Generalized Regularity and Stochastic Processes

Laurent Loosveldt

Workshop "Regularity of Stochastic Processes"

May 19th 2022

Let $x_0 \in \mathbb{R}^d$; a function $f \in L^{\infty}_{\text{loc}}(\mathbb{R}^d)$ belongs to the Hölder space $C^{\alpha}(x_0)$ ($0 < \alpha < 1$) if there exists C > 0 s.t., for j large enough,

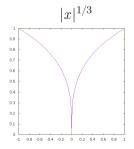
 $||f - f(x_0)||_{L^{\infty}(B(x_0, 2^{-j}))} \leq C 2^{-j\alpha}.$

Let $x_0 \in \mathbb{R}^d$; a function $f \in L^{\infty}_{\mathsf{loc}}(\mathbb{R}^d)$ belongs to the Hölder space $C^{\alpha}(x_0)$ ($0 < \alpha < 1$) if

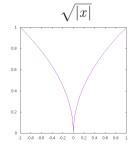
$$||f - f(x_0)||_{L^{\infty}(B(x_0, 2^{-j}))} \leq C 2^{-j\alpha}.$$

If $f \in L^{\infty}([a, b])$ and the constant C > 0 is uniform, then f belongs to the uniform Hölder space $C^{\alpha}([a, b])$

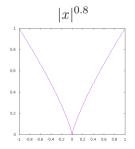
$$||f - f(x_0)||_{L^{\infty}(B(x_0, 2^{-j}))} \leq C 2^{-j\alpha}.$$



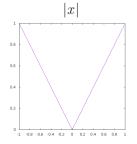
$$||f - f(x_0)||_{L^{\infty}(B(x_0, 2^{-j}))} \leq C 2^{-j\alpha}.$$



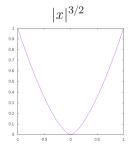
$$||f - f(x_0)||_{L^{\infty}(B(x_0, 2^{-j}))} \leq C 2^{-j\alpha}.$$



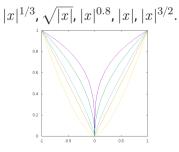
$$||f - f(x_0)||_{L^{\infty}(B(x_0, 2^{-j}))} \leq C 2^{-j\alpha}.$$



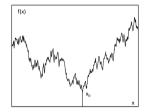
$$||f - f(x_0)||_{L^{\infty}(B(x_0, 2^{-j}))} \leq C 2^{-j\alpha}.$$



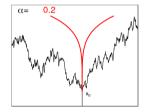
$$||f - f(x_0)||_{L^{\infty}(B(x_0, 2^{-j}))} \leq C 2^{-j\alpha}.$$



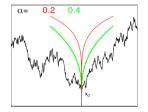
$$||f - f(x_0)||_{L^{\infty}(B(x_0, 2^{-j}))} \leq C 2^{-j\alpha}.$$



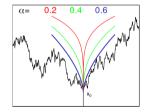
$$||f - f(x_0)||_{L^{\infty}(B(x_0, 2^{-j}))} \leq C 2^{-j\alpha}.$$



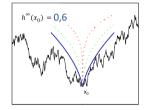
$$||f - f(x_0)||_{L^{\infty}(B(x_0, 2^{-j}))} \leq C 2^{-j\alpha}.$$



$$||f - f(x_0)||_{L^{\infty}(B(x_0, 2^{-j}))} \leq C 2^{-j\alpha}.$$



$$||f - f(x_0)||_{L^{\infty}(B(x_0, 2^{-j}))} \leq C 2^{-j\alpha}.$$



Let $x_0 \in \mathbb{R}^d$; a function $f \in L^{\infty}_{\mathsf{loc}}(\mathbb{R}^d)$ belongs to the Hölder space $C^{\alpha}(x_0)$ ($0 < \alpha < 1$) if

$$||f - f(x_0)||_{L^{\infty}(B(x_0, 2^{-j}))} \leq C 2^{-j\alpha}.$$

 $h_f(x_0) = \sup\{\alpha : f \in C^{\alpha}(x_0)\}.$

Khintchine law of iterated logarithm

Let $\{B(t)\}_{t \in \mathbb{R}}$ be a (two-sided) Brownian motion on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, almost surely, for almost every $t \in \mathbb{R}$

$$\limsup_{r \to 0} \frac{|B(t+r) - B(t)|}{\sqrt{|r|\log \log |r|^{-1}}} = \sqrt{2}$$
 (1)

Khintchine law of iterated logarithm

Let $\{B(t)\}_{t \in \mathbb{R}}$ be a (two-sided) Brownian motion on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, almost surely, for almost every $t \in \mathbb{R}$

$$\limsup_{r \to 0} \frac{|B(t+r) - B(t)|}{\sqrt{|r|\log \log |r|^{-1}}} = \sqrt{2}$$
(1)

This means that, almost surely, for almost every t, $h_B(t) = \frac{1}{2}$ but $B \notin C^{\frac{1}{2}}(t)$.

Usual Hölder spaces are **unadapted** to detect precise pointwise behaviours that we wish to put into evidence.

A sequence $\sigma = (\sigma_j)_{j \in \mathbb{N}_0}$ of real positive numbers is called admissible if there exists a positive constant *C* such that

$$C^{-1}\sigma_j \leqslant \sigma_{j+1} \leqslant C\sigma_j,$$

for any $j \in \mathbb{N}$.

