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Let {B(t, )}k denote the standard two-sided Brownian motion on a
probability space (€2, 7, ). The Khinchin law of the iterated logarithm allows
to control the behavior of B at a given point, in the sense that for every ¢ € R,
it holds Bls o

limsup| (t+r) - ()1|=\/§ M

r—0 /|r|loglog |r|~

on an event of probability one.
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Almost surely, for almost every ¢ € R,

lim sup B+ 1) — B(t)1| =2

r—0 +/|r|loglog |r|~
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Almost surely, for almost every ¢ € R,

lim sup B+ 1) — B(t)1| =2

r—0 +/|r|loglog |r|~

This contrasts with the uniform Holder condition obtained by Paul Lévy:
almost surely, one has

B - B
limsup sup |B(t + 1) () = 2.

=0 tefo1]  +/[r[log[r|™!
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Almost surely, for almost every ¢ € R,

B(t+r)- Bl _ s

lim sup

r—0 +/|r|loglog |r|~

This contrasts with the uniform Holder condition obtained by Paul Lévy:
almost surely, one has

B - B
limsup sup |B(t + 1) () = 2.

r=0 tefo,1] A/ |r[log[r|™!

There exists exceptional points, called rapid points, where the law of the
iterated logarithm fails.
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Almost surely, for almost every ¢ € R,

lim sup B+ 1) — B(t)1| =2

r—0 +/|r|loglog |r|~

B(t — B(t
limsup sup |B(t+ 1) ()
r—0 tefo,1] ~/|r|log|r|~t

Kahane used the expansion of the Brownian motion in the well-chosen
Faber-Schauder system, to propose an easy way to study its regularity and
irregularity properties.

while

_ 3.
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Almost surely, for almost every ¢ € R,

B(t+1) =B _ 5

lim sup =
r—0 ||loglog |r|~1

while

limsup sup [B(t+ ) — B(2) =/2.
r—0 tefo,1] ~/|r|log|r|~t
Kahane used the expansion of the Brownian motion in the well-chosen
Faber-Schauder system, to propose an easy way to study its regularity and
irregularity properties. It allows to recover the law of the iterated logarithm
and the estimation of the modulus of continuity of the Brownian motion.
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Almost surely, for almost every ¢ € R,

|B(t + 1) — B(1)|

lim sup =2
r—=0" +/|r[loglog|r|~!
while B 5
t — DB(t
limsup sup |B(t+ 1) () = 2.

r—0 tefo,1] ~/|r|log|r|~t

Kahane used the expansion of the Brownian motion in the well-chosen
Faber-Schauder system, to propose an easy way to study its regularity and
irregularity properties. It allows to recover the law of the iterated logarithm
and the estimation of the modulus of continuity of the Brownian motion.
Furthermore, Kahane obtained the existence of a third category of points,
presenting a slower oscillation:
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Almost surely, for almost every ¢ € R,

lim sup B+ 1) — B(t)1| =2

r—0 +/|r|loglog |r|~

B(t — B(t
limsup sup |B(t+ 1) () = 2.

r—0 tef01]  A/|r|log|r[~!

and there exist points, called slow points, satisfy the condition

while

B — B
moup B+ 7) = B
r—0 |T|

< +00.




Fractional Brownian Motion wiilu
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C. Esser & L.L. (2022)

For all H € (0,1), there exists an event Q5 of probability 1 satisfying the following
assertions for all w € Q5 and every non-empty interval 7 of R.

® Almost every ¢ € I is ordinary:

0 < limsup |BH(t,u.))—BH(8,UJ)|

s—t |t — s|H4/loglog|t — s|~1

® There exists a dense set of rapid points ¢ € I such that

< +0.

0 < limsup |BH(t7w) - BH(57W)|

s—t |t —s|H4/log|t — s|~!

® There exists a dense set of slow points ¢ € I such that

< 4.

0 < lim sup |BH(t7w) - BH(87W)|

< +00.
s—t |t—s|H




Does this feature depend from the Gaussianity
of the process?




Does this feature depend from the Gaussianity il
of the process?

