operatorname{Osc}(X_d^{H(\cdot)}, [t-22^{-j}, t+22^{-j}]).$$

$$\Delta_{j,k} = X_d\left(\frac{k+1}{2^j}, H\left(\frac{k+1}{2^j}\right)\right) - X_d\left(\frac{k}{2^j}, H\left(\frac{k+1}{2^j}\right)\right) + X_d\left(\frac{k}{2^j}, H\left(\frac{k+1}{2^j}\right)\right) - X_d\left(\frac{k}{2^j}, H\left(\frac{k}{2^j}\right)\right)$$

$$\begin{split} \Delta_{j,k} &= X_d \left(\frac{k+1}{2^j}, H\left(\frac{k+1}{2^j} \right) \right) - X_d \left(\frac{k}{2^j}, H\left(\frac{k+1}{2^j} \right) \right) + X_d \left(\frac{k}{2^j}, H\left(\frac{k+1}{2^j} \right) \right) - X_d \left(\frac{k}{2^j}, H\left(\frac{k}{2^j} \right) \right) \\ X_d^{H(\cdot)} \left(\frac{k+1}{2^j}, H\left(\frac{k+1}{2^j} \right) \right) - X_d \left(\frac{k}{2^j}, H\left(\frac{k+1}{2^j} \right) \right) = I_d \left(\mathbbm{1}_{\left(-\infty, \frac{k+1}{2^j} \right)^d} \left(\int_{\frac{k}{2^j}}^{\frac{k+1}{2^j}} f_{H\left(\frac{k+1}{2^j} \right)}(s, \bullet) \, ds \right) \right) \end{split}$$

Given an integer $M \ge 0$, for all $(j, k) \in \mathbb{N} \times \{0, \dots, 2^j - 1\}$, we consider the enlarged dyadic interval

$$\lambda_{j,k}^M := \left(\frac{k-M}{2^j}, \frac{k+1}{2^j}\right]^d$$

Given an integer $M \ge 0$, for all $(j, k) \in \mathbb{N} \times \{0, \dots, 2^j - 1\}$, we consider the enlarged dyadic interval

$$\lambda_{j,k}^M := \left(\frac{k-M}{2^j}, \frac{k+1}{2^j}\right]^d$$

We define the random variables

$$\widetilde{\Delta_{j,k}}^M := I_d \left(\mathbbm{1}_{\lambda_{j,k}^M} \left(\int_{\frac{k}{2^j}}^{\frac{k+1}{2^j}} f_{H\left(\frac{k+1}{2^j}\right)}(s, \bullet) \, ds \right) \right)$$
$$\widetilde{\Delta_{j,k}}^M := I_d \left(\mathbbm{1}_{(-\infty, \frac{k+1}{2^j}]^d \setminus \lambda_{j,k}^M} \left(\int_{\frac{k}{2^j}}^{\frac{k+1}{2^j}} f_{H\left(\frac{k+1}{2^j}\right)}(s, \bullet) \, ds \right) \right)$$

We define the random variables

$$\widetilde{\Delta_{j,k}}^{M} := I_d \left(\mathbbm{1}_{\mathcal{X}_{j,k}^{M}} \left(\int_{\frac{k}{2^j}}^{\frac{k+1}{2^j}} f_{H\left(\frac{k+1}{2^j}\right)}(s, \bullet) \, ds \right) \right)$$

$$\widetilde{\Delta_{j,k}}^{M} := I_d \left(\mathbbm{1}_{\left(-\infty, \frac{k+1}{2^j}\right]^d \setminus \mathcal{X}_{j,k}^{M}} \left(\int_{\frac{k}{2^j}}^{\frac{k+1}{2^j}} f_{H\left(\frac{k+1}{2^j}\right)}(s, \bullet) \, ds \right) \right)$$

$$\widetilde{\Delta_{j,k}} := X_d \left(\frac{k}{2^j}, H\left(\frac{k+1}{2^j}\right) \right) - X_d \left(\frac{k}{2^j}, H\left(\frac{k}{2^j}\right) \right).$$

$$\Delta_{j,k} = \widetilde{\Delta_{j,k}}^{M} + \widetilde{\Delta_{j,k}}^{M} + \widetilde{\Delta_{j,k}}.$$

We define the random variables

$$\widetilde{\Delta_{j,k}}^{M} := I_d \left(\mathbbm{1}_{\mathcal{X}_{j,k}^{M}} \left(\int_{\frac{k}{2j}}^{\frac{k+1}{2j}} f_{H\left(\frac{k+1}{2j}\right)}(s, \bullet) \, ds \right) \right)$$
$$\widetilde{\Delta_{j,k}}^{M} := I_d \left(\mathbbm{1}_{\left(-\infty, \frac{k+1}{2j}\right]^d \setminus \mathcal{X}_{j,k}^{M}} \left(\int_{\frac{k}{2j}}^{\frac{k+1}{2j}} f_{H\left(\frac{k+1}{2j}\right)}(s, \bullet) \, ds \right) \right)$$
$$\widetilde{\Delta_{j,k}} := X_d \left(\frac{k}{2j}, H\left(\frac{k+1}{2j}\right) \right) - X_d \left(\frac{k}{2j}, H\left(\frac{k}{2j}\right) \right).$$
$$\Delta_{j,k} = \widetilde{\Delta_{j,k}}^{M} + \widetilde{\Delta_{j,k}}^{M} + \widetilde{\Delta_{j,k}}.$$

If M_1, \ldots, M_n are fixed positive real numbers, the random variables $\widetilde{\Delta_{j_1,k_1}}^{M_1}, \ldots, \widetilde{\Delta_{j_n,k_n}}^{M_n}$ are independent as soon as the condition

$$\lambda_{j_{\ell},k_{\ell}}^{M_{\ell}} \cap \lambda_{j_{\ell'},k_{\ell'}}^{M_{\ell'}} = \emptyset \text{ for all } 1 \leq \ell, \ell' \leq n$$

is satisfied.

11/34

(9)

Dominent random variables

Proposition (L.L.)

Given $d \in \mathbb{N}^*$, a compact set K of $(\frac{1}{2}, 1)$ and a Hurst function $H : \mathbb{R}_+ \to K$, there exists a positive deterministic constant c, only depending on d and K, such that, for all $(j, k) \in \mathbb{N} \times \{0, \ldots, 2^j - 1\}$ and M > 0, one has

1.
$$c^{-1}2^{-H\left(\frac{k+1}{2^{j}}\right)j} \le \|\widetilde{\Delta_{j,k}}^{M}\|_{L^{2}(\Omega)} \le c2^{-H\left(\frac{k+1}{2^{j}}\right)j};$$

2. $\|\widecheck{\Delta_{j,k}}^{M}\|_{L^{2}(\Omega)} \le cM^{\frac{H\left(\frac{k+1}{2^{j}}\right)^{-1}}{d}}2^{-H\left(\frac{k+1}{2^{j}}\right)j};$
3. $\|\widehat{\Delta_{j,k}}\|_{L^{2}(\Omega)} \le c\operatorname{Osc}(H,\lambda_{j,k}).$

Dominent random variables

Proposition (L.L.)

Given $d \in \mathbb{N}^*$, a compact set K of $(\frac{1}{2}, 1)$ and a Hurst function $H : \mathbb{R}_+ \to K$, there exists a positive deterministic constant c, only depending on d and K, such that, for all $(j, k) \in \mathbb{N} \times \{0, \ldots, 2^j - 1\}$ and M > 0, one has

1.
$$c^{-1}2^{-H\left(\frac{k+1}{2^{j}}\right)j} \leq \|\widetilde{\Delta_{j,k}}^{M}\|_{L^{2}(\Omega)} \leq c2^{-H\left(\frac{k+1}{2^{j}}\right)j};$$

2. $\|\widecheck{\Delta_{j,k}}^{M}\|_{L^{2}(\Omega)} \leq cM^{\frac{H\left(\frac{k+1}{2^{j}}\right)^{-1}}{d}}2^{-H\left(\frac{k+1}{2^{j}}\right)j};$
3. $\|\widehat{\Delta_{j,k}}\|_{L^{2}(\Omega)} \leq c \operatorname{Osc}(H,\lambda_{j,k}).$

A pointwise Condition for \boldsymbol{H}

Given $d \in \mathbb{N}^*$ and a compact set K of $(\frac{1}{2}, 1)$, we say that the Hurst function $H : \mathbb{R}_+ \to K$ satisfies the pointwise Hölder regularity condition if, for all $t \in \mathbb{R}_+$, there exists $\gamma \in (H(t), 1)$ such that $H \in C^{\gamma}(t)$.

Theorem (L.L.)

Given $d \in \mathbb{N}^*$, a compact set K of $(\frac{1}{2}, 1)$ and a Hurst function $H : \mathbb{R}_+ \to K$ satisfying the pointwise regularity condition, there exists $\underline{\Omega}$, an event of probability 1, such that, on $\underline{\Omega}$, for all $t_0 \in \mathbb{R}_+$,

$$\limsup_{r \to 0^+} \frac{\operatorname{Osc}(X_d^{H(\cdot)}, [t_0 - r, t_0 + r] \cap \mathbb{R}_+)}{r^{H(t_0)} (\log r^{-1})^{\frac{-d^2 H(t_0)}{2(1 - H(t_0))}}} > 0$$
(10)

Theorem (L.L.)

