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Who?

Fix d ∈ N∗, and h = (h1, · · · , hd ) satisfying

h1, · · · , hd ∈ (1/2, 1) and
d∑︁

ℓ=1

hℓ > d − 1

2
. (1)

X (d)
h

(t) :=
∫ ′

Rd
K (d)

h
(t , x1, . . . , xd )dB (x1) · · · dB (xd ) (2)

where the kernel function Kh is given, for every (t , x1, . . . , xd ) ∈ R+ × Rd , by

K (d)
h

(t , x1, · · · , xd ) :=
1∏d

ℓ=1 Γ(hℓ − 1/2)

∫ t

0

d∏
j=1

(s − xℓ)hℓ−3/2+ ds (3)

• d = 1 ⇒ Fractional Brownian motion
• d = 2 ⇒ (Generalized) Rosenblatt process
• hℓ = 1 + H−1

d ∀1 ≤ ℓ ≤ d ⇒ (Standard) Hermite process with Hurst
parameter H
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Why?

1. One can enjoy the nice properties of wavelet analysis in our study:

◦ Compactly supported wavelet. OR
◦ Functions with fast decay.

2. Simulations
3. Methods to study the pointwise regularity.

2/17



Why?

1. One can enjoy the nice properties of wavelet analysis in our study:
◦ Compactly supported wavelet.

OR
◦ Functions with fast decay.

2. Simulations
3. Methods to study the pointwise regularity.

2/17



Why?

1. One can enjoy the nice properties of wavelet analysis in our study:
◦ Compactly supported wavelet. OR
◦ Functions with fast decay.

2. Simulations
3. Methods to study the pointwise regularity.

2/17



Why?

1. One can enjoy the nice properties of wavelet analysis in our study:
◦ Compactly supported wavelet. OR
◦ Functions with fast decay.

2. Simulations

3. Methods to study the pointwise regularity.

2/17



Why?

1. One can enjoy the nice properties of wavelet analysis in our study:
◦ Compactly supported wavelet. OR
◦ Functions with fast decay.

2. Simulations
3. Methods to study the pointwise regularity.

2/17



What is known

Meyer-Sellan-Taqqu (1999)
Wavelet-type expansion of Fractional Brownian motion

Pipiras (2004)
Wavelet-type expansion of Rosenblatt process

Ayache-Esmili (2020)
Alternative wavelet-type expansion of (generalized) Rosenblatt process.

Wavelet-type expansion of a general Hermite process was still an open
problem.
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Where is the difficulty in the general case?

1. For practical reasons, we would like to approximate the process using
so-called FARIMA sequences and fractional scaling functions. Until now
it was unclear how such quantities could appear in the approximation
procedure.

2. We would like to judge the rate of convergence for the approximation.
For the Rosenblatt process, it was unknown before Ayache-Esmili (2020).
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The idea behind wavelet analysis

Multiresolution analysis (MRA)
A multiresolution analysis of the Hilbert space L2(Rd ) is given by a sequence
(Vj )j ∈Z of closed linear subspaces of L2(Rd ) such that
(a) for all j ∈ Z, Vj ⊆ Vj+1;
(b)

⋂
j ∈ZVj = {0} and

⋃
j ∈ZVj is dense in L2(Rd );

(c) for all j ∈ Z, Vj = {f (2j ·) : f ∈ V0};
(d) there exists a scaling function 𝜙d ∈ V0 such that the sequence

(𝜙d (· − k ))k ∈Zd is an orthogonal basis of V0.

1. For all j , the projection of a function f on Vj is an approximation of f with
resolution j .

2. If we set Vj+1 = Vj ⊕Wj , Wj describe the details we obtain while passing
from resolution j to resolution j + 1.

3. For all J , VJ ⊕
⊕

j ≥J Wj is dense in L2(Rd ).