The Rosenblatt process




Does this feature depend from the Gaussianity
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The Rosenblatt process
e belongs to the class of Hermite processes

() . 1 ([
X0 = i (L

H 1
Wlthl—ﬁ<H<1.

d

(s — xp)f_S/Q ds) dB(z1)...dB(zq)

)

p=
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of the process?

The Rosenblatt process

e belongs to the class of Hermite processes: FBM is of order 1 while the
Rosenblatt process is of order 2, in particular the Rosenblatt process is non
Gaussian

d

[

(s — xp)f_3/2 ds) dB(z1)...dB(zq)
1

)

), . 1 '
XHd (t,-) := T(H —1/2)4 fRd<

H 1
Wlthl—ﬁ<H<1.

p=
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of the process?

The Rosenblatt process

e belongs to the class of Hermite processes: FBM is of order 1 while the
Rosenblatt process is of order 2, in particular the Rosenblatt process is non
Gaussian

e has stationary increments, is selfsimilar and characterized by a Hurst
exponent H,

d

(s — xp)f_3/2 ds) dB(zy)...dB(xq)
1
2)

[

(D . 1 '
X () = r(H—1/2)ded<

H 1
Wlthl—ﬁ<H<l.

p=
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of the process?

The Rosenblatt process

e belongs to the class of Hermite processes: FBM is of order 1 while the
Rosenblatt process is of order 2, in particular the Rosenblatt process is non
Gaussian

e has stationary increments, is selfsimilar and characterized by a Hurst
exponent H,

d

(s — xp)f_3/2 ds) dB(zy)...dB(xq)
1
2)

[

(D) . 1 '
X () = r(H—1/2)ded<

H 1
Wlthl—ﬁ<H<l.

p=
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We consider the generalized Rosenblatt process Ry, g, (t,-) given by

3 3
— )72 (s — 1) 7% ds dB(w,)dB

where H,, H, € (%, 1) are such that Hy + Hy > 3
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We consider the generalized Rosenblatt process Ry, g, (t,-) given by

! f Jt(s—xl)ng(s—xg)Hzg ds dB (z1)dB (1)
U (H —3)T (H — 3) Jr2 Jo ’ ’

Observations:
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We consider the generalized Rosenblatt process Ry, g, (t,-) given by

1 / t HI,% Hzi%
r (Hl - l) r (Hz — l) r2 Jo (s =)y *(s —m)y ds dB(z1)dB(z2)
2 2
Observations:
o if ¢ is the Meyer wavelet,

J1t+72

(272 (2w — k) (223 — k) (1, Jo, Ku, ko) € Z%}

is an orthonormal basis in L?(R?).




Wavelet-type expansion il

UNIVERSITE DU
LUXEMBOURG

We consider the generalized Rosenblatt process Ry, g, (t,-) given by
3

T2(s - Hy—3
(i =1 f[R@ f (s =), *dsdB(x)dB(x)

Observations:
e if ¢ is the Meyer wavelet,

(272 (2w — k) (2%a — ko) ¢ (ji, o, kry ko) € 2}

is an orthonormal basis in L?(R?).
e forall H(1/2,1)

J1+

'——1 s — )32y (2) da
(o) = =y |0~ e

is well-defined as the antiderivative of order H — 1/2 of 4.
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We consider the generalized Rosenblatt process Ry, g, (t,-) given by

I'(H -0 (H -3 fRQ J (s — 902)H2 : ds dB(m)dB (x2)

Let afll ]’;2 be the second order Wiener chaos random variable defined by

. . /
gz 2 V(M2 — k)p(22 35 — ky) dB(21)dB(2).
R
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We consider the generalized Rosenblatt process Ry, g, (t,-) given by

! J/ Jt(s - xl)Hr%(s - xz)HT% ds dB(x1)dB(x2)
(= 3) T (H = 5) Jez Jo " ’