A sequence $\sigma = (\sigma_j)_{j \in \mathbb{N}_0}$ of real positive numbers is called admissible if there exists a positive constant *C* such that

$$C^{-1}\sigma_j \leqslant \sigma_{j+1} \leqslant C\sigma_j,$$

for any $j \in \mathbb{N}$.

One sets

$$\underline{\sigma}_j := \inf_{k \in \mathbb{N}} \frac{\sigma_{j+k}}{\sigma_k}$$
 and $\overline{\sigma}_j := \sup_{k \in \mathbb{N}} \frac{\sigma_{j+k}}{\sigma_k}$

A sequence $\sigma = (\sigma_j)_{j \in \mathbb{N}_0}$ of real positive numbers is called admissible if there exists a positive constant *C* such that

$$C^{-1}\sigma_j \leqslant \sigma_{j+1} \leqslant C\sigma_j,$$

for any $j \in \mathbb{N}$. One sets

$$\underline{s}(\sigma) = \lim_{j} \frac{\log_2(\underline{\sigma}_j)}{j}, \qquad \overline{s}(\sigma) = \lim_{j} \frac{\log_2(\overline{\sigma}_j)}{j},$$

A sequence $\sigma = (\sigma_j)_{j \in \mathbb{N}_0}$ of real positive numbers is called admissible if there exists a positive constant *C* such that

$$C^{-1}\sigma_j \leqslant \sigma_{j+1} \leqslant C\sigma_j,$$

for any $j \in \mathbb{N}$. One sets

$$\underline{s}(\sigma) = \lim_{j} \frac{\log_2(\underline{\sigma}_j)}{j}, \qquad \overline{s}(\sigma) = \lim_{j} \frac{\log_2(\overline{\sigma}_j)}{j},$$

so that for any $\varepsilon > 0$, there exists C > 0 s.t. for all j, k

$$C^{-1}2^{j(\underline{s}(\sigma)-\varepsilon)} \leqslant \frac{\sigma_{j+k}}{\sigma_k} \leqslant C2^{j(\overline{s}(\sigma)+\varepsilon)}.$$

Example If $s \in \mathbb{R}$, $s = (2^{sj})_j$ is admissible with $\underline{s}(s) = \overline{s}(s) = s$

Example

If $s \in \mathbb{R}$, $s = (2^{sj})_j$ is admissible with $\underline{s}(s) = \overline{s}(s) = s$

Definition

A strictly positive function ψ is a slowly varying function if

$$\lim_{t \to 0} \frac{\psi(rt)}{\psi(t)} = 1,$$

for any r > 0.

Example

If $s \in \mathbb{R}$, $s = (2^{sj})_j$ is admissible with $\underline{s}(s) = \overline{s}(s) = s$

Definition

A strictly positive function ψ is a slowly varying function if

$$\lim_{t \to 0} \frac{\psi(rt)}{\psi(t)} = 1,$$

for any r > 0.

Example

If ψ is a slowly varying function and $u \in \mathbb{R}$, the sequence $\sigma = (2^{ju}\psi(2^j))_j$ is admissible with $\underline{s}(\sigma) = \overline{s}(\sigma) = u$.

Generalized Hölder spaces

Definition

Let $\sigma = (\sigma_j)_j$ be an admissible sequence such that $0 < \underline{s}(\sigma^{-1}) \leq \overline{s}(\sigma^{-1}) < 1$, a function $f \in L^{\infty}_{loc}(\mathbb{R}^d)$ belongs to the pointwise generalized Hölder space $C^{\sigma}(x_0)$ if there exists C > 0 s.t., for j large enough,

 $||f - f(x_0)||_{L^{\infty}(B(x_0, 2^{-j}))} \leq C\sigma_j.$

Generalized Hölder spaces

Definition

Let $\sigma = (\sigma_j)_j$ be an admissible sequence such that $0 < \underline{s}(\sigma^{-1}) \leq \overline{s}(\sigma^{-1}) < 1$, a function $f \in L^{\infty}_{loc}(\mathbb{R}^d)$ belongs to the pointwise generalized Hölder space $C^{\sigma}(x_0)$ if there exists C > 0 s.t., for j large enough,

 $||f - f(x_0)||_{L^{\infty}(B(x_0, 2^{-j}))} \leq C\sigma_j.$

Definition

A modulus of continuity is an increasing function θ : $\mathbb{R}^+ \to \mathbb{R}^+$ satisfying $\theta(0) = 0$ and for which there is C > 0 such that $\theta(2x) \leq C\theta(x)$ for all $x \in \mathbb{R}^+$.

Generalized Hölder spaces

Definition

Let $\sigma = (\sigma_j)_j$ be an admissible sequence such that $0 < \underline{s}(\sigma^{-1}) \leq \overline{s}(\sigma^{-1}) < 1$, a function $f \in L^{\infty}_{loc}(\mathbb{R}^d)$ belongs to the pointwise generalized Hölder space $C^{\sigma}(x_0)$ if there exists C > 0 s.t., for j large enough,

 $||f - f(x_0)||_{L^{\infty}(B(x_0, 2^{-j}))} \leq C\sigma_j.$

Definition

A modulus of continuity is an increasing function θ : $\mathbb{R}^+ \to \mathbb{R}^+$ satisfying $\theta(0) = 0$ and for which there is C > 0 such that $\theta(2x) \leq C\theta(x)$ for all $x \in \mathbb{R}^+$.