Given $d \in \mathbb{N}^*$, a compact set K of $(\frac{1}{2}, 1)$ and a Hurst function $H : \mathbb{R}_+ \to K$ satisfying the pointwise regularity condition, there exists $\underline{\Omega}$, an event of probability 1, such that, on $\underline{\Omega}$, for all $t_0 \in \mathbb{R}_+$,

$$\limsup_{r \to 0^+} \frac{\operatorname{Osc}(X_d^{H(\cdot)}, [t_0 - r, t_0 + r] \cap \mathbb{R}_+)}{r^{H(t_0)} (\log r^{-1})^{\frac{-d^2 H(t_0)}{2(1 - H(t_0))}}} > 0$$
(10)

Important fact

Given $d \in \mathbb{N}^*$, there exists an universal deterministic constant $\gamma_d \in [0, 1)$ such that, for any random variable X in the Wiener chaos of order d, one has

$$\mathbb{P}\left(|X| \le \frac{1}{2} \|X\|_{L^2(\Omega)}\right) \le \gamma_d.$$

If $\lambda = \lambda_{j,k}$ is a dyadic interval and $m \in \mathbb{N}$,

 $\mathcal{S}_{\lambda,m} = \mathcal{S}_{j,k,m} := \{\lambda \in \Lambda_{j+m} : \lambda \subset \lambda_{j,k}\}.$

If the dyadic interval $\lambda_{j,k}$ and $m \in \mathbb{N}$ are fixed and $S \in S_{j,k,m}$, we define the sequences of dyadic intervals $(I_n)_{0 \le n \le m}$ and $(T_n)_{1 \le n \le m}$ in the following way:

- $I_0 = \lambda_{j,k}$:
- $I_m = S;$
- for all $1 \le n \le m$, $I_{n-1} = I_n \cup T_n$.

For all $\lambda_{j,k} \in \Lambda$, we define

(11)

For any $1 \leq n \leq m$, there are ℓ_d dyadic intervals $(T_n^{\ell} = \lambda_{j_n^{(\ell)}, k_n^{(\ell)}})_{1 \leq \ell \leq \ell_d}$ in $S_{T_n, \lfloor \log_2(\ell_d M_{T_n}) \rfloor + 1}$ such that, for all $1 \leq \ell \leq \ell_d$

$$\left(\frac{k_n^{(\ell)} - M_{T_n}}{2^{j_n^{(\ell)}}}, \frac{k_n^{(\ell)} + 1}{2^{j_n^{(\ell)}}}\right) \subseteq T_n.$$

For any $1 \leq n \leq m$, there are ℓ_d dyadic intervals $(T_n^{\ell} = \lambda_{j_n^{(\ell)}, k_n^{(\ell)}})_{1 \leq \ell \leq \ell_d}$ in $S_{T_n, \lfloor \log_2(\ell_d M_{T_n}) \rfloor + 1}$ such that if $\ell \neq \ell'$,

$$\left(\frac{k_n^{(\ell)} - M_{T_n}}{2^{j_n^{(\ell)}}}, \frac{k_n^{(\ell)} + 1}{2^{j_n^{(\ell)}}}\right) \cap \left(\frac{k_n^{(\ell')} - M_{T_n}}{2^{j_n^{(\ell')}}}, \frac{k_n^{(\ell')} + 1}{2^{j_n^{(\ell')}}}\right) = \emptyset.$$

The random variables $(\widetilde{\Delta_{T_n^\ell}}^{M_{T_n}})_{1\leq n\leq m}^{1\leq \ell\leq \ell_d}$ are independent

The random variables $(\widetilde{\Delta_{T_n^{\ell}}}^{M_{T_n}})_{1 \le n \le m}^{1 \le \ell \le \ell_d}$ are independent so if we define the Bernoulli random variable

$$\mathcal{B}_{j,k,m}(S) = \prod_{1 \le n \le m, 1 \le \ell \le \ell_d} \mathbb{1}_{\{|\widetilde{\Delta_{T_n^{\ell}}}^{M_{T_n}}| < 2^{-1} \|\widetilde{\Delta_{T_n^{\ell}}}^{M_{T_n}}\|_{L^2(\Omega)}\}},$$

The random variables $(\widetilde{\Delta_{T_n^\ell}}^{M_{T_n}})_{1 \le n \le m}^{1 \le \ell \le \ell_d}$ are independent so if we define the Bernoulli random variable

$$\mathcal{B}_{j,k,m}(S) = \prod_{1 \le n \le m, 1 \le \ell \le \ell_d} \mathbb{1}_{\{|\widetilde{\Delta_{T_n^{\ell}}}^{M_{T_n}}| < 2^{-1} \|\widetilde{\Delta_{T_n^{\ell}}}^{M_{T_n}}\|_{L^2(\Omega)}\}},$$

$$\mathbb{E}[\mathcal{B}_{j,k,m}(S)] \le \gamma_d^{m\ell_d}.$$

The random variables $(\widetilde{\Delta_{T_n^\ell}}^{M_{T_n}})_{1 \le n \le m}^{1 \le \ell \le \ell_d}$ are independent so if we define the Bernoulli random variable

$$\mathcal{B}_{j,k,m}(S) = \prod_{1 \le n \le m, 1 \le \ell \le \ell_d} \mathbb{1}_{\{|\widetilde{\Delta_{T_n^{\ell}}}^{M_{T_n}}| < 2^{-1} \|\widetilde{\Delta_{T_n^{\ell}}}^{M_{T_n}}\|_{L^2(\Omega)}\}},$$

$$\mathbb{E}[\mathcal{B}_{j,k,m}(S)] \le \gamma_d^{m\ell_d}.$$

Let us set consider the random variable

$$\mathcal{G}_{j,k,m} = \sum_{S \in \mathcal{S}_{j,k,m}} \mathcal{B}_{j,k,m}(S),$$

we have $\mathbb{E}[\mathcal{G}_{j,k,m}] \leq (2\gamma_d^{\ell_d})^m$

The random variables $(\widetilde{\Delta_{T_n^\ell}}^{M_{T_n}})_{1 \le n \le m}^{1 \le \ell \le \ell_d}$ are independent so if we define the Bernoulli random variable

$$\mathcal{B}_{j,k,m}(S) = \prod_{1 \le n \le m, 1 \le \ell \le \ell_d} \mathbbm{1}_{\{|\widetilde{\Delta_{T_n^\ell}}^{M_{T_n}}| < 2^{-1} \|\widetilde{\Delta_{T_n^\ell}}^{M_{T_n}}\|_{L^2(\Omega)}\}},$$

$$\mathbb{E}[\mathcal{B}_{j,k,m}(S)] \le \gamma_d^{m\ell_d}.$$

Let us set consider the random variable

$$\mathcal{G}_{j,k,m} = \sum_{S \in \mathcal{S}_{j,k,m}} \mathcal{B}_{j,k,m}(S),$$

we have $\mathbb{E}[\mathcal{G}_{j,k,m}] \leq (2\gamma_d^{\ell_d})^m$. It follows from Fatou Lemma that

$$\mathbb{E}\left[\liminf_{m\to+\infty}\mathcal{G}_{j,k,m}\right]=0.$$

The random variables $(\widetilde{\Delta_{T_n^{\ell}}}^{M_{T_n}})_{1 \le n \le m}^{1 \le \ell \le \ell_d}$ are independent so if we define the Bernoulli random variable

$$\mathcal{B}_{j,k,m}(S) = \prod_{1 \le n \le m, 1 \le \ell \le \ell_d} \mathbbm{1}_{\{|\widetilde{\Delta_{T_n^\ell}}^{M_{T_n}}| < 2^{-1} \|\widetilde{\Delta_{T_n^\ell}}^{M_{T_n}}\|_{L^2(\Omega)}\}},$$

$$\mathbb{E}[\mathcal{B}_{j,k,m}(S)] \le \gamma_d^{m\ell_d}.$$

Let us set consider the random variable

$$\mathcal{G}_{j,k,m} = \sum_{S \in \mathcal{S}_{j,k,m}} \mathcal{B}_{j,k,m}(S),$$

we have $\mathbb{E}[\mathcal{G}_{j,k,m}] \leq (2\gamma_d^{\ell_d})^m$. It follows from Fatou Lemma that

$$\mathbb{E}\left[\liminf_{m\to+\infty}\mathcal{G}_{j,k,m}\right]=0.$$

As a consequence, $\Omega_1 = \bigcap_{j \in \mathbb{N}, 0 \le k < 2^j} \{ \omega : \liminf_{m \to +\infty} \mathcal{G}_{j,k,m}(\omega) = 0 \}$ is an event of probability 1.

For all $\omega \in \Omega_1$ and $t_0 \in [0, 1)$, there exist infinitely many $j \in \mathbb{N}$ such that there is $\lambda \in 3\lambda_j(t_0)$ and $\lambda' \in S_{\lambda, \lfloor \log_2(\ell_d M_\lambda) \rfloor + 1}$ for which

$$\widetilde{\Delta_{\lambda'}^{M_{\lambda}}}(\omega)| \ge \frac{1}{2} \| \widetilde{\Delta_{\lambda'}^{M_{\lambda}}} \|_{L^{2}(\Omega)}.$$
(11)

For all $\omega \in \Omega_1$ and $t_0 \in [0, 1)$, there exist infinitely many $j \in \mathbb{N}$ such that there is $\lambda \in 3\lambda_j(t_0)$ and $\lambda' \in S_{\lambda, \lfloor \log_2(\ell_d M_\lambda) \rfloor + 1}$ for which

$$|\widetilde{\Delta_{\lambda'}^{M_{\lambda}}}(\omega)| \ge \frac{1}{2} \|\widetilde{\Delta_{\lambda'}^{M_{\lambda}}}\|_{L^{2}(\Omega)}.$$
(11)