5/17



The idea behind wavelet analysis

Multiresolution analysis (MRA)
A multiresolution analysis of the Hilbert space L2(Rd ) is given by a sequence
(Vj )j ∈Z of closed linear subspaces of L2(Rd ) such that
(a) for all j ∈ Z, Vj ⊆ Vj+1;
(b)

⋂
j ∈ZVj = {0} and

⋃
j ∈ZVj is dense in L2(Rd );

(c) for all j ∈ Z, Vj = {f (2j ·) : f ∈ V0};
(d) there exists a scaling function 𝜙d ∈ V0 such that the sequence

(𝜙d (· − k ))k ∈Zd is an orthogonal basis of V0.

1. For all j , the projection of a function f on Vj is an approximation of f with
resolution j .

2. If we set Vj+1 = Vj ⊕Wj , Wj describe the details we obtain while passing
from resolution j to resolution j + 1.

3. For all J , VJ ⊕
⊕

j ≥J Wj is dense in L2(Rd ).

5/17



The idea behind wavelet analysis

Multiresolution analysis (MRA)
A multiresolution analysis of the Hilbert space L2(Rd ) is given by a sequence
(Vj )j ∈Z of closed linear subspaces of L2(Rd ) such that
(a) for all j ∈ Z, Vj ⊆ Vj+1;
(b)

⋂
j ∈ZVj = {0} and

⋃
j ∈ZVj is dense in L2(Rd );

(c) for all j ∈ Z, Vj = {f (2j ·) : f ∈ V0};
(d) there exists a scaling function 𝜙d ∈ V0 such that the sequence

(𝜙d (· − k ))k ∈Zd is an orthogonal basis of V0.

1. For all j , the projection of a function f on Vj is an approximation of f with
resolution j .

2. If we set Vj+1 = Vj ⊕Wj , Wj describe the details we obtain while passing
from resolution j to resolution j + 1.

3. For all J , VJ ⊕
⊕

j ≥J Wj is dense in L2(Rd ).

5/17



The idea behind wavelet analysis

Multiresolution analysis (MRA)
A multiresolution analysis of the Hilbert space L2(Rd ) is given by a sequence
(Vj )j ∈Z of closed linear subspaces of L2(Rd ) such that
(a) for all j ∈ Z, Vj ⊆ Vj+1;
(b)

⋂
j ∈ZVj = {0} and

⋃
j ∈ZVj is dense in L2(Rd );

(c) for all j ∈ Z, Vj = {f (2j ·) : f ∈ V0};
(d) there exists a scaling function 𝜙d ∈ V0 such that the sequence

(𝜙d (· − k ))k ∈Zd is an orthogonal basis of V0.

1. For all j , the projection of a function f on Vj is an approximation of f with
resolution j .

2. If we set Vj+1 = Vj ⊕Wj , Wj describe the details we obtain while passing
from resolution j to resolution j + 1.

3. For all J , VJ ⊕
⊕

j ≥J Wj is dense in L2(Rd ).
5/17



An example

Haar MRA (d=1)

V 1
j = {f ∈ L2(R) : ∀k ∈ Z, f is constant on [k 2−j , (k + 1) 2−j ) }

The scaling function is 1[0,1) . 6/17
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Here come the wavelets

(Meyer)
There exists a function 𝜓, called mother wavelet, belonging to W 1

0 and such
that, for all j ∈ Z, the sequence (2j /2𝜓(2j · −k ))k ∈Z is an orthonormal basis in
W 1

j . Moreover, for all J ∈ Z, the family

{2J/2𝜙1(2J x − k ) : k ∈ Z} ∪ {2j /2𝜓(2j x − k ) : k ∈ Z, j ≥ J }

is a base in L2(R), called wavelet base.
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• Meyer MRA leads to wavelets in the Schwartz class: for all m ∈ N0 and

L > 0 we have
sup
x ∈R

{
(3 + |x |)L |Dm𝜓(x ) |

}
< +∞. (4)