Proposition (D. Kreit and S. Nicolay, 2017)

Let $\sigma = (\sigma_j)_j$ be an admissible sequence. There exists a modulus of continuity θ such that $\sigma_j = \theta(2^{-j})$ if and only if σ is a non-increasing sequence. Moreover, we can choose θ continuous at 0 if and only if σ converges to 0.

Wavelet analysis

Let ψ : $\mathbb{R} \to \mathbb{R}$ be a smooth function satisfying the admissibility condition

$$\int_{\mathbb{R}} \frac{|\widehat{\psi}(\xi)|}{|\xi|} d\xi < \infty,$$
(2)

Wavelet analysis

Let $\psi \, : \, \mathbb{R} \to \mathbb{R}$ be a smooth function satisfying the admissibility condition

$$\int_{\mathbb{R}} \frac{|\widehat{\psi}(\xi)|}{|\xi|} d\xi < \infty,$$
(2)

Any function $f \in L^2(\mathbb{R})$ can be decomposed as

$$f = \sum_{j \in \mathbb{Z}} \sum_{k \in \mathbb{Z}} c_{j,k} \psi(2^j \cdot -k), \tag{3}$$

where

$$c_{j,k} = 2^j \int_{\mathbb{R}} f(x)\psi(2^j x - k) \, dx.$$

Wavelet analysis

Let $\psi \, : \, \mathbb{R} \to \mathbb{R}$ be a smooth function satisfying the admissibility condition

$$\int_{\mathbb{R}} \frac{|\widehat{\psi}(\xi)|}{|\xi|} d\xi < \infty,$$
(2)

Any function $f \in L^2(\mathbb{R})$ can be decomposed as

$$f = \sum_{j \in \mathbb{Z}} \sum_{k \in \mathbb{Z}} c_{j,k} \psi(2^j \cdot -k),$$
(3)

where

$$c_{j,k} = 2^j \int_{\mathbb{R}} f(x)\psi(2^j x - k) \, dx.$$

The expansion (3) holds true in many function spaces.

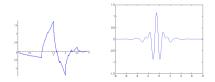
Characterization of the uniform spaces (D. Kreit and S. Nicolay) A function $f \in L^{\infty}(\mathbb{R}^d)$ belongs to the generalized Hölder space $C^{\sigma}(\mathbb{R}^d)$ if and only if there exists C > 0 such that, for all $j \in \mathbb{N}$,

 $|c_{j,k}| \leq C\sigma_j.$

Characterization of the uniform spaces (D. Kreit and S. Nicolay) A function $f \in L^{\infty}(\mathbb{R}^d)$ belongs to the generalized Hölder space $C^{\sigma}(\mathbb{R}^d)$ if and only if there exists C > 0 such that, for all $j \in \mathbb{N}$,

$$|c_{j,k}| \leq C\sigma_j.$$

If ψ is a wavelet,



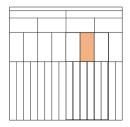
 $\psi_{j,k} = 2^j \psi(2^j \cdot -k)$ is "localized" around the dyadic interval $\lambda_{j,k} = \left[\frac{k}{2^j}, \frac{k+1}{2^j}\right)$

Definition

$$d_j(x_0) = \max_{\lambda \in 3\lambda_j(x_0)} \sup_{\lambda' \subseteq \lambda} |c_{\lambda'}|.$$

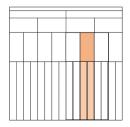
Definition

$$d_j(x_0) = \max_{\lambda \in 3\lambda_j(x_0)} \sup_{\lambda' \subseteq \lambda} |c_{\lambda'}|.$$



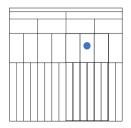
Definition

$$d_j(x_0) = \max_{\lambda \in 3\lambda_j(x_0)} \sup_{\lambda' \subseteq \lambda} |c_{\lambda'}|.$$



Definition

$$d_j(x_0) = \max_{\lambda \in 3\lambda_j(x_0)} \sup_{\lambda' \subseteq \lambda} |c_{\lambda'}|.$$

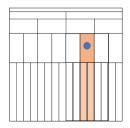


Wavelet analysis on Hölder spaces

Definition

The wavelet leader of scale j at the point x_0 is the quantity

$$d_j(x_0) = \max_{\lambda \in 3\lambda_j(x_0)} \sup_{\lambda' \subseteq \lambda} |c_{\lambda'}|.$$

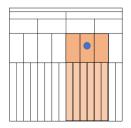


Wavelet analysis on Hölder spaces

Definition

The wavelet leader of scale j at the point x_0 is the quantity

$$d_j(x_0) = \max_{\lambda \in 3\lambda_j(x_0)} \sup_{\lambda' \subseteq \lambda} |c_{\lambda'}|.$$