We deduce from Borel-Cantelli Lemma the existence of Ω_2 , an event of probability 1 such that, for all $\omega \in \Omega_2$, there exists $J_2 \in \mathbb{N}$ such that, for all $j \ge J_2$, $\lambda \in \Lambda_j$ and $\lambda' \in S_{\lambda, \lfloor \log_2(\ell_d M_\lambda) \rfloor + 1}$,

$$\left| \widecheck{\Delta_{\lambda'}}^{M_{\lambda}}(\omega) \right| \le c' j^{\frac{d}{2}} \left\| \widecheck{\Delta_{\lambda'}}^{M_{\lambda}} \right\|_{L^{2}(\Omega)}.$$
(12)

For all $\omega \in \Omega_1$ and $t_0 \in [0, 1)$, there exist infinitely many $j \in \mathbb{N}$ such that there is $\lambda \in 3\lambda_j(t_0)$ and $\lambda' \in S_{\lambda, \lfloor \log_2(\ell_d M_\lambda) \rfloor + 1}$ for which

$$|\widetilde{\Delta_{\lambda'}^{M_{\lambda}}}(\omega)| \ge \frac{1}{2} \|\widetilde{\Delta_{\lambda'}^{M_{\lambda}}}\|_{L^{2}(\Omega)}.$$
(11)

We deduce from Borel-Cantelli Lemma the existence of Ω_2 , an event of probability 1 such that, for all $\omega \in \Omega_2$, there exists $J_2 \in \mathbb{N}$ such that, for all $j \ge J_2$, $\lambda \in \Lambda_j$ and $\lambda' \in S_{\lambda, \lfloor \log_2(\ell_d M_\lambda) \rfloor + 1}$, $\left| \underbrace{\lambda} M_{\lambda_j} M_{\lambda_j} \right|_{\mathcal{L}_{\lambda_j}} = c'_j \hat{\sigma}_{\lambda_j}^{\frac{d}{2}} \left\| \underbrace{\lambda} M_{\lambda_j} \right\|_{\mathcal{L}_{\lambda_j}}$

$$\left| \widecheck{\Delta_{\mathcal{X}'}}^{M_{\lambda}}(\omega) \right| \le c' j^{\frac{d}{2}} \left\| \widecheck{\Delta_{\mathcal{X}'}}^{M_{\lambda}} \right\|_{L^{2}(\Omega)}.$$
(12)

and Ω_3 , an event of probability 1 such that, for all $\omega \in \Omega_3$, there exists $J_3 \in \mathbb{N}$ such that, for all $j \geq J_3$, $\lambda \in \Lambda_j$ and $\lambda' \in S_{\lambda, \lfloor \log_2(\ell_d M_\lambda) \rfloor + 1}$,

$$\left|\widehat{\Delta_{\lambda'}}(\omega)\right| \le c' j^{\frac{d}{2}} \left\|\widehat{\Delta_{\lambda'}}\right\|_{L^2(\Omega)}.$$
(13)

There exist infinitely many $j \in \mathbb{N}$ such that there is $\lambda \in 3\lambda_j(t_0)$ and $\lambda' \in S_{\lambda, \lfloor \log_2(\ell_d M_\lambda) \rfloor + 1}$ for which

$$|\Delta_{\mathcal{X}'}(\omega)| \ge \frac{c^{-1}}{8} (8c^2 c' j^{\frac{d}{2}})^{-\frac{dH\left(\frac{k'+1}{j'}\right)}{1-H\left(\frac{k+1}{2j}\right)}} 2^{-jH\left(\frac{k'+1}{j'}\right)}.$$

(11)

There exist infinitely many $j \in \mathbb{N}$ such that there is $\lambda \in 3\lambda_j(t_0)$ and $\lambda' \in S_{\lambda, \lfloor \log_2(\ell_d M_\lambda) \rfloor + 1}$ for which

$$|\Delta_{\lambda'}(\omega)| \ge \frac{c^{-1}}{8} (8c^2c'j^{\frac{d}{2}})^{-\frac{dH\left(\frac{k'+1}{j'}\right)}{1-H\left(\frac{k+1}{2j}\right)}} 2^{-jH\left(\frac{k'+1}{j'}\right)}.$$

As a consequence

$$\limsup_{j \to +\infty} \frac{\operatorname{Osc}(X_d^{H(\cdot)}, [t_0 - 22^{-j}, t_0 + 22^{-j}] \cap \mathbb{R}_+)}{2^{-jH(t_0)}j^{-\frac{d^2H(t_0)}{2(1 - H(t_0))}}} > 0.$$

(11)

Law of iterated logarithm – upper bound

A local Condition for H

Given $d \in \mathbb{N}^*$ and a compact set K of $(\frac{1}{2}, 1)$, we say that the Hurst function $H : \mathbb{R}_+ \to K$ satisfies the local Hölder regularity condition if, for all $t \in \mathbb{R}_+$, there exist $t \in I_t \subseteq \mathbb{R}_+$ and $\gamma \in (H(t), 1)$ such that $H \in C^{\gamma}(I_t)$.

Law of iterated logarithm – upper bound

A local Condition for ${\boldsymbol{H}}$

Given $d \in \mathbb{N}^*$ and a compact set K of $(\frac{1}{2}, 1)$, we say that the Hurst function $H : \mathbb{R}_+ \to K$ satisfies the local Hölder regularity condition if, for all $t \in \mathbb{R}_+$, there exist $t \in I_t \subseteq \mathbb{R}_+$ and $\gamma \in (H(t), 1)$ such that $H \in C^{\gamma}(I_t)$.

Proposition (L.L.)

Given $d \in \mathbb{N}^*$, a compact set K of $(\frac{1}{2}, 1)$ and a Hurst function $H : \mathbb{R}_+ \to K$ satisfying the local Hölder condition, there exists $\overline{\Omega}_1$, an event of probability 1, such that on $\overline{\Omega}_1$, for (Lebesgue) almost every $t_0 \in \mathbb{R}_+$, we have

$$\limsup_{r \to 0^+} \frac{\operatorname{Osc}(X_d^{H(\cdot)}, [t_0 - r, t_0 + r] \cap \mathbb{R}_+)}{r^{H(t_0)} (\log(\log r^{-1}))^{\frac{d}{2}}} < \infty.$$
(12)

Ideas of the proof

If $s, t \in [t_0 - r, t_0 + r]$ with $2^{-(j_0+1)} \le r \le 2^{-j_0}$, for any $j \ge j_0$ and $x \in \{s, t\}$, $\lambda_j(x) \subseteq 3\lambda_{j_0}(t_0)$ and we write

$$\begin{split} X_d^{H(\cdot)}(t) - X_d^{H(\cdot)}(s) &= X_{j_0,k_{j_0}^-(t)} - X_{j_0,k_{j_0}^-(s)} \\ &+ \sum_{j \ge j_0} \left(X_{j+1,k_{j+1}^-(t)} - X_{j+1,k_{j+1}^-(s)} - X_{j,k_j^-(t)} + X_{j,k_j^-(s)} \right). \end{split}$$

Ideas of the proof

If $s, t \in [t_0 - r, t_0 + r]$ with $2^{-(j_0+1)} \le r \le 2^{-j_0}$, for any $j \ge j_0$ and $x \in \{s, t\}$, $\lambda_j(x) \subseteq 3\lambda_{j_0}(t_0)$ and we write

$$\begin{aligned} X_d^{H(\cdot)}(t) - X_d^{H(\cdot)}(s) &= X_{j_0,k_{j_0}^-(t)} - X_{j_0,k_{j_0}^-(s)} \\ &+ \sum_{j \ge j_0} \left(X_{j+1,k_{j+1}^-(t)} - X_{j+1,k_{j+1}^-(s)} - X_{j,k_j^-(t)} + X_{j,k_j^-(s)} \right). \end{aligned}$$

$$\mathbb{P}\left(\exists j \ge j_0, \lambda_{k,j}, \lambda_{k',j} \subseteq 3\lambda_{j_0}(t_0) : \frac{|X_{j,k'} - X_{j,k}|}{\|X_{j,k'} - X_{j,k}\|_{L^2(\Omega)}} \ge c \log(j_0)^{\frac{d}{2}} (j - j_0 + 1)^{\frac{d}{2}} \right)$$

$$\le \sum_{j \ge j_0} 32^{j-j_0} \exp(-c_d c^{\frac{2}{d}} \log(j_0) (j - j_0 + 1))$$

$$\le c' \exp(-c_d c^{\frac{2}{d}} \log(j_0))$$

Ideas of the proof

If $s, t \in [t_0 - r, t_0 + r]$ with $2^{-(j_0+1)} \le r \le 2^{-j_0}$, for any $j \ge j_0$ and $x \in \{s, t\}$, $\lambda_j(x) \subseteq 3\lambda_{j_0}(t_0)$ and we write

$$\begin{aligned} X_d^{H(\cdot)}(t) - X_d^{H(\cdot)}(s) &= X_{j_0,k_{j_0}^-(t)} - X_{j_0,k_{j_0}^-(s)} \\ &+ \sum_{j \ge j_0} \left(X_{j+1,k_{j+1}^-(t)} - X_{j+1,k_{j+1}^-(s)} - X_{j,k_j^-(t)} + X_{j,k_j^-(s)} \right). \end{aligned}$$

$$\begin{split} \mathbb{P}\left(\exists j \ge j_0, \lambda_{k,j}, \lambda_{k',j} \subseteq 3\lambda_{j_0}(t_0) : \frac{|X_{j,k'} - X_{j,k}|}{\|X_{j,k'} - X_{j,k}\|_{L^2(\Omega)}} \ge c \log(j_0)^{\frac{d}{2}} (j - j_0 + 1)^{\frac{d}{2}} \right) \\ \le \sum_{j \ge j_0} 32^{j - j_0} \exp(-c_d c^{\frac{2}{d}} \log(j_0) (j - j_0 + 1)) \\ \le c' \exp(-c_d c^{\frac{2}{d}} \log(j_0)) \end{split}$$

and we conclude using Borel-Cantelli Lemma and Fubini Theorem.