Ayache & Esmili (2020)
Let v be the Meyer wavelet and I be any compact interval of R . Almost surely,
the random series

t
Ph-Isi-Ihb [gy (80 — k) (2o~ b)do (3)
0

(1,92, k1, k2 ) EZ*

converges uniformly to Ry, #, on the interval I.
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We want to find functions (moduli of continuity) 6,, 6, and 6, and an event Q'
on probability 1 such that, for all w € €’ and for every non-empty interval I of
R

e foralmostevery t e [

|RH1,H2(taw) - RHl,H2(57W)|

0 < limsu .
it 6,1t —s|)
e foradensesetofte ]
t _
0 < limsup | Ry, (8, w) — Rigy iy (5, w))| - o
ot ()
e foradensesetofte ]
¢ _
0 < lim sup |RH1’H2( ’w) RH17H2(87W)| -

st Os1(]t — s])
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0 < lim sup ‘RHl’HQ(t’w) — RHl,Hz(S:w)| -
s—t o(|t — s|)
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0 < lim sup ‘RHl’HQ(t’w) — RHl,Hz(S:w)| -
s—t o(|t — s|)

It suffices to show that there exists C' > 0 such that

|Ry, i, (t,w) — Ry (5,0)] < CO(Jt — s]).
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14 —R
0 < lim sup | R, w1, (T, w) Hy Hy (8, w)] o
s—t o(|t — s|)

It suffices to show that there exists C' > 0 such that

|Ry, i, (t,w) — Ry (5,0)] < CO(Jt — s]).

One can write Ry, m,(t,w) — Ry, m,(s,w) as the series

t
Z 2jl(17H1)+j2(1*H2)g§€11:]§2 (w)f Y (2 — k), (227 — ky) d
(J1.g2,k1,k2)eZ* s
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0 <limsup ‘RHl’HQ(t’w) — RHl,Hz(S:w)| -
s—t o(|t — s|)

We use wavelet leaders!




Methods i Ju

UNIVERSITE DU
LUXEMBOURG

‘RHLHZ(t’ w) - RHl,Hz(SﬂwH

0<li <
e ot — s|)
If
F=>> (2JJ f(@)U(2z —k )dx) U(2 - —k),
JEL kel _ _
Cj,k

is the expansion of the function f using a compactly supported wavelet ¥.
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< o0

R t.w)—R
0 < limsup | B (8:9) = iy 1 (5, 0)
s—t o(|t — s|)

f= ZZ (27Jf WYz —k )dx) W2 —k),

JEL kel _ _
ik

is the expansion of the function f using a compactly supported wavelet ¥. ,
U (27 - —k) has its support in a multiple of the dyadic interval

A= [k277, (k +1)277)




Methods i Ju

UNIVERSITE DU
LUXEMBOURG

0 <limsup ‘RHl’HQ(t’w) — RHl,Hz(S:w)| -
s—t o(|t — s|)

f:Z Z C)\\I/)\,

JEZL NeA;
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‘RHLHZ(t’ w) - RHl,Hz(SﬂwH

0 <limsu <
i ot — s|)
F=Y21 ey,
JEZL NeA;

Definition
The wavelet leader of scale j at the point zy is the quantity

d; = max sup |cy|.
o=, 255 e




Methods i Ju

UNIVERSITE DU
LUXEMBOURG

‘RHLHQ(t’ w) - RHl,Hz(SﬂwH

0 <limsu < 0
i ot — s|)
F=Y21 ey,
JEZL NeA;

For all 7,
|d;(t) < € sup |f(t) — f(s)]
seB(t,R277)
where R is computed from the support of the wavelet and C' is a positive
constant only depending on the wavelet.
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‘RHLHZ(t’ w) - RHl,Hz(SﬂwH

0 <li < 0
r ot — s|)
F=Y21 ey,
JEZL NeA;
: d; (?)] . lf(t) — f(s)]
| . ] ) Z JS))
(0-< s 25 = (0 <o 5505
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‘RHLHZ(t’ w) - RHl,Hz(SﬂwH

0<li <
P o(t — s))
RH]_,H2 , W Z Z C/\
JEL Nel;
di(t t —
<0 < limsupl J( aw)|) - (0 <limsup |RH1,H2( ,w) RH1,H2(Saw)|)
j—+00 (2 j) s—t 9(|t_ 5|)