Wavelet analysis on Hölder spaces

Definition The **wavelet leader** of scale j at the point x_0 is the quantity

$$d_j(x_0) = \max_{\lambda \in 3\lambda_j(x_0)} \sup_{\lambda' \subseteq \lambda} |c_{\lambda'}|.$$

Nearly-characterization of the pointwise spaces (D. Kreit, L.L. and S. Nicolay)

If f belongs to the space $C^{\sigma}(x_0)$, then there exists C > 0 such that, for all $j \in \mathbb{N}$,

$$d_j(x_0) \leqslant C\sigma_j \tag{4}$$

Conversely, if σ_j tends to 0 as j tends to ∞ , if f belongs to $C^{\varepsilon}(\mathbb{R}^d)$ for some $\varepsilon > 0$, then (4) implies $f \in C^{\sigma}_{\log}(x_0)$:

$$||f - f(x_0)||_{L^{\infty}(B(x_0, 2^{-j}))} \leq C\sigma_j |\log(\sigma_j)|.$$

To characterize the generecity of this logarithmic correction , we use the notion of **prevalence**.

UNIVERSITÉ DU LUXEMBOURG

To characterize the generecity of this logarithmic correction , we use the notion of **prevalence**.

If μ is a Borel measure on an infinite dimensional real normed vector space which is translation invariant and σ -finite, then it is necessarily null. \Rightarrow One cannot define a proper counterpart to the Lebesgue measure on such spaces.

To characterize the generecity of this logarithmic correction , we use the notion of **prevalence**.

If μ is a Borel measure on an infinite dimensional real normed vector space which is translation invariant and σ -finite, then it is necessarily null. \Rightarrow One cannot define a proper counterpart to the Lebesgue measure on such spaces.

In the Euclidean space, it is well known that one can associate a probability measure μ to a Borel set B such that $\mu(B + x)$ vanishes for very $x \in \mathbb{R}^n$ if and only if the Lebesgue measure $\mathcal{L}(B)$ of B also vanishes

Prevalence

Prevalence

Let *E* be a complete metric vector space; a Borel set *B* of *E* is Haar-null if there exists a compactly-supported probability measure μ such that $\mu(B + x) = 0$ for every $x \in E$. A subset of *E* is Haar-null if it is contained in a Haar-null Borel set; the complement of a Haar-null set is a prevalent set.

• if *E* is finite-dimensional, *B* is Haar-null if and only if $\mathcal{L}(B) = 0$,

Prevalence

- if *E* is finite-dimensional, *B* is Haar-null if and only if $\mathcal{L}(B) = 0$,
- if E is infinite-dimensional, the compact sets of E are Haar-null,

Prevalence

- if *E* is finite-dimensional, *B* is Haar-null if and only if $\mathcal{L}(B) = 0$,
- if E is infinite-dimensional, the compact sets of E are Haar-null,
- the translated of a Haar-null set is Haar-null,

Prevalence

- if *E* is finite-dimensional, *B* is Haar-null if and only if $\mathcal{L}(B) = 0$,
- if E is infinite-dimensional, the compact sets of E are Haar-null,
- the translated of a Haar-null set is Haar-null,
- a prevalent set is dense in *E*,

UNIVERSITÉ DU LUXEMBOURG

Prevalence

- if *E* is finite-dimensional, *B* is Haar-null if and only if $\mathcal{L}(B) = 0$,
- if E is infinite-dimensional, the compact sets of E are Haar-null,
- the translated of a Haar-null set is Haar-null,
- a prevalent set is dense in *E*,
- the intersection of a countable collection of prevalent sets is still prevalent.

Prevalence of the logarithmic correction

$$E_{\infty}^{\varepsilon}(x_0) = \{ f \in C^{\varepsilon}(\mathbb{R}^d) : (\sigma_j^{-1} d_j(x_0))_j \in \ell^{\infty} \},\$$

equipped with the norm

 $\|\cdot\|_{E^{\varepsilon}_{\infty}(x_0)} : E^{\varepsilon}_{\infty}(x_0) \to [0, +\infty) : f \mapsto \|f\|_{C^{\varepsilon}(\mathbb{R}^d)} + \|(\sigma_j^{-1}d_j(x_0))_j\|_{\ell^{\infty}}.$

Prevalence of the logarithmic correction

$$E_{\infty}^{\varepsilon}(x_0) = \{ f \in C^{\varepsilon}(\mathbb{R}^d) : (\sigma_j^{-1}d_j(x_0))_j \in \ell^{\infty} \},\$$

equipped with the norm

$$\| \cdot \|_{E^{\varepsilon}_{\infty}(x_0)} : E^{\varepsilon}_{\infty}(x_0) \to [0, +\infty) : f \mapsto \|f\|_{C^{\varepsilon}(\mathbb{R}^d)} + \|(\sigma_j^{-1}d_j(x_0))_j\|_{\ell^{\infty}}.$$

L.L. & S. Nicolay (2022) If $x_0 \in \mathbb{R}^d$, for all $0 < \varepsilon < \frac{\underline{s}(\sigma)}{4}$, from the the prevalence point of view, almost every function of $E_{\infty}^{\varepsilon}(x_0)$ belongs to $C_{\log}^{\sigma}(x_0) \setminus C_{\ell_s \log}^{\sigma}(x_0)$.