19/34

Law of iterated logarithm – lower bound (for probabilities)

We want to bound from below the probabilities

$$\mathbb{P}(|\widetilde{\Delta}_{j,k}^{M}| \ge y2^{-jH\left(\frac{k+1}{2^{j}}\right)})$$

for $(j, k) \in \mathbb{N} \times \{0, \dots, 2^j - 1\}$ and M > 0.

UNIVERSITÉ DU LUXEMBOURG

(13)

Law of iterated logarithm – lower bound (for probabilities)

(1.1)

We want to bound from below the probabilities

$$\mathbb{P}(|\widetilde{\Delta}_{j,k}^{M}| \ge y2^{-jH\left(\frac{n+1}{2^{j}}\right)})$$
(13)

for $(j, k) \in \mathbb{N} \times \{0, \dots, 2^j - 1\}$ and M > 0. We know that for any random variable X in the Wiener chaos of order d, there exist two deterministic constants $y_0 \ge 0$ and c > 0 such that, for all $y \ge y_0$,

$$\mathbb{P}(|X| \ge y) \ge \exp(-cy^{\frac{2}{d}}).$$

Law of iterated logarithm – lower bound (for

We want to bound from below the probabilities

probabilities)

$$\mathbb{P}(|\Delta_{j,k}^{M}| \ge y2^{-jH\left(\frac{1}{2^{j}}\right)})$$
(13)

rr(k+1)

for $(j,k) \in \mathbb{N} \times \{0,\ldots,2^j-1\}$ and M > 0. We know that for any random variable X in the Wiener chaos of order d, there exist two deterministic constants $y_0 \ge 0$ and c > 0 such that, for all $y \ge y_0$,

$$\mathbb{P}(|X| \ge y) \ge \exp(-cy^{\frac{2}{d}}).$$

But, unfortunately, these constants depend on the law of X and are not universal, which is undesirable in our context.

Law of iterated logarithm – lower bound (for probabilities)

Lemma

Let $d \in \mathbb{N}^*$, K be a compact set of $(\frac{1}{2}, 1)$ and $H : \mathbb{R}_+ \to K$ be a continuous Hurst function. For all $t_0 \in \mathbb{R}_+$, there exist four deterministic constants $c_{t_0} > 0$, $y_{t_0} > 0$, $j_0 \in \mathbb{N}$ and $M_0 > 0$ such that, for all $\lambda_{j,k} \subseteq 3\lambda_{j_0}(t_0)$, $M \ge M_0$ and $y > y_{t_0}$, we have

$$\mathbb{P}(|\widetilde{\Delta}_{j,k}^{M}| \ge y 2^{-jH\left(\frac{k+1}{2^{j}}\right)}) \ge \exp(-c_{t_{0}} y^{\frac{2}{d}}).$$
(13)

Law of iterated logarithm – lower bound

Given $d \in \mathbb{N}^*$, a compact set K of $(\frac{1}{2}, 1)$ and a Hurst function $H : \mathbb{R}_+ \to K$ satisfying the pointwise Hölder regularity Condition, there exists $\overline{\Omega}_2$, an event of probability 1, such that on $\overline{\Omega}_2$, for (Lebesgue) almost every $t_0 \in \mathbb{R}_+$, we have

$$0 < \limsup_{r \to 0^+} \frac{\operatorname{Osc}(X_d^{H(\cdot)}, [t_0 - r, t_0 + r] \cap \mathbb{R}_+)}{r^{H(t_0)} (\log(\log r^{-1}))^{\frac{d}{2}}}.$$

Law of iterated logarithm

Theorem (L.L.)

Given $d \in \mathbb{N}^*$, a compact set K of $(\frac{1}{2}, 1)$ and a Hurst function $H : \mathbb{R}_+ \to K$ satisfying the local Hölder regularity Condition, there exists $\overline{\Omega}$, an event of probability 1, such that on $\overline{\Omega}$, for (Lebesgue) almost every $t_0 \in \mathbb{R}_+$, we have

$$0 < \limsup_{r \to 0^+} \frac{\operatorname{Osc}(X_d^{H(\cdot)}, [t_0 - r, t_0 + r] \cap \mathbb{R}_+)}{r^{H(t)} (\log(\log r^{-1}))^{\frac{d}{2}}} < \infty.$$
(14)

Definition

A real-valued stochastic process $\{X(t)\}_{t\in\mathbb{R}_+}$ is weakly locally asymptotically selfsimilar of order h > 0 at the point t_0 with tangent process $\{Y(t)\}_{t\geq 0}$ if the sequence of process $\{\varepsilon^{-h}(X(t_0 + \varepsilon t) - X(t_0))\}_{t\in\mathbb{R}_+}$ converges to the process $\{Y(t)\}_{t\in\mathbb{R}_+}$ in finite dimensional distributions, as $\varepsilon \to 0^+$.

UNIVERSITÉ DU LUXEMBOURG

Proposition (L.L.)

Let $d \in \mathbb{N}^*$, K be a compact set of $(\frac{1}{2}, 1)$ and $H : \mathbb{R}_+ \to K$ be a Hurst function. If H satisfies the pointwise Hölder regularity Condition then, for all $t_0 \ge 0$, the multifractional Hermite process $\{X_d^{H(\cdot)}(t) : t \ge 0\}$ is weakly locally asymptotically self-similar of order $H(t_0)$ at t_0 with tangent process $\{X_d(t, H(t_0)) : t \ge 0\}$, the Hermite process of order d and Hurst parameter $H(t_0)$.

We write

$$\varepsilon^{-H(t_0)} \left(X_d^{H(\cdot)}(t_0 + \varepsilon t) - X_d^{H(\cdot)}(t_0) \right) = \varepsilon^{-H(t_0)} \left(X_d(t_0 + \varepsilon t, H(t_0 + \varepsilon t)) - X_d(t_0 + \varepsilon t, H(t_0)) \right)$$

+ $\varepsilon^{-H(t_0)} \left(X_d(t_0 + \varepsilon t, H(t_0)) - X_d(t_0, H(t_0)) \right).$

Proposition (L.L.)

Let $d \in \mathbb{N}^*$, K be a compact set of $(\frac{1}{2}, 1)$ and $H : \mathbb{R}_+ \to K$ be a Hurst function. If H satisfies the pointwise Hölder regularity Condition then, for all $t_0 \ge 0$, the multifractional Hermite process $\{X_d^{H(\cdot)}(t) : t \ge 0\}$ is weakly locally asymptotically self-similar of order $H(t_0)$ at t_0 with tangent process $\{X_d(t, H(t_0)) : t \ge 0\}$, the Hermite process of order d and Hurst parameter $H(t_0)$.

We write

$$\varepsilon^{-H(t_0)} \left(X_d^{H(\cdot)}(t_0 + \varepsilon t) - X_d^{H(\cdot)}(t_0) \right) = \varepsilon^{-H(t_0)} \left(X_d(t_0 + \varepsilon t, H(t_0 + \varepsilon t)) - X_d(t_0 + \varepsilon t, H(t_0)) \right) \\ + \varepsilon^{-H(t_0)} \left(X_d(t_0 + \varepsilon t, H(t_0)) - X_d(t_0, H(t_0)) \right).$$

We know that

$$\{\varepsilon^{-H(t_0)} \left(X_d(t_0 + \varepsilon t, H(t_0)) - X_d(t_0, H(t_0)) \right) \}_{t \ge 0}$$

is equal in finite-dimensional distribution to

 $\{X_d(t, H(t_0))\}_{t\geq 0}.$

Proposition (L.L.)

Let $d \in \mathbb{N}^*$, K be a compact set of $(\frac{1}{2}, 1)$ and $H : \mathbb{R}_+ \to K$ be a Hurst function. If H satisfies the pointwise Hölder regularity Condition then, for all $t_0 \ge 0$, the multifractional Hermite process $\{X_d^{H(\cdot)}(t) : t \ge 0\}$ is weakly locally asymptotically self-similar of order $H(t_0)$ at t_0 with tangent process $\{X_d(t, H(t_0)) : t \ge 0\}$, the Hermite process of order d and Hurst parameter $H(t_0)$.

We write

$$\varepsilon^{-H(t_0)} \left(X_d^{H(\cdot)}(t_0 + \varepsilon t) - X_d^{H(\cdot)}(t_0) \right) = \varepsilon^{-H(t_0)} \left(X_d(t_0 + \varepsilon t, H(t_0 + \varepsilon t)) - X_d(t_0 + \varepsilon t, H(t_0)) \right) \\ + \varepsilon^{-H(t_0)} \left(X_d(t_0 + \varepsilon t, H(t_0)) - X_d(t_0, H(t_0)) \right).$$

On the other hand,

$$\begin{aligned} \|\varepsilon^{-H(t_0)} \left(X_d(t_0 + \varepsilon t, H(t_0 + \varepsilon t)) - X_d(t_0 + \varepsilon t, H(t_0)) \right) \|_{L^2(\Omega)} \\ &\leq c_2 \varepsilon^{-H(t_0)} \left| H(t_0 + \varepsilon t) - H(t_0) \right|. \end{aligned}$$

Proposition (L.L.)

Let $d \in \mathbb{N}^*$, K be a compact set of $(\frac{1}{2}, 1)$ and $H : \mathbb{R}_+ \to K$ be a Hurst function. If H satisfies the pointwise Hölder regularity Condition then, for all $t_0 \ge 0$, the multifractional Hermite process $\{X_d^{H(\cdot)}(t) : t \ge 0\}$ is weakly locally asymptotically self-similar of order $H(t_0)$ at t_0 with tangent process $\{X_d(t, H(t_0)) : t \ge 0\}$, the Hermite process of order d and Hurst parameter $H(t_0)$.

