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X (1) = /Rd K (4, ag)dB(a) - - dB(zq) (2)

where the kernel function Kj, is given, for every (t, 21, ..., z4) € Ry xR, by

1 b _
K (tay, - 2q) = / (s —xp) 732 ds (3)
" TT{ T(he = 1/2) Jo ﬂ :

® (=1 = Fractional Brownian motion

® J =2 = (Generalized) Rosenblatt process

® he =1+ V1 < ¢ < d = (Standard) Hermite process with Hurst
parameter H
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1. One can enjoy the nice properties of wavelet analysis in our study:

o Compactly supported wavelet. OR
» Functions with fast decay.

2. Simulations
3. Methods to study the pointwise regularity.
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Meyer-Sellan-Taqqu (1999)
Wavelet-type expansion of Fractional Brownian motion

Pipiras (2004)
Wavelet-type expansion of Rosenblatt process

Ayache-Esmili (2020)
Alternative wavelet-type expansion of (generalized) Rosenblatt process.

Wavelet-type expansion of a general Hermite process was still an open
problem.
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1. For practical reasons, we would like to approximate the process using
so-called FARIMA sequences and fractional scaling functions. Until now
it was unclear how such quantities could appear in the approximation
procedure.

2. We would like to judge the rate of convergence for the approximation.
For the Rosenblatt process, it was unknown before Ayache-Esmili (2020).
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Multiresolution analysis (MRA)
A multiresolution analysis of the Hilbert space L?(R?) is given by a sequence
(V;)jez of closed linear subspaces of L?(R¢) such that

(a) forallj €Z, V; C Vju;

(b) Njez V; = {0} and U,z V; is dense in L2(R%);

(c) forallj ez V; ={f(27:) : fe Vo)

(d) there exists a scaling function ¢? € V; such that the sequence
(¢?(- = k))}.cz4 is an orthogonal basis of Vj.
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Multiresolution analysis (MRA)
A multiresolution analysis of the Hilbert space L?(R?) is given by a sequence
(V;)jez of closed linear subspaces of L?(R¢) such that

(a) forallj €Z, V; C Vju;

(b) Njez V; = {0} and U,z V; is dense in L2(R%);

(c) forallj ez V; ={f(27:) : fe Vo)

(d) there exists a scaling function ¢? € V; such that the sequence
(¢?(- = k))}.cz4 is an orthogonal basis of Vj.

1. For all j, the projection of a function f on V; is an approximation of f with
resolution ;.

2. If we set Vi, = V; @ W;, W; describe the details we obtain while passing
from resolution j to resolution j + 1.

3. Forall J, V; @ @,., W, is dense in L*(RY).
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Haar MRA (d=1)

V! ={f e I’(R) : Vk € Z,f is constanton [k 27/, (k+1)27) }

%

®)

©

The scaling function is 1o 1).
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(Meyer)
(2726227 k) : ke Z} U {22y (Pz—k) : keZ j>J}

is a base in L?(R), called wavelet base.

(d>1)
Usually, we use

2750927z k) : ke ZY U 2T W(Pr—k) : keZl, j> )

e ®?, d-tensor products of ¢ with itself
® ¥, J-tensor products of ¢ and ¢ where at least one term is .
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(Meyer)

(272¢Y 27z k) : ke Z} U {22y (Pz—k) : keZ, j>J}

is a base in L?(R), called wavelet base.

(d>1) (A. Ayache, L.L, J. Hamonier)
But one can show that

d )
27200275 —k) : ke 2%y u{[ | 2Fu (P m — k) : ke 2, max G 2 J}
=1 1<<d

is also an orthonormal base in L2(R%).
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X (1) = /d K™ (t,a1,. .., 22)dB(21) - dB(zq)
R

1. For all ¢, the function (z, ..., zq4) — Kh(d)(t, T1,...,2q) isin L2(RY)
2. so we can consider, for all J, K(d)(t, z1,...,1xq) its projection onto V;

3. we get a sequence of approximating processes

X - -/ Kt .. 50 dB () -« dB(za)

that we can expand using the base {2/2®%(2/z — k) : k € 24} of V.
4. the quality of this approximation can be judged through the detail processes

X () :=/ K0t 2a)dB(x) -+ dB(z4)

where K(d”(t 71,...,1q) is the projection of the kernel onto V.
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X\ (1) = /Rd K\ (t 2y, .. 20)dB(zy) - dB(zq)