C. Esser & L.L. (2022)

1. If ψ is compactly supported then, for all j,

$$|d_j(x_0)| \leq C ||f - f(x_0)||_{L^{\infty}(B(x_0, R2^{-j}))}$$

where R is computed from the support of the wavelet and C is a positive constant only depending on the wavelet.

C. Esser & L.L. (2022)

1. If ψ is compactly supported then, for all j,

$$|d_j(x_0)| \leq C ||f - f(x_0)||_{L^{\infty}(B(x_0, R2^{-j}))}$$

where R is computed from the support of the wavelet and C is a positive constant only depending on the wavelet.

2. If $\psi \in \mathcal{S}(\mathbb{R})$ and σ is an admissible sequence such that

$$\limsup_{j \to +\infty} \frac{\|f - f(x_0)\|_{L^{\infty}(B(x_0, R2^{-j}))}}{\sigma_j} < \infty$$

then

$$\limsup_{j \to +\infty} \frac{|d_j(x_0)|}{\sigma_j} < \infty$$

12/21

C. Esser & L.L. (2022)

1. If ψ is compactly supported then, for all j,

$$0 < \limsup_{j \to +\infty} \frac{|d_j(x_0)|}{\sigma_j} \Rightarrow 0 < \limsup_{j \to +\infty} \frac{\|f - f(x_0)\|_{L^{\infty}(B(x_0, R2^{-j}))}}{\sigma_j}$$

2. If $\psi \in \mathcal{S}(\mathbb{R})$ and σ is an admissible sequence such that

$$\limsup_{j \to +\infty} \frac{\|f - f(x_0)\|_{L^{\infty}(B(x_0, R2^{-j}))}}{\sigma_j} < \infty$$

then

$$\limsup_{j \to +\infty} \frac{|d_j(x_0)|}{\sigma_j} < \infty$$

C. Esser & L.L. (2022)

1. If ψ is compactly supported then, for all j,

$$0 < \limsup_{j \to +\infty} \frac{|d_j(x_0)|}{\sigma_j} \Rightarrow 0 < \limsup_{j \to +\infty} \frac{\|f - f(x_0)\|_{L^{\infty}(B(x_0, R2^{-j}))}}{\sigma_j}$$

2. If $\psi \in \mathcal{S}(\mathbb{R})$ and σ is an admissible sequence

$$0 < \limsup_{j \to +\infty} \frac{|d_j(x_0)|}{\sigma_j} \Rightarrow \limsup_{j \to +\infty} \frac{\|f - f(x_0)\|_{L^{\infty}(B(x_0, R2^{-j}))}}{\gamma_j} = \infty$$

for all γ admissible such that $\gamma_j = o(\sigma_j)$ if $j \to +\infty$.

Regularity of Stochastic Processes

Let $\{X_t\}_{t \in I}$ (*I* interval in \mathbb{R}) be a stochastic process on the probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

Regularity of Stochastic Processes

Let $\{X_t\}_{t \in I}$ (*I* interval in \mathbb{R}) be a stochastic process on the probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

Kolmogorov-Censtov

If there exist $\alpha > 0$, $\beta > 0$ and a constant C > 0 such that, for all $s, t \in I$,

$$\mathbb{E}[(X_s - X_t)^{\alpha}] \leqslant C|s - t|^{\beta}$$

then there is a version of $\{X_t\}_{t \in I}$ whose paths belong to $C^{\gamma}(x_0)$, for all $x_0 \in I$ and $0 < \gamma < \frac{\beta}{\alpha}$.

Regularity of Stochastic Processes

Let $\{X_t\}_{t \in I}$ (*I* interval in \mathbb{R}) be a stochastic process on the probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

Kolmogorov-Censtov

If there exist $\alpha > 0$, $\beta > 0$ and a constant C > 0 such that, for all $s, t \in I$,

$$\mathbb{E}[(X_s - X_t)^{\alpha}] \leqslant C|s - t|^{\beta}$$

then there is a version of $\{X_t\}_{t\in I}$ whose paths belong to $C^{\gamma}(x_0)$, for all $x_0 \in I$ and $0 < \gamma < \frac{\beta}{\alpha}$. It means that, almost surely, for all $x_0 \in I$, $h_X(x_0) \ge \frac{\beta}{\alpha}$.

How to obtain wavelet coefficients and wavelet (type) expansion for stochastic processes?

How to obtain wavelet coefficients and wavelet (type) expansion for stochastic processes?

1. If X is smooth enough,

How to obtain wavelet coefficients and wavelet (type) expansion for stochastic processes?

- 1. If X is smooth enough,
 - For all $\omega \in \Omega$, one can apply the wavelet expansion to the simple path $t \mapsto X(t, \omega)$.

How to obtain wavelet coefficients and wavelet (type) expansion for stochastic processes?

- 1. If X is smooth enough,
 - For all $\omega \in \Omega$, one can apply the wavelet expansion to the simple path $t \mapsto X(t, \omega)$.
 - This way, one defines a sequence of random wavelet coefficients $(c_{j,k}(\omega))_{j,k\in\mathbb{Z}}$.

How to obtain wavelet coefficients and wavelet (type) expansion for stochastic processes?