Methods i Ju

UNIVERSITE DU
LUXEMBOURG

‘RHLHZ(t’ w) - RHl,Hz(SﬂwH

0<l < 0
R 8 —s|)
RHl,Hz('vw) = Z Z C/\(W) L5
JEL Nel;
. |dj(taw)|) ( . |RH1 H2(taw)_RH1 Hz(saw)|)
0 <limsup ———-+%> ] = [0 < limsu : !
( I o) b 6(]t —s])

Il We can not use the wavelet TYPE series

t
Z 2j1(1_H1)+J'2(1_H2)€;?11:j§2 J le (2]193 _ kl)ng (2”.% B kg) dr
(J1.J2 k1 ,k2)eZ* 0
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Let ¥ be a wavelet with compact support included in [— N, N|, we have

’ N w+k
¢k = Cw. o JAJ U(x) :J [ 1, (8, 21, 12) ds dz dB(x1) dB(x2)
_N &

2
where A = ]—oo, k;—jN] , CHy oy = F(Hl—%)ll“(Hg—%) and fors,z, e R

H1—-3/2 Hy—3/2
fH17H2(3a$1a$2) = (S - xl).:,_l / (S — 172)_,’_2 /
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Let ¥ be a wavelet with compact support included in [— N, N|, we have

/ N z+]k
¢k = Cm.m JAJ U(x) : [ 1, (8, 21, 12) ds dz dB(x1) dB(x2)
_N ke
27

Given an integer M > 0, ¢; 1, can be written as following

Gk =Gr Gt
where
" o
G = emn [ [ 0@ [T fnn(snim) ds o dB (o) dB(a)
)‘J}k -N 27
with

W |k NM k4 N
7.k 2 7 9j




Estimation of the wavelet coefficients il

UNIVERSITE DU
LUXEMBOURG

Let ¥ be a wavelet with compact support included in [— N, N|, we have

/N +k
¢k = Cw. o JAJ U(x) f:] [ 1, (8, 21, 12) ds dz dB(x1) dB(x2)
_N &

¢k =cx + " where

GE = cH, HQJ J le 1, (8, 21, 12) ds dx dB(m) dB(22)  (4)
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Let ¥ be a wavelet with compact support included in [— N, N|, we have

/ N @-I;k
¢k = CHy H J J U(x) : fry 1, (8, 21, 12) ds dz dB(x1) dB(x2)
AJ-—N =
27

L. Daw & L.L. (2022)
There exist three strictly positive deterministic constants Cy w1, Cy g,
and C§ p, p, such thatforall (j,k) e N x Zand M > 2 one has

—j(Hy+Hy—1 —~ M / —j(Hy+Ho—1
Cu, 1y, Hy2 IH =) o HCj,k < Cy pmy.1,2 J(HHe=)
L2(Q)
and
\./M E3 —j Hi+Hy—1 max H17H2 -1
‘ C]vk Lz(Q) < C\IllevH22 ( )M { }
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Janson (1997)
Letusfix n e N.

There exists a strictly positive universal deterministic constant C such that,
for every random variable X belonging to the Wiener chaos of order n and for
each real number y > 2, one has

P(|X| = y|X | 12()) < exp(—Cy*™).

If X is arandom variable belonging to the Wiener chaos of order n, there exist
a,b,y0 > 0 such that, forall y > y,

exp(—ay?™) < P(|1X| > y) < exp(—by?™).
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L. Daw & L.L. (2022)

Forall Hy, H, € (,1) suchthat H, + H, > 2, there exists an event Q, x, of probability
1 satisfying the following assertions for all w € Qp, g, and every I # .

® Almost every ¢ € [ is ordinary:

0 < lim sup | R, b, (8 w) — Ry o, (5, 0)]|

< +00.
st |t — s|fitH=1]oglog |t — s|~!