We write

$$\varepsilon^{-H(t_0)} \left(X_d^{H(\cdot)}(t_0 + \varepsilon t) - X_d^{H(\cdot)}(t_0) \right) = \varepsilon^{-H(t_0)} \left(X_d(t_0 + \varepsilon t, H(t_0 + \varepsilon t)) - X_d(t_0 + \varepsilon t, H(t_0)) \right) \\ + \varepsilon^{-H(t_0)} \left(X_d(t_0 + \varepsilon t, H(t_0)) - X_d(t_0, H(t_0)) \right).$$

In particular, for all fixed $t \ge 0$, the sequence of random variables

$$\left(\varepsilon^{-H(t_0)}\left(X_d(t_0+\varepsilon t,H(t_0+\varepsilon t))-X_d(t_0+\varepsilon t,H(t_0))\right)\right)_{\varepsilon>0}$$

converges to 0 in $L^2(\Omega)$, and thus in probability, when $\varepsilon \to 0^+$.

Strong local asymptotic self-similiraty

Definition

When $\{X(t)\}_{t \in \mathbb{R}_+}$ and $\{Y(t)\}_{t \in \mathbb{R}_+}$ have, almost surely, continuous path and if the previous convergence also holds in the sense of continuous function over an arbitrary compact set of \mathbb{R}_+ , we say that $\{X(t)\}_{t \in \mathbb{R}_+}$ is *strongly locally asymptotically self-similar* of order h > 0 at the point t_0 , with tangent process $\{Y(t)\}_{t \in \mathbb{R}_+}$.

Strong local asymptotic self-similiraty

Definition

When $\{X(t)\}_{t \in \mathbb{R}_+}$ and $\{Y(t)\}_{t \in \mathbb{R}_+}$ have, almost surely, continuous path and if the previous convergence also holds in the sense of continuous function over an arbitrary compact set of \mathbb{R}_+ , we say that $\{X(t)\}_{t \in \mathbb{R}_+}$ is *strongly locally asymptotically self-similar* of order h > 0 at the point t_0 , with tangent process $\{Y(t)\}_{t \in \mathbb{R}_+}$.

If $\{X(t)\}_{t \in \mathbb{R}_+}$ is weakly locally asymptotically self-similar of order h > 0 at the point t_0 with tangent process $\{Y(t)\}_{t \in \mathbb{R}_+}$, it suffices to show that, for all a > 0 and $\delta > 0$

$$\lim_{\eta \to 0^+} \limsup_{\varepsilon \to 0^+} \mathbb{P}\left(\sup_{s,t \in [0,a], |t-s| \le \eta} \left| \frac{X(t_0 + \varepsilon t) - X(t_0 + \varepsilon s)}{\varepsilon^h} \right| \ge \delta\right) = 0.$$
(15)

Strong local asymptotic self-similiraty

Definition

When $\{X(t)\}_{t \in \mathbb{R}_+}$ and $\{Y(t)\}_{t \in \mathbb{R}_+}$ have, almost surely, continuous path and if the previous convergence also holds in the sense of continuous function over an arbitrary compact set of \mathbb{R}_+ , we say that $\{X(t)\}_{t \in \mathbb{R}_+}$ is *strongly locally asymptotically self-similar* of order h > 0 at the point t_0 , with tangent process $\{Y(t)\}_{t \in \mathbb{R}_+}$.

If $\{X(t)\}_{t \in \mathbb{R}_+}$ is weakly locally asymptotically self-similar of order h > 0 at the point t_0 with tangent process $\{Y(t)\}_{t \in \mathbb{R}_+}$, it suffices to show that, for all a > 0 and $\delta > 0$

$$\lim_{\eta \to 0^+} \limsup_{\varepsilon \to 0^+} \mathbb{P}\left(\sup_{s, t \in [0,a], |t-s| \le \eta} \left| \frac{X(t_0 + \varepsilon t) - X(t_0 + \varepsilon s)}{\varepsilon^h} \right| \ge \delta\right) = 0.$$
(15)

It is the so-called Prohorov's criterion.

Markov and Garsia-Rodemich-Rumsey inequalities

The Markov inequality entails, for any $p \ge 1$,

$$\mathbb{P}(\varepsilon,\eta,\delta) \le \delta^{-p} \varepsilon^{-pH(t_0)} \mathbb{E} \left| \sup_{\substack{s,t \in [0,a], |t-s| \le \eta}} \left| X^{H(\cdot)}(t_0 + \varepsilon t) - X^{H(\cdot)}(t_0 + \varepsilon s) \right|^p \right|$$

-

UNIVERSITÉ DU LUXEMBOURG

Markov and Garsia-Rodemich-Rumsey inequalities

The Markov inequality entails, for any $p \ge 1$,

$$\mathbb{P}(\varepsilon,\eta,\delta) \le \delta^{-p} \varepsilon^{-pH(t_0)} \mathbb{E}\left[\sup_{s,t\in[0,a],|t-s|\le\eta} \left| X^{H(\cdot)}(t_0+\varepsilon t) - X^{H(\cdot)}(t_0+\varepsilon s) \right|^p\right].$$

Now, we use the so called Garsia-Rodemich-Rumsey inequality to write, for $\alpha \geq \frac{1}{n}$,

$$\begin{split} & \mathbb{E}\left[\sup_{s,t\in[0,a],|t-s|\leq\eta}\left|X^{H(\cdot)}(t_{0}+\varepsilon t)-X^{H(\cdot)}(t_{0}+\varepsilon s)\right|^{p}\right] \\ & \leq c_{a,p,\alpha}\eta^{\alpha p-1}\iint_{[0,a]^{2}}\mathbb{E}\left[\left|X^{H(\cdot)}(t_{0}+\varepsilon t)-X^{H(\cdot)}(t_{0}+\varepsilon s)\right|^{p}\right]|t-s|^{-\alpha p-1}\,dsdt \end{split}$$

Markov and Garsia-Rodemich-Rumsey inequalities

The Markov inequality entails, for any $p \ge 1$,

$$\mathbb{P}(\varepsilon,\eta,\delta) \le \delta^{-p} \varepsilon^{-pH(t_0)} \mathbb{E} \left[\sup_{s,t \in [0,a], |t-s| \le \eta} \left| X^{H(\cdot)}(t_0 + \varepsilon t) - X^{H(\cdot)}(t_0 + \varepsilon s) \right|^p \right].$$

Now, we use the so called Garsia-Rodemich-Rumsey inequality to write, for $\alpha \geq \frac{1}{n}$,

$$\mathbb{E}\left[\sup_{s,t\in[0,a],|t-s|\leq\eta}\left|X^{H(\cdot)}(t_{0}+\varepsilon t)-X^{H(\cdot)}(t_{0}+\varepsilon s)\right|^{p}\right]$$

$$\leq c_{a,p,\alpha}\eta^{\alpha p-1}\iint_{[0,a]^{2}}\mathbb{E}\left[\left|X^{H(\cdot)}(t_{0}+\varepsilon t)-X^{H(\cdot)}(t_{0}+\varepsilon s)\right|^{p}\right]|t-s|^{-\alpha p-1}\,dsdt$$

If H satisfies the local Hölder regularity Condition,

$$\mathbb{P}(\varepsilon,\eta,\delta) \le 2c_{a,p,\alpha}\delta^{-p}\eta^{\alpha p-1} \iint_{[0,a]^2} |t-s|^{p(\inf K-\alpha)-1} \, ds dt.$$

Definition

Given $d \in \mathbb{N}^*$, a set $A \subseteq \mathbb{R}^d$ and $\varepsilon, h > 0$, the quantity

$$\mathcal{H}^h_{\varepsilon}(A) := \inf\{\sum_j \operatorname{diam}^h(A_j) : A \subseteq \bigcup_j A_j \text{ and, } \forall j, \operatorname{diam}(A_j) < \varepsilon\}$$

where, as usual, diam stands for the diameter, is called the (h, ε) -Hausdorff outer measure of A. Moreover, for all h > 0, the application $\varepsilon \mapsto \mathcal{H}^h_{\varepsilon}(A)$ is decreasing and it follows that the *h*-dimensional Hausdorff outer measure

$$\mathcal{H}^{h}(A) \coloneqq \lim_{\varepsilon \to 0^{+}} \mathcal{H}^{h}_{\varepsilon}(A)$$

is well-defined.

Definition

Given $d \in \mathbb{N}^*$ and a non-empty set $A \subseteq \mathbb{R}^d$, the Hausdorff dimension of A is

 $\dim_{\mathcal{H}}(A) = \sup\{h > 0 : \mathcal{H}^h(A) = \infty\} = \inf\{h > 0 : \mathcal{H}^h(A) = 0\},\$

while, by convention, $\dim_{\mathcal{H}}(\emptyset) = -\infty$.

UNIVERSITÉ DU LUXEMBOURG

Definition

Given $d \in \mathbb{N}^*$, a non-empty bounded set $A \subseteq \mathbb{R}^d$ and $\varepsilon > 0$, let $N_{\varepsilon}(A)$ be the smallest number of sets of diameter at most ε which can cover A. The quantities

$$\underline{\dim}_{\mathcal{B}}(A) := \liminf_{\varepsilon \to 0^+} \frac{\log(N_{\varepsilon}(A))}{-\log(\varepsilon)} \text{ and } \overline{\dim}_{\mathcal{B}}(A) := \limsup_{\varepsilon \to 0^+} \frac{\log(N_{\varepsilon}(A))}{-\log(\varepsilon)}$$

are, respectively, the *lower and upper box-counting dimensions* of *A*. If they are equal, the common value is referred as the *box-counting dimension* of *A* and we denote it $\dim_{\mathcal{B}}(A)$.