- **1**. If X is smooth enough,
 - For all $\omega \in \Omega$, one can apply the wavelet expansion to the simple path $t \mapsto X(t, \omega)$.
 - This way, one defines a sequence of random wavelet coefficients $(c_{j,k}(\omega))_{j,k\in\mathbb{Z}}$.
- 2. If X can be written as

$$\int f(t,\mathbf{S})\,\mu(d\mathbf{S})$$

where μ is a random measure and f is a deterministic function such that, for all $t, \mathbf{s} \mapsto f(t, \mathbf{s})$ is square-integrable

How to obtain wavelet coefficients and wavelet (type) expansion for stochastic processes?

- 1. If X is smooth enough,
 - For all $\omega \in \Omega$, one can apply the wavelet expansion to the simple path $t \mapsto X(t, \omega)$.
 - This way, one defines a sequence of random wavelet coefficients $(c_{j,k}(\omega))_{j,k\in\mathbb{Z}}$.
- 2. If X can be written as

 $\int f(t,\mathbf{S})\,\mu(d\mathbf{S})$

where μ is a random measure and f is a deterministic function such that, for all $t, \mathbf{s} \mapsto f(t, \mathbf{s})$ is square-integrable

 $\circ~$ For all t one can apply the wavelet expansion to $\mathbf{s}\mapsto f(t,\mathbf{s})$

How to obtain wavelet coefficients and wavelet (type) expansion for stochastic processes?

- 1. If X is smooth enough,
 - For all $\omega \in \Omega$, one can apply the wavelet expansion to the simple path $t \mapsto X(t, \omega)$.
 - This way, one defines a sequence of random wavelet coefficients $(c_{j,k}(\omega))_{j,k\in\mathbb{Z}}$.
- 2. If X can be written as

 $\int f(t,\mathbf{S})\,\mu(d\mathbf{S})$

where μ is a random measure and f is a deterministic function such that, for all t, $\mathbf{s} \mapsto f(t, \mathbf{s})$ is square-integrable

- $\circ~$ For all t one can apply the wavelet expansion to $\mathbf{s}\mapsto f(t,\mathbf{s})$
- After some works we can get random series converging to X involving the wavelet coefficient $c_{\lambda}^{(t)}$ of $\mathbf{s} \mapsto f(t, \mathbf{s})$ and the random variables $\int \psi_{\lambda}(s) \, \mu(d\mathbf{s})$.

1. (Numerical) approximation

- 1. (Numerical) approximation
- 2. One can enjoy the nice properties of wavelet analysis in our study:

- 1. (Numerical) approximation
- 2. One can enjoy the nice properties of wavelet analysis in our study:
 - Compactly supported wavelet

- 1. (Numerical) approximation
- 2. One can enjoy the nice properties of wavelet analysis in our study:
 - Compactly supported wavelet OR
 - Functions with fast decay

- 1. (Numerical) approximation
- 2. One can enjoy the nice properties of wavelet analysis in our study:
 - Compactly supported wavelet OR
 - Functions with fast decay
- 3. One can use the information provided by wavelet leaders

Some results concerning FBM...

C. Esser & L.L. (2022)

For all $H \in (0,1)$, there exists an event Ω_H of probability 1 satisfying the following assertions for all $\omega \in \Omega_H$ and every non-empty interval I of \mathbb{R} .

• Almost every $t \in I$ is ordinary:

$$0 < \limsup_{s \to t} \frac{|B_H(t,\omega) - B_H(s,\omega)|}{|t-s|^H \sqrt{\log \log |t-s|^{-1}}} < +\infty.$$

• There exists a dense set of *rapid* points $t \in I$ such that

$$0 < \limsup_{s \to t} \frac{|B_H(t,\omega) - B_H(s,\omega)|}{|t-s|^H \sqrt{\log|t-s|^{-1}}} < +\infty.$$

• There exists a dense set of *slow* points $t \in I$ such that

$$0 < \limsup_{s \to t} \frac{|B_H(t,\omega) - B_H(s,\omega)|}{|t-s|^H} < +\infty.$$

16/21

... and Rosenblatt processes

L. Daw & L.L. (2022)

For all $H_1, H_2 \in (\frac{1}{2}, 1)$ such that $H_1 + H_2 > \frac{3}{2}$, there exists an event Ω_{H_1, H_2} of probability 1 satisfying the following assertions for all $\omega \in \Omega_{H_1, H_2}$ and every $I \neq \emptyset$.

• Almost every $t \in I$ is ordinary:

$$0 < \limsup_{s \to t} \frac{|R_{H_1, H_2}(t, \omega) - R_{H_1, H_2}(s, \omega)|}{|t - s|^{H_1 + H_2 - 1} \log \log |t - s|^{-1}} < +\infty$$

• There exists a dense set of *rapid* points $t \in I$ such that

$$0 < \limsup_{s \to t} \frac{|R_{H_1, H_2}(t, \omega) - R_{H_1, H_2}(s, \omega)|}{|t - s|^{H_1 + H_2 - 1} \log |t - s|^{-1}} < +\infty.$$

• There exists a dense set of *slow* points $t \in I$ such that

$$\limsup_{s \to t} \frac{|R_{H_1, H_2}(t, \omega) - R_{H_1, H_2}(s, \omega)|}{|t - s|^{H_1 + H_2 - 1}} < +\infty.$$