If f € I2(RY), f1 = Speza(f, 2780027 - ~k))2 20727 - —k).
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X\ - _/ K\ (t 2y, .. 20)dB(zy) - dB(zq)

If f € I2(RY), f; = S pena(f, 27527 - k)27 5 ®@4(27 - —k). By Wiener
isometry and Fubini Theorem, for all ¢ € R,, in L?(Q), we have

X9 = D raxKoub)

kezd
with
=278 /Rd ¢(27 2 — k) - $(27 14 — kg) dB (1) ... dB(zq)
and
Kralt) = Lot [ [ 16— a0 202 00 ks doy ..
i The=1/2) Jo Jrigg
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By Wiener isometry,

(gJ,k =272 / (272 — k) das)
R

is a family of i.i.d. N'(0, 1) random variables, since the function (27/2¢(27 - —k)),, are
orthogonal.

keZ
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prx=2"% /Rd (2721 — k1) (2724 — kg) dB(z1) ... dB(zq)

By Wiener isometry,

(QJ,k =272 / (272 — k) da:)
R

is a family of i.i.d. N'(0, 1) random variables, since the function (27/2¢(27 - —k)),, are
orthogonal.Thus,

keZ

p
Mk = 1_[ Hﬂf(gJ,—];;g)
=1

where n, is the multiplicity of % in k and H,, is the nth Hermite polynomial

H,(z) = (=1)"e* 12 pre=o?/2,
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~ 074 he=3/2 , 1o
Kix(t) = ]'[gll“(hg—l/Z) ‘//Rdn(s )y &(27xp — kq) day ..
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1 s [ ‘ he=3/2 4 0]
Krx(t) = 272 / / (s —m¢)," (27 xp — kg) dxy ... dxg.
TR 0 R

h-3/2

1
¢h(8) = m ‘/IR;(S - 93)+ ¢($) d.’I)

is the fractional antiderivative of ¢.




Approximation process - deterministic part

Kyx(t) = e F(h 72 %/ /Rd H(S 20) 2927w — k) day . dzg.
=1+~

h-3/2
00(5) = iy 5= 00 do

is the fractional antiderivative of ¢.

t d
Ky x(t) = 277 (hteshi=d) / l—l bn (275 = ke) ds
0 =1
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Kx(t) = e 1F(hg—1/2) 5/ /Rd H(S 20227 1 - k) day ..

h-3/2
00(5) = iy 5= 00 do

is the fractional antiderivative of ¢.

t d
Ky x(t) = 277 (hteshi=d) / 1—1 bn (275 = ke) ds
0 =1

BAD NEWS
The function ¢y, is not well-adapted for approximation purposes (badly localized, not
in the Schwartz class,...).
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GOOD NEWS
The fractional scaling function of order 6 € (0,1/2) of the Meyer scaling function de-
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GOOD NEWS
The fractional scaling function of order 6 € (0,1/2) of the Meyer scaling function de-
fined through its Fourier transform by

1—e i
3

3
ONG) =( ) 8&)vE#0and B7(0) =1

is much better!
With a bit of Fourier analysis tools and tricks, we get to

d
K\ (1,%) = 27 (nshamd) 3 gWo 5 [T (he=1/2) (97 4, — )
kezd =1
where

t d
B = / [Tl @75 ~ ke) ds and @) (&) = (1 - )2 5()
0 =1
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, d
QJ%/ [To 2@ 0 ~ k) dB(x) ... dB(zg)
R

4=t

Lemma (A. Ayache, L.L., J. Hamonier)
Forall 5 € (0, 1), we have

(0= 3590z +p) (4)
p=0

with convergence in L?(R), where

(6) ._ (5F(p+6)
P r(p+ DS +1)
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d , d
>, (]_[ 7,()’;“/2)) (QJ% /Rd [ 162”2 +pe ~ ke)dB(a) ... dB(za)
(=1

d =
pENO (=1
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d
Z (l_[ Tor P 1k

d =
pENO =1

where we recall that, for all k € Z¢,

p
HJIk = 1_[ Hng(gjjgl,)
‘=1
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d
Z (l_[ 7;(;?_1/2)) KT k-p

pend \£=1
where we recall that, for all k € Z¢,

p
MHJik = 1_[ Hng(gJ’Ee)
=1

FARIMA (autogressive fractionally integrated moving average)
Let{Z;};<z be a sequence of i.i.d. centred Gaussian random variables and 6 € (—%, %).