Definition

Given $d \in \mathbb{N}^*$, a non-empty bounded set $A \subseteq \mathbb{R}^d$ and $\varepsilon > 0$, let $N_{\varepsilon}(A)$ be the smallest number of sets of diameter at most ε which can cover A. The quantities

$$\underline{\dim}_{\mathcal{B}}(A) := \liminf_{\varepsilon \to 0^+} \frac{\log(N_{\varepsilon}(A))}{-\log(\varepsilon)} \text{ and } \overline{\dim}_{\mathcal{B}}(A) := \limsup_{\varepsilon \to 0^+} \frac{\log(N_{\varepsilon}(A))}{-\log(\varepsilon)}$$

are, respectively, the *lower and upper box-counting dimensions* of *A*. If they are equal, the common value is refereed as the *box-counting dimension* of *A* and we denote it $\dim_{\mathcal{B}}(A)$.

Given $d \in \mathbb{N}^*$, a compact set K of $(\frac{1}{2}, 1)$, a Hurst function $H : \mathbb{R}_+ \to K$ and a compact interval $I \subset \mathbb{R}_+$, we are interested in the dimensions of the graph

$$\mathcal{G}_d(I) := \{(t, X_d^{H(\cdot)}(t)) : t \in I\}.$$

Given $d \in \mathbb{N}^*$, a compact set K of $(\frac{1}{2}, 1)$, a Hurst function $H : \mathbb{R}_+ \to K$ and a compact interval $I \subset \mathbb{R}_+$, we are interested in the dimensions of the graph

$$\mathcal{G}_d(I) := \{(t, X_d^{H(\cdot)}(t)) : t \in I\}.$$

 $\dim_{\mathcal{H}}(A) \leq \underline{\dim}_{\mathcal{B}}(A) \leq \overline{\dim}_{\mathcal{B}}(A).$ (16)

UNIVERSITÉ DU LUXEMBOURG

Given $d \in \mathbb{N}^*$, a compact set K of $(\frac{1}{2}, 1)$, a Hurst function $H : \mathbb{R}_+ \to K$ and a compact interval $I \subset \mathbb{R}_+$, we are interested in the dimensions of the graph

$$\mathcal{G}_d(I) := \{(t, X_d^{H(\cdot)}(t)) : t \in I\}.$$

$$\dim_{\mathcal{H}}(A) \le \underline{\dim}_{\mathcal{B}}(A) \le \overline{\dim}_{\mathcal{B}}(A).$$
(16)

$$(A \subseteq B) \Rightarrow \dim_{\mathcal{H}}(A) \le \dim_{\mathcal{H}}(B).$$
(17)

Upper bound for box-counting dimension

Lemma (Falconer)

Let $I \subset \mathbb{R}_+$ be a compact interval and $f : I \to \mathbb{R}$ be a continuous function for which there exist $c \ge 0$ and $1 \le \alpha \le 2$ such that, for all $s, t \in I$,

$$|f(s) - f(t)| \le c|t - s|^{2-\alpha},$$

then

 $\overline{\dim}_{\mathcal{B}}\left(\{(t,X_d^{H(\cdot)}(t)) \ : \ t\in I\}\right)\leq \alpha.$

Upper bound for box-counting dimension

Lemma (Falconer)

Let $I \subset \mathbb{R}_+$ be a compact interval and $f : I \to \mathbb{R}$ be a continuous function for which there exist $c \ge 0$ and $1 \le \alpha \le 2$ such that, for all $s, t \in I$,

 $|f(s) - f(t)| \le c|t - s|^{2-\alpha},$

then

$$\overline{\dim}_{\mathcal{B}}\left(\{(t,X_d^{H(\cdot)}(t))\,:\,t\in I\}\right)\leq \alpha.$$

Proposition (L.L.)

Given $d \in \mathbb{N}^*$, a compact set K of $(\frac{1}{2}, 1)$, a Hurst function $H : \mathbb{R}_+ \to K$ satisfying the uniform min-regularity Condition and a compact interval $I \subset \mathbb{R}_+$, there exists $\widetilde{\Omega}_1$, an event of probability 1, such that, on $\widetilde{\Omega}_1$, we have

 $\overline{\dim}_{\mathcal{B}}\left(\mathcal{G}_d(I)\right) \leq 2 - \underline{H}(I).$

Let $t_0 \in I$ be such that $H(t_0) = \underline{H}(I)$, for $j \in \mathbb{N}$, we have, for all $t, r \ge 0$ such that $t, t + r \in [t_0 - j^{-1}, t_0 + j^{-1}] \cap I$ and s > 0

$$\begin{split} & \mathbb{E}\left[\left(|X_d^{H(\cdot)}(t+r) - X_d^{H(\cdot)}(t)|^2 + r^2\right)^{-\frac{s}{2}}\right] \\ &= \int_0^{r^{-s}} \mathbb{P}\left(\left(|X_d^{H(\cdot)}(t+r) - X_d^{H(\cdot)}(t)|^2 + r^2\right)^{-\frac{s}{2}} \ge x\right) \, dx \\ &= s \int_0^{+\infty} y(y^2 + r^2)^{-\frac{s}{2} - 1} \mathbb{P}\left(|X_d^{H(\cdot)}(t+r) - X_d^{H(\cdot)}(t)| \le y\right) \, dy \end{split}$$

Let $t_0 \in I$ be such that $H(t_0) = \underline{H}(I)$, for $j \in \mathbb{N}$, we have, for all $t, r \ge 0$ such that $t, t + r \in [t_0 - j^{-1}, t_0 + j^{-1}] \cap I$ and s > 0

$$\begin{split} & \mathbb{E}\left[\left(|X_d^{H(\cdot)}(t+r) - X_d^{H(\cdot)}(t)|^2 + r^2\right)^{-\frac{s}{2}}\right] \\ & = s \int_0^{+\infty} y(y^2 + r^2)^{-\frac{s}{2} - 1} \mathbb{P}\left(|X_d^{H(\cdot)}(t+r) - X_d^{H(\cdot)}(t)| \le y\right) \, dy \end{split}$$

Lemma (Carbery- Wright)

There is an absolute deterministic constant c > 0 such that, for any $n, d \ge 1, 1 any polynomial <math>Q : \mathbb{R}^d \to \mathbb{R}$ of degree at most n, any Gaussian random vector (X_1, \ldots, X_d) and any x > 0,

$$\mathbb{E}[|Q(X_1,\ldots,X_d)|^{\frac{p}{n}}]^{\frac{1}{p}}\mathbb{P}(|Q(X_1,\ldots,X_d)| \le x) \le cpx^{\frac{1}{n}}.$$

For all $t, u \in I$, we write

$$f_{t,u}^{H(\cdot)} : \mathbb{R}^d \to \mathbb{R} : \mathbf{w} \mapsto \int_0^t f_{H(t)}(s, \mathbf{w}) \, ds - \int_0^u f_{H(u)}(s, \mathbf{w}) \, ds$$

For all $t, u \in I$, we write

$$f_{t,u}^{H(\cdot)} : \mathbb{R}^d \to \mathbb{R} : \mathbf{w} \mapsto \int_0^t f_{H(t)}(s, \mathbf{w}) \, ds - \int_0^u f_{H(u)}(s, \mathbf{w}) \, ds$$

Given $\{e_j\}_{j \in \mathbb{N}}$ an orthonormal basis of $L^2(\mathbb{R})$, the sequence of functions

$$\left(f_{t,u}^{H(\cdot),J} := \sum_{j_1,\ldots,j_d=1}^J \langle f_{t,u}^{H(\cdot)}, e_{j_1} \odot \cdots \odot e_{j_d} \rangle e_{j_1} \odot \cdots \odot e_{j_d} \right)_{\mathcal{J}}$$

converges to $f_{t,u}^{H(\cdot)}$ in $L^2(\mathbb{R}^d)$.

For all $t, u \in I$, we write

$$f_{t,u}^{H(\cdot)} : \mathbb{R}^d \to \mathbb{R} : \mathbf{w} \mapsto \int_0^t f_{H(t)}(s, \mathbf{w}) \, ds - \int_0^u f_{H(u)}(s, \mathbf{w}) \, ds$$

Given $\{e_j\}_{j \in \mathbb{N}}$ an orthonormal basis of $L^2(\mathbb{R})$, the sequence of functions

$$\left(f_{t,u}^{H(\cdot),J} := \sum_{j_1,\dots,j_d=1}^J \langle f_{t,u}^{H(\cdot)}, e_{j_1} \odot \dots \odot e_{j_d} \rangle e_{j_1} \odot \dots \odot e_{j_d} \right)_J$$

converges to $f_{t,u}^{H(\cdot)}$ in $L^2(\mathbb{R}^d)$.

$$I_d\left(e_{j_1}\odot\cdots\odot e_{j_d}\right)=\prod_{\ell=1}^p H_{n_\ell}\left(\int_{\mathbb{R}}e_{\widetilde{j_\ell}}(x)\ dB(x)\right),$$

For all $t, u \in I$, we write

$$f_{t,u}^{H(\cdot)} : \mathbb{R}^d \to \mathbb{R} : \mathbf{w} \mapsto \int_0^t f_{H(t)}(s, \mathbf{w}) \, ds - \int_0^u f_{H(u)}(s, \mathbf{w}) \, ds$$

Given $\{e_j\}_{j \in \mathbb{N}}$ an orthonormal basis of $L^2(\mathbb{R})$, the sequence of functions

$$\left(f_{t,u}^{H(\cdot),J} := \sum_{j_1,\dots,j_d=1}^J \langle f_{t,u}^{H(\cdot)}, e_{j_1} \odot \dots \odot e_{j_d} \rangle e_{j_1} \odot \dots \odot e_{j_d} \right)_{j_1}$$

converges to $f_{t,u}^{H(\cdot)}$ in $L^2(\mathbb{R}^d)$.