Comparison of the methods and results

	FBM	Rosenblatt
Representation		
Finiteness of the limits		
Positiveness of the limits		
Results		

	FBM	Rosenblatt
Representation	Wavelet series	
Finiteness of the limits		
Positiveness of the limits		
Results		

$$\sum_{j\in\mathbb{N}}\sum_{k\in\mathbb{Z}}2^{-Hj}\xi_{j,k}\psi_{H+1/2}(2^j\cdot-k)+R$$

	FBM	Rosenblatt
Representation	Wavelet series	Wavelet-type series
Finiteness of		
the limits		
Positiveness of		
the limits		
Deculto		
Results		

$$\sum_{(j_1,j_2,k_1,k_2)\in\mathbb{Z}^4} 2^{j_1(1-H_1)+j_2(1-H_2)} \varepsilon_{j_1,j_2}^{k_1,k_2} \int_0^t \psi_{H_1}(2^{j_1}x-k_1)\psi_{H_2}(2^{j_2}x-k_2) \, dx$$

	FBM	Rosenblatt
Representation	Wavelet series	Wavelet-type series
Finiteness of the limits	Find nice upper bounds on the oscillation	Find nice upper bounds on the oscillation
	$ B_H(t,\omega) - B_H(s,\omega) $	$ R_{H_1,H_2}(t,\omega) - R_{H_1,H_2}(s,\omega) $
Positiveness of the limits		
Results		

	FBM	Rosenblatt
Representation	Wavelet series	Wavelet-type series
Finiteness of the limits	Find nice upper bounds on the oscillation	Find nice upper bounds on the oscillation
	$ B_H(t,\omega) - B_H(s,\omega) $	$ R_{H_1,H_2}(t,\omega) - R_{H_1,H_2}(s,\omega) $
Positiveness of the limits	Using wavelet leaders	Using wavelet leaders
Results		

	FBM	Rosenblatt
Representation	Wavelet series	Wavelet-type series
Finiteness of	Find nice upper bounds	Find nice upper bounds
the limits	on the oscillation	on the oscillation
	$ B_H(t,\omega) - B_H(s,\omega) $	$ R_{H_1,H_2}(t,\omega) - R_{H_1,H_2}(s,\omega) $
Positiveness of	Using wavelet leaders	Using wavelet leaders
the limits	directly from	
	the wavelet series	
Results		

	FBM	Rosenblatt
Representation	Wavelet series	Wavelet-type series
Finiteness of	Find nice upper bounds	Find nice upper bounds
the limits	on the oscillation	on the oscillation
	$ B_H(t,\omega) - B_H(s,\omega) $	$ R_{H_1,H_2}(t,\omega) - R_{H_1,H_2}(s,\omega) $
Positiveness of	Using wavelet leaders	Using wavelet leaders
the limits	directly from	estimated from
	the wavelet series	the stochastic integral
Results		

	FBM	Rosenblatt
Representation	Wavelet series	Wavelet-type series
Finiteness of	Find nice upper bounds	Find nice upper bounds
the limits	on the oscillation	on the oscillation
	$ B_H(t,\omega) - B_H(s,\omega) $	$ R_{H_1,H_2}(t,\omega) - R_{H_1,H_2}(s,\omega) $
Positiveness of	Using wavelet leaders	Using wavelet leaders
the limits	directly from	estimated from
	the wavelet series	the stochastic integral
Results		

	FBM	Rosenblatt
Representation	Wavelet series	Wavelet-type series
Finiteness of	Find nice upper bounds	Find nice upper bounds
the limits	on the oscillation	on the oscillation
	$ B_H(t,\omega) - B_H(s,\omega) $	$ R_{H_1,H_2}(t,\omega) - R_{H_1,H_2}(s,\omega) $
Positiveness of	Using wavelet leaders	Using wavelet leaders
the limits	directly from	estimated from
	the wavelet series	the stochastic integral
Results		

	FBM	Rosenblatt
Representation	Wavelet series	Wavelet-type series
Finiteness of	Find nice upper bounds	Find nice upper bounds
the limits	on the oscillation	on the oscillation
	$ B_H(t,\omega)-B_H(s,\omega) $	$ R_{H_1,H_2}(t,\omega) - R_{H_1,H_2}(s,\omega) $
Positiveness of	Using wavelet leaders	Using wavelet leaders
the limits	directly from	estimated from
	the wavelet series	the stochastic integral
Results		

$$\widetilde{c_{j,k}}^M = c_{H_1,H_2} \int_{A \setminus \lambda_{j,k}^M}^{\prime} \int_{-N}^{N} \Psi(x) \int_{\frac{k}{2^j}}^{\frac{x+k}{2^j}} f_{H_1,H_2}(s, x_1, x_2) \, ds \, dx \, dB(x_1) \, dB(x_2)$$

	FBM	Rosenblatt
Representation	Wavelet series	Wavelet-type series
Finiteness of	Find nice upper bounds	Find nice upper bounds
the limits	on the oscillation	on the oscillation
	$ B_H(t,\omega) - B_H(s,\omega) $	$ R_{H_1,H_2}(t,\omega) - R_{H_1,H_2}(s,\omega) $
Positiveness of	Using wavelet leaders	Using wavelet leaders
the limits	directly from	estimated from
	the wavelet series	the stochastic integral
Results	Three types	Three types
	of points	of points