The Gaussian FARIMA (0, 6, 0), denoted by {Zj(‘s) }jez, is defined, for all j € Z as

+00
2 =3 7" 2, (4)
p=0
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Hermite polynomials and partitions
Tthe dth Hermite polynomials can be written as

Ld/2]
Hy(2) = ) (~D)™ap'a"™",
m=0

where af,f) is the number of partitions of {1,..., d} with m (non ordered) pairs and

d — 2m singletons.
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™m

d — 2m singletons.
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Hermite polynomials and partitions
Tthe dth Hermite polynomials can be written as

Ld/2]
Hy(2) = ) (~D)™ap'a"™",
m=0

where a,(,f) is the number of partitions of {1,..., d} with m (non ordered) pairs and
d — 2m singletons.

I P is the set of partitions of {1, ..., d} with m (non ordered) pairs and d — 2m single-
tons.

(A. Ayache, L.L., J. Hamonier)
Forall J € Zand k € Z%, we have

Ld/2] m d-m
prx= > (D™ > [Elgsm, 901 [] 978, with gJ,k=2J/2/R¢(2J~T—k) dx

m=0 PE(Pirii) r=1 s=m+1
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d Ld/2 m d-m
Z ( (hf 1/2)) ( Z Z l_[ E[ngklr_Plr gJ,kl’T_pl;] l_[ gJ,klg/—pl;,
=1 m=l

peNd pepld r=1 s=m+l
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Forall (J,k) € Z x Z%, we define the random variable

Ld/2] d—-m
(h) (hlr—1/2) (hy -1/2) (hyr=1/2)
DICIPY [[Rer ey T] e,
Pe‘P(d) r=1 s=m+1

) .

where 8(6 Zp 0 yp gJ —p is the FARIMA sequence associated to (g 1) -
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Forall (J,k) € Z x Z%, we define the random variable
Ld/2]

d—-m
(h) (hlr—1/2) (hyy =1/2) (hyy=1/2)
2, o™ [[Re ey T] e,

PEP,(,d) =il s=m+1

where e(‘” Zp -0 yﬁé)gJ,k_p is the FARIMA sequence associated to (g.x)%-

Theorem (A. Ayache, L.L., J. Hamonier)
For each fixed ¢ € R,, one has almost surely

X]l(,‘?(t) o (. tha=d) Z (h)/ l_[q)(he Y2 (975 _ ky) ds. (5)

kezd

Moreover, the series (5) is almost surely uniformly convergent on compact intervals.
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We recall that {ngl 2%1//(?'—’:5{ —ke) : ke€Z? maxi<,<qj, > J}is a base of Vy.
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We recall that {ngl Q%W(ijxg — k) : keZ? maxi<s<qje > J} is a base of Vj.
This time, the fractional antiderivative

_ L _\h=3/2
U (s) = Fh-1/2) ‘/R(s ), U (z) dx

belongs to the Schwartz class!
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Theorem (A. Ayache, L.L., J. Hamonier)
For each fixed ¢ € R,, one has almost surely

@ 0= Y e 2j1<1—h1>+~'+jd(1—hd>/ l—l‘ﬁh (s —ky) s, (6)

(k) e(z4)? 0 21
(maxi<e<d je)2J

where

p
gk = | | Ere (2”/2 / w2z — k) dB(:v))
£=1 R

and n, is the multiplicity of (4, k) in (j, k). Moreover, the series (6) is almost surely
uniformly convergent on compact intervals.
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Theorem (A. Ayache, L.L., J. Hamonier)
For any compact interval I c R,, there exists an almost surely finite random variable
C (depending on I) for which one has, almost surely, for each J € N,

d d d), 4. _ _
15D = X D0 = XD (D)0 < CTF2T P tha=di1/2) @
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Theorem (A. Ayache, L.L., J. Hamonier)
For any compact interval I c R,, there exists an almost surely finite random variable
C (depending on I) for which one has, almost surely, for each J € N,

15 = XN = 1K) (Dl < O O shamdiaf @)
Basic ideas:

1. There exist an event Q" of probability 1 and C; a positive random variable of
finite moment of any order, such that on Q* one has, for all (j, k) € (Z?)¢,

d
lesxl < €3 | | ViogB+ il + [knl).-

m=1
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2. Therandom variables ¢ x and ¢, s are correlated if and only if (j, k) is a
permutation of (r,s).
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