$$I_d\left(e_{j_1}\odot\cdots\odot e_{j_d}\right) = \prod_{\ell=1}^p H_{n_\ell}\left(\int_{\mathbb{R}} e_{\widetilde{j_\ell}}(x) \ dB(x)\right),$$

Wiener isometry, Fatou's Lemma and Carbery- Wright inequality give

$$\mathbb{P}\left(|X_d^{H(\cdot)}(t) - X_d^{H(\cdot)}(u)| \le x\right) \le c2dx^{\frac{1}{d}} \left\|X_d^{H(\cdot)}(t) - X_d^{H(\cdot)}(u)\right\|_{L^2(\Omega)}^{-\frac{1}{d}}$$

As $H(t_0) = \underline{H}(I)$, one can find $\xi > 0$ such that, for all $0 < \varepsilon < \xi$ and $t, u \in I \cap [t_0 - \varepsilon, t_0 + \varepsilon]$

$$\begin{split} \left\| X_d^{H(\cdot)}(t) - X_d^{H(\cdot)}(u) \right\|_{L^2(\Omega)} &\geq c_1 |t - u|^{\min\{H(t), H(u)\}} - c_2 |H(t) - H(u)| \\ &\geq \frac{c_1}{2} |t - u|^{\overline{H}(t_0, \varepsilon)}. \end{split}$$

As $H(t_0) = \underline{H}(I)$, one can find $\xi > 0$ such that, for all $0 < \varepsilon < \xi$ and $t, u \in I \cap [t_0 - \varepsilon, t_0 + \varepsilon]$

$$\begin{aligned} \left\| X_d^{H(\cdot)}(t) - X_d^{H(\cdot)}(u) \right\|_{L^2(\Omega)} &\geq c_1 |t - u|^{\min\{H(t), H(u)\}} - c_2 |H(t) - H(u)| \\ &\geq \frac{c_1}{2} |t - u|^{\overline{H}(t_0, \varepsilon)}. \end{aligned}$$

Therefore,

$$\mathbb{E}\left[\left(|X_d^{H(\cdot)}(t+r) - X_d^{H(\cdot)}(t)|^2 + r^2\right)^{-\frac{s}{2}}\right] \le c'' r^{\frac{1}{d} - s - \frac{\overline{H}(t_0, j^{-1})}{d}}.$$

As $H(t_0) = \underline{H}(I)$, one can find $\xi > 0$ such that, for all $0 < \varepsilon < \xi$ and $t, u \in I \cap [t_0 - \varepsilon, t_0 + \varepsilon]$

$$\begin{aligned} \left\| X_d^{H(\cdot)}(t) - X_d^{H(\cdot)}(u) \right\|_{L^2(\Omega)} &\geq c_1 |t - u|^{\min\{H(t), H(u)\}} - c_2 |H(t) - H(u)| \\ &\geq \frac{c_1}{2} |t - u|^{\overline{H}(t_0, \varepsilon)}. \end{aligned}$$

Therefore,

for

$$\mathbb{E}\left[\left(|X_d^{H(\cdot)}(t+r) - X_d^{H(\cdot)}(t)|^2 + r^2\right)^{-\frac{s}{2}}\right] \le c'' r^{\frac{1}{d} - s - \frac{\overline{H}(t_0, j^{-1})}{d}}.$$

Thus, if we consider the random measure $\mu_{X,j}$ defined for all Borel sets $A \subseteq \mathbb{R}^2$ by

$$\begin{split} \mu_{X,j}(A) &:= \mathcal{L}\{t \in [t_0 - j^{-1}, t_0 + j^{-1}] \cap I : (t, X_d^{H(\cdot)}(t)) \in A \\ & \mathbb{E}\left(\iint \frac{d\mu_{X,j}(x) d\mu_{X,j}(y)}{|x - y|^s}\right) < \infty \\ & \text{all } s < 1 + \frac{1 - \overline{H}(t_0, j^{-1})}{d}. \end{split}$$

},

Fractal dimensions of the graph

Theorem (L.L.)

Given $d \in \mathbb{N}^*$, a compact set K of $(\frac{1}{2}, 1)$, a Hurst function $H : \mathbb{R}_+ \to K$ satisfying the uniform min-Hölder regularity Condition and a compact interval $I \subset \mathbb{R}_+$, there exists $\widetilde{\Omega}$, an event of probability 1, such that on $\widetilde{\Omega}$, we have

$$1 + \frac{1 - \underline{H}(I)}{d} \le \dim_{\mathcal{H}} (\mathcal{G}_d(I)) \le \overline{\dim}_{\mathcal{B}} (\mathcal{G}_d(I)) \le 2 - \underline{H}(I)$$

Fractal dimensions of the graph

Theorem (L.L.)

Given $d \in \mathbb{N}^*$, a compact set K of $(\frac{1}{2}, 1)$, a Hurst function $H : \mathbb{R}_+ \to K$ satisfying the uniform min-Hölder regularity Condition and a compact interval $I \subset \mathbb{R}_+$, there exists $\widetilde{\Omega}$, an event of probability 1, such that on $\widetilde{\Omega}$, we have

$$1 + \frac{1 - \underline{H}(I)}{d} \le \dim_{\mathcal{H}} (\mathcal{G}_d(I)) \le \overline{\dim}_{\mathcal{B}} (\mathcal{G}_d(I)) \le 2 - \underline{H}(I)$$

When d = 2, any symmetric function $f \in L^2(\mathbb{R}^2)$ can be written as

$$f = \sum_{j \in \mathbb{N}} \lambda_{f,j} e_{f,j} \otimes e_{f,j},$$

with convergence in $L^2(\mathbb{R}^2)$, where $\{e_{f,j}\}_{j \in \mathbb{N}}$ are the eigenvectors with corresponding eigenvalues $\{\lambda_{f,j}\}_{j \in \mathbb{N}}$ of the Hilbert-Schmidt operator

$$\mathcal{A}_f : L^2(\mathbb{R}) \to L^2(\mathbb{R}) : g \mapsto \int_{\mathbb{R}} f(\cdot, y) g(y) \, dy.$$

The language of Malliavin calculus

If F is a cylindrical random variables of the form

$$F = g(I_1(f_1), \dots, I_1(f_n))$$
(18)

with $n \ge 1$, $f_j \in L^2(\mathbb{R})$ and g infinitely differentiable such that all its partial derivatives have polynomial growth, the *m*th Malliavin derivative of F is the element of $L^2(\Omega, L^2(\mathbb{R}^m))$ defined by

$$D^m F = \sum_{j_1,\ldots,j_m=1}^n \frac{\partial^m g}{\partial x_{j_1}\ldots \partial x_{j_m}} (I_1(f_1),\ldots,I_1(f_n)) f_{j_1} \otimes \cdots \otimes f_{j_m}.$$

The language of Malliavin calculus

If F is a cylindrical random variables of the form

$$F = g(I_1(f_1), \dots, I_1(f_n))$$
(18)

with $n \ge 1$, $f_j \in L^2(\mathbb{R})$ and g infinitely differentiable such that all its partial derivatives have polynomial growth, the *m*th Malliavin derivative of F is the element of $L^2(\Omega, L^2(\mathbb{R}^m))$ defined by

$$D^m F = \sum_{j_1,\ldots,j_m=1}^n \frac{\partial^m g}{\partial x_{j_1}\ldots \partial x_{j_m}} (I_1(f_1),\ldots,I_1(f_n)) f_{j_1} \otimes \cdots \otimes f_{j_m}.$$

For all $m \ge 1$ and $p \ge 1$, $\mathbb{D}^{m,p}$ denote the closure of S (the set of cylindrical random variables) with respect to the norm

$$\|\cdot\|_{m,p} : F \mapsto \left(\mathbb{E}[|F|^{p}] + \sum_{j=1}^{m} \mathbb{E}[\|D^{j}F\|_{L^{2}(\mathbb{R}^{j})}^{p}]\right)^{\frac{1}{p}}.$$
 (19)

Lemma (Hu-Lu-Nualart)

If $F \in \mathbb{D}^{2,s}$ is such that $\mathbb{E}[|F|^{2p}] < \infty$ and $\mathbb{E}[|DF||_{L^2(\mathbb{R})}^{-2r}] < \infty$ for p, r, s > 1 satisfying $\frac{1}{p} + \frac{1}{r} + \frac{1}{s} = 1$, then F has continuous and bounded density f_F with

$$\sup_{x \in \mathbb{R}} |f_F(x)| \le c_p \left\| \|DF\|_{L^2(\mathbb{R})}^{-2} \right\|_{L^r(\Omega)} \|F\|_{2,s},$$

where $c_p > 0$ is a deterministic constant only depending on p.