® There exists a dense set of rapid points ¢ € I such that

. |RH H(t UJ)—RH H(S UJ)|
0<1 1,112 U 1,112 ’ < 0.

ot T — s| P Tlogt — s L ~
® There exists a dense set of slow points ¢ € I such that

|RH1,H2 (tvw) — RH1,H2(S7W)|
|t _ S|H1+H2—1

lim sup < +00.

s—1
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First we write Ry, m,(t,w) — Ry, m,(s,w) as the series

t
Z 211(1_H1)+j2(1—H2)5;?11:;;2 (w)f YV, (lex — k)Y m, (2j2x — k) dz
(91,52, k1, k2 )EZA s
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First we write Ry, m,(t,w) — Ry, m,(s,w) as the series

t
OB w) | (P — k) (P2 — ) da
(1,92, k1, k2 )eZ* s

If nis suchthat 27"~ < |t — s| < 27", we split the sums over j; and

according to the regions
A=A
A N{‘N,és,

4

e

% Nt

4

N\
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First we write Ry, m,(t,w) — Ry, m,(s,w) as the series

t
2 211(1—H1)+j2(1_H2)€;?11:]§2 (w)f . (2]'13: B kl)leQ (2j2x B ]{,‘2) e
(91,52, k1, k2 )EZA s

Ayache & Esmili (2020)

There exist an event Q* of probability 1 and a positive random variable C; with
finite moment of any order, such that, for all w € Q* and for each (ji, j2, k1, k2) €
74,

o5 (@)| < Cr(w)+/log(3 + ] + [ka])v/1og(3 + |2l + [Ra]).- (4)
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First we write Ry, m,(t,w) — Ry, m,(s,w) as the series

t
2 211(1_H1)+J'2(1_H2)€;?11:]§2 (w)f . (2j1:c B kl)¢H2 (2j2:L’ B k2) e
(91,52, k1, k2 )EZA s

L. Daw & L.L. (2022)
There exists an event Q5 of probability 1 such that for all w € Qap there exists
Cr(w) > 0 such that, forall ¢, s € (0, 1), we have

| Rity, 11, (8, 0) — Rey 1, (5,w)| < Cr(W)[t — 8] 2" log |t — 5|71 (4)
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L. Daw & L.L. (2022)
There exists a deterministic constant C' > 0 such that for all A thereis Q25 = Q
with probability 1 such that for all w € Q5 there exist ¢ € (0, 1) such that

— M
; ’C,\j(t) (w)‘
;Tiljopjz—j(Hsz—l) -
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L. Daw & L.L. (2022)
There exists a deterministic constant C' > 0 such that for all M thereis Q5 < Q
with probability 1 such that for all w € Q5 there exist ¢ € (0, 1) such that

— M
; ‘ij(t) (w)‘ _
;rf,igopjz—j(Hsz—l) -

Proof combined Baire’s theorem, Borel-Cantelli Lemma and Janson estimates
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L. Daw & L.L. (2022)

There exists a deterministic constant C’ > 0 such that for all M thereis Q) c Q
with probability 1 such that for all w € €, there exist J € N such that, for all
j=J, forallxe Aj, A< [0,1],

‘(:V)\M(w)‘ < C/Mmax{Hl,Hg}—1j2j(H1+H2—1)
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L. Daw & L.L. (2022)

There exists a deterministic constant C’ > 0 such that for all M thereis (), c Q
with probability 1 such that for all w € Qf there exist J € N such that, for all
j=J, forallxe Aj, A< [0,1],

‘(ES\M((A))‘ < C/Mmax{Hl,Hg}—1j2j(H1+H2—1)

Proof combined Borel-Cantelli Lemma and Janson estimates
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L. Daw & L.L. (2022)
There exists an event Q5 of probability 1 such that for all w € Qap there exists
Cr(w) > 0 such that, for all ¢, s € (0, 1), we have

|RH1,H2(t7w) - RH17H2(37W)| < CR(w)|t - 3|H1+H2_1 log |t - 5|_1' (4)

L. Daw & L.L. (2022)
There exists Q5 < Q with probability 1 such that, for all w € Q3, there exist
t € (0,1) such that

dj (t, w)

S 55t + -

> 0.
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L. Daw & L.L. (2022)
There exists an event Q5 of probability 1 such that for all w € Qap there exists
Cr(w) > 0 such that, forall ¢, s € (0,1), we have

|Riy, 11, (t,w) — Rty i, (5,w)| < Cr(w)|t — s| 2 og [t — 5|71 (4)

L. Daw & L.L. (2022)
There exists Q3 < Q with probability 1 such that, for all w € Q3, there exist
t € (0,1) such that

dj (t, w)

NS & =+ 1)

> 0.