7/17



Here come the wavelets

(Meyer)
There exists a function 𝜓, called mother wavelet, belonging to W 1

0 and such
that, for all j ∈ Z, the sequence (2j /2𝜓(2j · −k ))k ∈Z is an orthonormal basis in
W 1

j . Moreover, for all J ∈ Z, the family

{2J/2𝜙1(2J x − k ) : k ∈ Z} ∪ {2j /2𝜓(2j x − k ) : k ∈ Z, j ≥ J }

is a base in L2(R), called wavelet base.
• Meyer MRA leads to wavelets in the Schwartz class: for all m ∈ N0 and

L > 0 we have
sup
x ∈R

{
(3 + |x |)L |Dm𝜓(x ) |

}
< +∞. (4)

• Daubechies MRA leads to compactly supported wavelets.
7/17



Here come the wavelets

(Meyer)
There exists a function 𝜓, called mother wavelet, belonging to W 1

0 and such
that, for all j ∈ Z, the sequence (2j /2𝜓(2j · −k ))k ∈Z is an orthonormal basis in
W 1

j . Moreover, for all J ∈ Z, the family

{2J/2𝜙1(2J x − k ) : k ∈ Z} ∪ {2j /2𝜓(2j x − k ) : k ∈ Z, j ≥ J }

is a base in L2(R), called wavelet base.
• Meyer MRA leads to wavelets in the Schwartz class: for all m ∈ N0 and

L > 0 we have
sup
x ∈R

{
(3 + |x |)L |Dm𝜓(x ) |

}
< +∞. (4)

• Daubechies MRA leads to compactly supported wavelets.
7/17



Here come the wavelets

(Meyer)

{2J/2𝜙1(2J x − k ) : k ∈ Z} ∪ {2j /2𝜓(2j x − k ) : k ∈ Z, j ≥ J }

is a base in L2(R), called wavelet base.

(d>1)
Usually, we use

{2J d
2Φd (2J x − k ) : k ∈ Zd } ∪ {2J d

2Ψ(2j x − k ) : k ∈ Zd , j ≥ J }

• Φd , d -tensor products of 𝜙 with itself
• Ψ, d -tensor products of 𝜙 and 𝜓 where at least one term is 𝜓.
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Here come the wavelets

(Meyer)

{2J/2𝜙1(2J x − k ) : k ∈ Z} ∪ {2j /2𝜓(2j x − k ) : k ∈ Z, j ≥ J }

is a base in L2(R), called wavelet base.

(d>1) (A. Ayache, L.L, J. Hamonier)
But one can show that

{2J d
2Φd (2J x − k ) : k ∈ Zd } ∪ {

d∏
ℓ=1

2
jℓ
2 𝜓(2jℓxℓ − kℓ) : k ∈ Zd , max

1≤ℓ≤d
jℓ ≥ J }

is also an orthonormal base in L2(Rd ).
7/17



Strategy

X (d)
h

(t) :=
∫ ′

Rd
K (d)

h
(t , x1, . . . , xd )dB (x1) · · · dB (xd )

1. For all t , the function (x1, . . . , xd ) ↦→ K (d)
h

(t , x1, . . . , xd ) is in L2(Rd )

2. so we can consider, for all J , K (d)
h,J

(t , x1, . . . , xd ) its projection onto VJ

3. we get a sequence of approximating processes

X (d)
h,J

(t) :=
∫ ′

Rd
K (d)

h,J
(t , x1, . . . , xd )dB (x1) · · · dB (xd )

that we can expand using the base {2J d
2Φd (2J x − k ) : k ∈ Zd } of VJ .

4. the quality of this approximation can be judged through the detail processes

X (d)⊥
h,J

(t) :=
∫ ′

Rd
K (d)⊥

h,J
(t , x1, . . . , xd )dB (x1) · · · dB (xd )

where K (d)⊥
h,J

(t , x1, . . . , xd ) is the projection of the kernel onto V ⊥
J .
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Approximation process

X (d)
h,J

(t) :=
∫ ′

Rd
K (d)

h,J
(t , x1, . . . , xd )dB (x1) · · · dB (xd )

If f ∈ L2(Rd ), fJ =
∑

k ∈Zd ⟨f , 2J
d
2Φd (2J · −k )⟩2J d

2Φd (2J · −k ). By Wiener
isometry and Fubini Theorem, for all t ∈ R+, in L2(Ω), we have