Lemma (Hu-Lu-Nualart)

If $F \in \mathbb{D}^{2,s}$ is such that $\mathbb{E}[|F|^{2p}] < \infty$ and $\mathbb{E}[|DF||_{L^2(\mathbb{R})}^{-2r}] < \infty$ for p, r, s > 1 satisfying $\frac{1}{p} + \frac{1}{r} + \frac{1}{s} = 1$, then F has continuous and bounded density f_F with

$$\sup_{x \in \mathbb{R}} \left| f_F(x) \right| \le c_p \left\| \|DF\|_{L^2(\mathbb{R})}^{-2} \right\|_{L^r(\Omega)} \|F\|_{2,s},$$

where $c_p > 0$ is a deterministic constant only depending on p. In our context,

$$I_2(f) = \sum_{j \in \mathbb{N}} \lambda_{f,j} \left(I_1(e_{f,j})^2 - 1 \right)$$

Lemma (Hu-Lu-Nualart)

If $F \in \mathbb{D}^{2,s}$ is such that $\mathbb{E}[|F|^{2p}] < \infty$ and $\mathbb{E}[|DF||_{L^2(\mathbb{R})}^{-2r}] < \infty$ for p, r, s > 1 satisfying $\frac{1}{p} + \frac{1}{r} + \frac{1}{s} = 1$, then F has continuous and bounded density f_F with

$$\sup_{x \in \mathbb{R}} |f_F(x)| \le c_p \left\| \|DF\|_{L^2(\mathbb{R})}^{-2} \right\|_{L^r(\Omega)} \|F\|_{2,s},$$

where $c_p > 0$ is a deterministic constant only depending on p. In our context,

$$DI_2(f) = 2\sum_{j \in \mathbb{N}} \lambda_{f,j} I_1(e_{f,j}) e_{f,j}$$

Lemma (Hu-Lu-Nualart) If $F \in \mathbb{D}^{2,s}$ is such that $\mathbb{E}[|F|^{2p}] < \infty$ and $\mathbb{E}[|DF||_{L^2(\mathbb{R})}^{-2r}] < \infty$ for p, r, s > 1 satisfying $\frac{1}{p} + \frac{1}{r} + \frac{1}{s} = 1$, then F has continuous and bounded density f_F with

$$\sup_{x \in \mathbb{R}} |f_F(x)| \le c_p \left\| \|DF\|_{L^2(\mathbb{R})}^{-2} \right\|_{L^r(\Omega)} \|F\|_{2,s},$$

where $c_p > 0$ is a deterministic constant only depending on p. In our context,

$$\|DI_2(f)\|_{L^2(\mathbb{R})} = 2\left(\sum_{j\in\mathbb{N}}\lambda_{f,j}^2 I_1(e_{f,j})^2\right)^{\frac{1}{2}}.$$
(20)

Lemma (Hu-Lu-Nualart)

If $F \in \mathbb{D}^{2,s}$ is such that $\mathbb{E}[|F|^{2p}] < \infty$ and $\mathbb{E}[|DF||_{L^2(\mathbb{R})}^{-2r}] < \infty$ for p, r, s > 1 satisfying $\frac{1}{p} + \frac{1}{r} + \frac{1}{s} = 1$, then F has continuous and bounded density f_F with

$$\sup_{x \in \mathbb{R}} |f_F(x)| \le c_p \left\| \|DF\|_{L^2(\mathbb{R})}^{-2} \right\|_{L^r(\Omega)} \|F\|_{2,s},$$

where $c_p > 0$ is a deterministic constant only depending on p.

Lemma (Hu-Lu-Nualart)

Let $G := \left(\sum_{j \in \mathbb{N}} \lambda_j X_j^2\right)^{\frac{1}{2}}$ where $\{\lambda_j\}_{j \in \mathbb{N}}$ satisfies $|\lambda_j| \ge |\lambda_{j+1}|$ for all $j \ge 1$ and $\{X_j\}_{j \in \mathbb{N}}$ are i.i.d. standard normal. For all r > 1, $\mathbb{E}[G^{-2r}] < \infty$ if and only if there exists N > 2r such that $|\lambda_N| > 0$ and, in this case,

$$\mathbb{E}[G^{-2r}] \le c_p N^{-r} |\lambda|^{-2r},\tag{20}$$

with $c_r > 0$ a deterministic constant only depending on r.

32/34

We keep the notation

$$f_{t,u}^{H(\cdot)} : \mathbb{R}^2 \to \mathbb{R} : \mathbf{w} \mapsto \int_0^t f_{H(t)}(s, \mathbf{w}) \, ds - \int_0^u f_{H(u)}(s, \mathbf{w}) \, ds$$

and also write

$$f_{t,u}^{H(t)} : \mathbb{R}^2 \to \mathbb{R} : \mathbf{w} \mapsto \int_u^t f_{H(t)}(s, \mathbf{w}) \, ds.$$

We keep the notation

$$f_{t,u}^{H(\cdot)} : \mathbb{R}^2 \to \mathbb{R} : \mathbf{w} \mapsto \int_0^t f_{H(t)}(s, \mathbf{w}) \, ds - \int_0^u f_{H(u)}(s, \mathbf{w}) \, ds$$

and also write

$$f_{t,u}^{H(t)} : \mathbb{R}^2 \to \mathbb{R} : \mathbf{w} \mapsto \int_u^t f_{H(t)}(s, \mathbf{w}) \, ds.$$

If $\{\lambda_j\}_{j \in \mathbb{N}}$ are the eigenvalues of the Hilbert-Schmidt operator $\mathcal{R}_{f_{1,0}^{H(t)}}$, $\{|t-u|^{H(t)}\lambda_j\}_{j \in \mathbb{N}}$ are the eigenvalues of $\mathcal{R}_{f_{t,u}^{H(t)}}$

We keep the notation

$$f_{t,u}^{H(\cdot)} : \mathbb{R}^2 \to \mathbb{R} : \mathbf{w} \mapsto \int_0^t f_{H(t)}(s, \mathbf{w}) \, ds - \int_0^u f_{H(u)}(s, \mathbf{w}) \, ds$$

and also write

$$f_{t,u}^{H(t)} : \mathbb{R}^2 \to \mathbb{R} : \mathbf{w} \mapsto \int_u^t f_{H(t)}(s, \mathbf{w}) \, ds.$$

If $\{\lambda_j\}_{j \in \mathbb{N}}$ are the eigenvalues of the Hilbert-Schmidt operator $\mathcal{A}_{f_{1,0}^{H(t)}}$, $\{|t-u|^{H(t)}\lambda_j\}_{j \in \mathbb{N}}$ are the eigenvalues of $\mathcal{A}_{f_{t,u}^{H(t)}}$. We also know that $\lambda_3 \neq 0$

We keep the notation

$$f_{t,u}^{H(\cdot)} : \mathbb{R}^2 \to \mathbb{R} : \mathbf{w} \mapsto \int_0^t f_{H(t)}(s, \mathbf{w}) \, ds - \int_0^u f_{H(u)}(s, \mathbf{w}) \, ds$$

and also write

$$f_{t,u}^{H(t)} : \mathbb{R}^2 \to \mathbb{R} : \mathbf{w} \mapsto \int_u^t f_{H(t)}(s, \mathbf{w}) \, ds.$$

If $\{\lambda_j\}_{j\in\mathbb{N}}$ are the eigenvalues of the Hilbert-Schmidt operator $\mathcal{R}_{f_{1,0}^{H(t)}}$, $\{|t-u|^{H(t)}\lambda_j\}_{j\in\mathbb{N}}$ are the eigenvalues of $\mathcal{R}_{f_{t,u}^{H(t)}}$. We also know that $\lambda_3 \neq 0$. Thus, if $\{\xi_j^{t,u}\}_{j\in\mathbb{N}}$ are the eigenvalues of the Hilbert-Schmidt operator $\mathcal{R}_{f_{t,u}^{H(u)}}$ ordered with $|\xi_j^{t,u}| \geq |\xi_{j+1}^{t,u}|$ $|\xi_2^{t,u}| > |t-u|^{H(t)}|\lambda_3| - ||f_{t,u}^{H(\cdot)} - f_{t,u}^{H(t)}||_{L^2(\mathbb{R}^2)}$.

$$|\xi_3^{t,u}| > \frac{|\lambda_3|}{2} |t-u|^{\overline{H}(t_0,\varepsilon)}.$$

$$|\xi_3^{t,u}| > \frac{|\lambda_3|}{2} |t-u|^{\overline{H}(t_0,\varepsilon)}.$$

On the other hand,

$$\left\| \left(X_d^{H(\cdot)}(t) - X_d^{H(\cdot)}(u) \right) \right\|_{2,2} \le c_1 |t - u|^{\overline{H}(t_0,\varepsilon)}.$$

$$|\xi_3^{t,u}| > \frac{|\lambda_3|}{2} |t-u|^{\overline{H}(t_0,\varepsilon)}.$$

On the other hand,

$$\left\| \left(X_d^{H(\cdot)}(t) - X_d^{H(\cdot)}(u) \right) \right\|_{2,2} \le c_1 |t - u|^{\overline{H}(t_0,\varepsilon)}.$$

In total,

$$\mathbb{P}(|X_d^{H(\cdot)}(t) - X_d^{H(\cdot)}(u)| \le x) \le cx|t - u|^{-\overline{H}(t_0,\varepsilon)}$$

.

$$|\xi_3^{t,u}| > \frac{|\lambda_3|}{2} |t-u|^{\overline{H}(t_0,\varepsilon)}.$$

On the other hand,

$$\left\| \left(X_d^{H(\cdot)}(t) - X_d^{H(\cdot)}(u) \right) \right\|_{2,2} \le c_1 |t - u|^{\overline{H}(t_0,\varepsilon)}.$$

In total,

$$\mathbb{P}(|X_d^{H(\cdot)}(t) - X_d^{H(\cdot)}(u)| \le x) \le cx|t - u|^{-\overline{H}(t_0,\varepsilon)}$$

Theorem (L.L.)

Given a compact set K of $(\frac{1}{2}, 1)$, a Hurst function $H : \mathbb{R}_+ \to K$ satisfying the uniform min-Hölder regularity Condition and a compact interval $I \subset \mathbb{R}_+$, there exists $\widetilde{\Omega}_2$, an event of probability 1, such that on $\widetilde{\Omega}_2$, we have

 $\dim_{\mathcal{H}} (\mathcal{G}_2(I)) = \dim_{\mathcal{B}} (\mathcal{G}_2(I)) = 2 - \underline{H}(I).$

Multifractional Hermite processes: definition and first properties

Laurent Loosveldt

Lille - Séminaire de probabilités et statistique

21 mars 2023