Almost surely, there is ¢ € (0, 1) such that

< +00.

. |RH1 HQ(t7w)_RH1 HQ(‘S’W”
0 < lims : :
Bt = s R T log [t — [
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Fix ¢ € (0,1), there exists Q}, an event of probability 1, and C, ;, a positive
random variable with finite moment of any order, such that, for all w € Q} and
for each (j1, jo, k1, ko) € Z*, one has

€882 ()] < Cua(w)y/10m(3 + il + 1 — ks, (£)])/log(3 + Lia| + i — ki (£)]).
®)
where £;(t) is the unique integer such that ¢ € [k;(¢)277, (k;(t) + 1)277).
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Fix ¢ € (0,1), there exists Q}, an event of probability 1, and C, ;, a positive
random variable with finite moment of any order, such that, for all w € Q} and
for each (j1, jo, k1, ko) € Z*, one has

b2 ()] < Coalw)y/log(3 + ] + by — ki (1)) 1083 + ] + [k — i (1)]).

®)
where £;(t) is the unique integer such that ¢ € [k;(¢)277, (k;(t) + 1)277). For
all s € (0,1) and w € Q} we have

‘RHLHQ(t’w) - RHl,H2(87w)’ < Ct(w)’t - 3’H1+H2_1 log ‘ log ’t - Sl_l"
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L. Daw & L.L. (2022)
There exists an event ,,q of probability 1 such that for all w € Q,q, for almost
every ¢ € (0,1),

lim sup |RH17H2(t7W) — RHl,Hz(S,wN
s—t |t—S|H1+H2—1 10g|10g|t_8|_1|

< +00.
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L. Daw & L.L. (2022)
There exists an event .4 of probability 1 such that for all w € 4, for almost
every ¢t € (0,1),

limsup |RH1,H2(t7w) - RHl,H2(S,OJ)|

< +00.
st |t = s[fitH"llog|log |t — 5|71

L. Daw & L.L. (2022)
There exists Qf < Q with probability 1 such that for all w € Q} and Lebesgue
almost every ¢ € (0,1) one has

d;(t
lim sup (%)

j—to0 9—j(H1+Hz—1) log j =0
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Almost surely, for almost every ¢ € (0, 1) such that

. |RH1 H2(t7w)_RH1 Hz(saw)‘
0<1 - :
T Tt — s ETlog [log |t — 5|1

< +00.
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The finiteness of the limit

|RH1,H2(t7w) — RHI’H2(S7W)’
|t _ S|H1+H2_1

lim sup
s—t

is more tricky.
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The finiteness of the limit

‘RHl,Hz(tﬂw) — RHI’H2(87W)’
|t _ 8|H1+H2—1

lim sup
s—t

is more tricky. It needs a selection within the dyadic subintervals of (0,1). The
idea is that a dyadic interval is “killed” if some associate random variables are
big, which happens with a low probability.
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The finiteness of the limit

‘RHl,Hz(tﬂw) - RHI’H2(S7W)’
|t _ 8|H1+H2—1

lim sup
s—t

is more tricky. It needs a selection within the dyadic subintervals of (0,1). The
idea is that a dyadic interval is “killed” if some associate random variables are
big, which happens with a low probability. The proof is a combination of

e Cantor Theorem,
® Borel-Cantelli Lemma
¢ Tchebycheff’s inequality
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L. Daw & L.L. (2022)
There exists an event g, of probability 1 such that for all w € Qg there exist
t € (0,1) such that

|RH17H2(t7 W) - RHl,Hz(‘S? w)l

lim sup |t— 5|H1+H2—1

s—t

< 4.
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L. Daw & L.L. (2022)
There exists an event g, of probability 1 such that for all w € Qg there exist
t € (0,1) such that

|Ry 1, (8, w) — By my (5, w)]

I [T < +00.

lim sup
s—t

The positiveness of the limit is still open, the difficulty being within the fact
that it seems difficult to find optimal bounds both for & and & M.
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