X (d)
h,J

(t) =
∑︁
k∈Zd

𝜇J ,kKJ ,k(t)

with

𝜇J ,k = 2J
d
2

∫ ′

Rd
𝜙(2J x1 − k1) · · · 𝜙(2J xd − kd ) dB (x1) . . . dB (xd )

and

KJ ,k(t) =
1∏d

ℓ=1 Γ(hℓ − 1/2)
2J

d
2

∫ t

0

∫
Rd

d∏
ℓ=1

(s − xℓ)hℓ−3/2+ 𝜙(2J xℓ − kd ) dx1 . . . dxd .

9/17
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(t , x1, . . . , xd )dB (x1) · · · dB (xd )

If f ∈ L2(Rd ), fJ =
∑

k ∈Zd ⟨f , 2J
d
2Φd (2J · −k )⟩2J d

2Φd (2J · −k ).

By Wiener
isometry and Fubini Theorem, for all t ∈ R+, in L2(Ω), we have

X (d)
h,J

(t) =
∑︁
k∈Zd

𝜇J ,kKJ ,k(t)

with

𝜇J ,k = 2J
d
2

∫ ′

Rd
𝜙(2J x1 − k1) · · · 𝜙(2J xd − kd ) dB (x1) . . . dB (xd )

and

KJ ,k(t) =
1∏d

ℓ=1 Γ(hℓ − 1/2)
2J

d
2

∫ t

0

∫
Rd

d∏
ℓ=1

(s − xℓ)hℓ−3/2+ 𝜙(2J xℓ − kd ) dx1 . . . dxd .

9/17



Approximation process

X (d)
h,J

(t) :=
∫ ′

Rd
K (d)

h,J
(t , x1, . . . , xd )dB (x1) · · · dB (xd )

If f ∈ L2(Rd ), fJ =
∑

k ∈Zd ⟨f , 2J
d
2Φd (2J · −k )⟩2J d

2Φd (2J · −k ). By Wiener
isometry and Fubini Theorem, for all t ∈ R+, in L2(Ω), we have

X (d)
h,J

(t) =
∑︁
k∈Zd

𝜇J ,kKJ ,k(t)

with

𝜇J ,k = 2J
d
2

∫ ′

Rd
𝜙(2J x1 − k1) · · · 𝜙(2J xd − kd ) dB (x1) . . . dB (xd )

and

KJ ,k(t) =
1∏d

ℓ=1 Γ(hℓ − 1/2)
2J

d
2

∫ t

0

∫
Rd

d∏
ℓ=1

(s − xℓ)hℓ−3/2+ 𝜙(2J xℓ − kd ) dx1 . . . dxd .
9/17



Approximation process - random part

𝜇J ,k = 2J
d
2

∫ ′

Rd
𝜙(2J x1 − k1) · · · 𝜙(2J xd − kd ) dB (x1) . . . dB (xd )

By Wiener isometry, (
gJ ,k = 2J/2

∫
R
𝜙(2J x − k ) dx

)
k ∈Z

is a family of i.i.d. N(0, 1) random variables, since the function (2J/2𝜙(2J · −k ))k are
orthogonal.Thus,

𝜇J ,k =

p∏
ℓ=1

Hnℓ
(gJ ,k̃ℓ

)

where nℓ is the multiplicity of k̃ℓ in k and Hn is the nth Hermite polynomial

Hn (x ) = (−1)nex2/2Dne−x
2/2.
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Approximation process - deterministic part

KJ ,k(t) =
1∏d

ℓ=1 Γ(hℓ − 1/2)
2J

d
2

∫ t

0

∫
Rd

d∏
ℓ=1

(s − xℓ)hℓ−3/2
+ 𝜙(2J xℓ − kd ) dx1 . . . dxd .

𝜙h (s) :=
1

Γ(h − 1/2)

∫
R
(s − x )h−3/2+ 𝜙(x ) dx

is the fractional antiderivative of 𝜙.

KJ ,k(t) = 2−J (h1+...+hd−d)
∫ t

0

d∏
ℓ=1

𝜙hℓ
(2J s − kℓ) ds

BAD NEWS
The function 𝜙h is not well-adapted for approximation purposes (badly localized, not
in the Schwartz class,...).
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Work in the frequency domain

GOOD NEWS
The fractional scaling function of order 𝛿 ∈ (0, 1/2) of the Meyer scaling function de-
fined through its Fourier transform by

Φ̂
(𝛿)
Δ

(𝜉) =
(
1 − e−i 𝜉

i𝜉

) 𝛿
𝜙(𝜉) ∀ 𝜉 ≠ 0 and Φ̂

(𝛿)
Δ

(0) = 1

is much better!

With a bit of Fourier analysis tools and tricks, we get to

K (d)
h,J

(t , x) = 2−J (h1+···+hd−d)
∑︁
k∈Zd

𝛽
(h)
k

2J
d
2

d∏
ℓ=1

Φ−(hℓ−1/2) (2J xℓ − kℓ)

where

𝛽
(h)
k

:=

∫ t

0

d∏
ℓ=1

Φ
(hℓ−1/2)
Δ

(2J s − kℓ) ds and Φ̂−(𝛿) (𝜉) = (1 − ei 𝜉 )−𝛿𝜙(𝜉)
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New random part

2J
d
2

∫ ′

Rd

d∏
ℓ=1

Φ−(hℓ−1/2) (2J xℓ − kℓ)dB (x1) . . . dB (xd )
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New random part

2J
d
2

∫ ′

Rd

d∏
ℓ=1

Φ−(hℓ−1/2) (2J xℓ − kℓ)dB (x1) . . . dB (xd )

Lemma (A. Ayache, L.L., J. Hamonier)
For all 𝛿 ∈ (0, 12 ), we have

Φ−(𝛿) (x ) =
+∞∑︁
p=0

𝛾
(𝛿)
p 𝜙(x + p) (4)

with convergence in L2(R), where

𝛾
(𝛿)
p :=

𝛿 Γ(p + 𝛿)
Γ(p + 1)Γ(𝛿 + 1) .
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New random part

∑︁
p∈Nd

0

(
d∏
ℓ=1

𝛾
(hℓ−1/2)
pℓ

) (
2J

d
2

∫ ′

Rd

d∏
ℓ=1

𝜙(2J xℓ + pℓ − kℓ)dB (x1) . . . dB (xd )
)
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New random part

∑︁
p∈Nd

0

(
d∏
ℓ=1

𝛾
(hℓ−1/2)
pℓ

)
𝜇J ,k−p

where we recall that, for all k ∈ Zd ,

𝜇J ,k =

p∏
ℓ=1

Hnℓ
(gJ ,k̃ℓ

)
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𝜇J ,k =
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)

FARIMA (autogressive fractionally integrated moving average)
Let {Zj }j ∈Z be a sequence of i.i.d. centred Gaussian random variables and 𝛿 ∈ (−1

2 ,
1
2 ).

The Gaussian FARIMA (0, 𝛿, 0), denoted by {Z (𝛿)
j }j ∈Z, is defined, for all j ∈ Z as

Z (𝛿)
j :=

+∞∑︁
p=0

𝛾
(𝛿)
p Zj−p (4)
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Random part with FARIMA

Hermite polynomials and partitions
Tthe d th Hermite polynomials can be written as

Hd (x ) =
⌊d/2⌋∑︁
m=0

(−1)ma (d)
m xd−2m ,

where a (d)
m is the number of partitions of {1, . . . , d } with m (non ordered) pairs and

d − 2m singletons.

P (d)
m is the set of partitions of {1, . . . , d } withm (non ordered) pairs and d − 2m single-

tons.

(A. Ayache, L.L., J. Hamonier)
For all J ∈ Z and k ∈ Zd , we have

𝜇J ,k =

⌊d/2⌋∑︁
m=0

(−1)m
∑︁

P ∈P (d )
m

m∏
r=1

E[gJ ,klr gJ ,kl′r
]

d−m∏
s=m+1

gJ ,kl′′s
with gJ ,k = 2J/2

∫
R
𝜙(2J x−k ) dx
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Expansion for the approximation process

∑︁
p∈Nd

0

(
d∏
ℓ=1

𝛾
(hℓ−1/2)
pℓ

) ©­«
⌊d/2⌋∑︁
m=0

(−1)m
∑︁

P ∈P (d )
m

m∏
r=1

E[gJ ,klr −plr
gJ ,kl′r −pl′r

]
d−m∏
s=m+1

gJ ,kl′′s −pl′′s

ª®¬
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Expansion for the approximation process

For all (J , k) ∈ Z × Zd , we define the random variable

𝜎
(h)
J ,k =

⌊d/2⌋∑︁
m=0

(−1)m
∑︁

P ∈P (d )
m

m∏
r=1

E[𝜀 (hlr −1/2)
J ,klr

𝜀
(hl′r −1/2)
J ,kl′r

]
d−m∏
s=m+1

𝜀
(hl′′r −1/2)
J ,kl′′r

.

where 𝜀
(𝛿)
J ,k

:=
∑+∞

p=0 𝛾
(𝛿)
p gJ ,k−p is the FARIMA sequence associated to (gJ ,k )k .
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(𝛿)
J ,k

:=
∑+∞

p=0 𝛾
(𝛿)
p gJ ,k−p is the FARIMA sequence associated to (gJ ,k )k .

Theorem (A. Ayache, L.L., J. Hamonier)
For each fixed t ∈ R+, one has almost surely

X (d)
h,J

(t) = 2−J (h1+...+hd−d)
∑︁
k∈Zd

𝜎
(h)
J ,k

∫ t

0

d∏
ℓ=1

Φ
(hℓ−1/2)
Δ

(2J s − kℓ) ds . (5)

Moreover, the series (5) is almost surely uniformly convergent on compact intervals.
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Details process
We recall that {∏d

ℓ=1 2
jℓ
2 𝜓(2jℓxℓ − kℓ) : k ∈ Zd , max1≤ℓ≤d jℓ ≥ J } is a base of V ⊥

J .
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This time, the fractional antiderivative

𝜓h (s) :=
1

Γ(h − 1/2)

∫
R
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belongs to the Schwartz class!
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Details process

Theorem (A. Ayache, L.L., J. Hamonier)
For each fixed t ∈ R+, one has almost surely

X (d) ,⊥
h,J

(t) =
∑︁

(j,k) ∈(Zd )2
(max1≤ℓ≤d jℓ ) ≥J

𝜀j,k 2
j1 (1−h1)+···+jd (1−hd )

∫ t

0

d∏
ℓ=1

𝜓hℓ
(2jℓ s − kℓ) ds , (6)

where

𝜀j,k =

p∏
ℓ=1

Hnℓ

(
2jℓ/2

∫
R
𝜓(2jℓx − kℓ) dB (x )

)
and nℓ is the multiplicity of (jℓ , kℓ) in (j, k). Moreover, the series (6) is almost surely
uniformly convergent on compact intervals.
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Rate of convergence

Theorem (A. Ayache, L.L., J. Hamonier)
For any compact interval I ⊂ R+, there exists an almost surely finite random variable
C (depending on I ) for which one has, almost surely, for each J ∈ N,

∥X (d)
h

−X (d)
h,J

∥I ,∞ = ∥X (d) ,⊥
h,J

(t)∥I ,∞ ≤ CJ
d
2 2−J (h1+···+hd−d+1/2) (7)

Basic ideas:

1. There exist an event Ω∗ of probability 1 and C ∗
d a positive random variable of

finite moment of any order, such that on Ω∗ one has, for all (j, k) ∈ (Z2)d ,

|𝜀j,k | ≤ C ∗
d

d∏
m=1

√︁
log(3 + |jm | + |km |). (8)

2. The random variables 𝜀j,k and 𝜀r,s are correlated if and only if (j, k) is a
permutation of (r, s).
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