	FBM	Rosenblatt
Representation	Wavelet series	Wavelet-type series
Finiteness of	Find nice upper bounds	Find nice upper bounds
the limits	on the oscillation	on the oscillation
	$ B_H(t,\omega) - B_H(s,\omega) $	$ R_{H_1,H_2}(t,\omega) - R_{H_1,H_2}(s,\omega) $
Positiveness of	Using wavelet leaders	Using wavelet leaders
the limits	directly from	estimated from
	the wavelet series	the stochastic integral
Results	Three types	Three types
	of points	of points
	with $\sqrt{\log(\cdot)}$ and	
	$\sqrt{\log(\log(\cdot))}$	
	corrections	

	FBM	Rosenblatt
Representation	Wavelet series	Wavelet-type series
Finiteness of	Find nice upper bounds	Find nice upper bounds
the limits	on the oscillation	on the oscillation
	$ B_H(t,\omega) - B_H(s,\omega) $	$ R_{H_1,H_2}(t,\omega) - R_{H_1,H_2}(s,\omega) $
Positiveness of	Using wavelet leaders	Using wavelet leaders
the limits	directly from	estimated from
	the wavelet series	the stochastic integral
Results	Three types	Three types
	of points	of points
	with $\sqrt{\log(\cdot)}$ and	with $\log(\cdot)$ and
	$\sqrt{\log(\log(\cdot))}$	$\log(\log(\cdot))$
	corrections	corrections

To show that a property \mathcal{P} holds only on an Haar-null set of a complete metric vector space E, one can exhibit a process X whose sample paths lies in a compact subset of E and such that, for all $f \in E$, almost surely the property \mathcal{P} does not hold for X + f.

To show that a property \mathcal{P} holds only on an Haar-null set of a complete metric vector space E, one can exhibit a process X whose sample paths lies in a compact subset of E and such that, for all $f \in E$, almost surely the property \mathcal{P} does not hold for X + f. Consider the Fréchet space

$$C^{\nearrow h} := \bigcap_{\alpha < h} C^{\alpha}([0,1]),$$

To show that a property \mathcal{P} holds only on an Haar-null set of a complete metric vector space E, one can exhibit a process X whose sample paths lies in a compact subset of E and such that, for all $f \in E$, almost surely the property \mathcal{P} does not hold for X + f. Consider the Fréchet space

$$C^{\nearrow h} := \bigcap_{\alpha < h} C^{\alpha}([0,1]),$$

C. Esser & L.L. (2022)

Let $(\alpha_j)_{j\in\mathbb{N}}$ be a non-decreasing sequence of (0, h) with tends to h. The subset

$$K = \left\{ f \in C^{\nearrow h} : \max_{k \in \{0, \dots, 2^j - 1\}} |c_{j,k}| \leqslant 2^{-\alpha_j j} \ \forall j \in \mathbb{N} \right\}$$

is compact in $C^{\nearrow h}$

19/21

If $(j_n)_{n \in \mathbb{N}}$ is a sequence satisfying $j_{n+1} > j_n + \lfloor \log_2 j_n^2 \rfloor + 1$ and if we set, set $\alpha_n = h - \frac{1}{\sqrt{j_n}}$ for every $n \in \mathbb{N}$. The random wavelets series

$$X = \sum_{n \in \mathbb{N}} \sum_{j=j_n}^{j_{n+1}-1} \sum_{k=0}^{2^j-1} 2^{-\alpha_n j} \varepsilon_{j,k} \psi_{j,k},$$

where $(\varepsilon_{j,k})_{j \in \mathbb{N}, k \in \{0, \dots, 2^j - 1\}}$ is a sequence of independent $\mathcal{U}([-1, 1])$ random variables, takes its values in a compact subset of $C^{\nearrow h}$.

If $(j_n)_{n \in \mathbb{N}}$ is a sequence satisfying $j_{n+1} > j_n + \lfloor \log_2 j_n^2 \rfloor + 1$ and if we set, set $\alpha_n = h - \frac{1}{\sqrt{j_n}}$ for every $n \in \mathbb{N}$. The random wavelets series

$$X = \sum_{n \in \mathbb{N}} \sum_{j=j_n}^{j_{n+1}-1} \sum_{k=0}^{2^j-1} 2^{-\alpha_n j} \varepsilon_{j,k} \psi_{j,k},$$

where $(\varepsilon_{j,k})_{j \in \mathbb{N}, k \in \{0, \dots, 2^j - 1\}}$ is a sequence of independent $\mathcal{U}([-1, 1])$ random variables, takes its values in a compact subset of $C^{\nearrow h}$. For all $f \in C^{\nearrow h}$, the wavelet coefficient of X + f is given by

$$2^{-\alpha_n j}\varepsilon_{j,k} + c_{j,k} = 2^{-\alpha_n j} (\varepsilon_{j,k} + 2^{\alpha_n j} c_{j,k}),$$

where $(c_{j,k})$ are the wavelet coefficients of f. Using Borel-Cantelli Lemma, we show that, for all M,

$$d_{j_n,k} > M2^{-hj_n}$$
 if n is large enough.

20/21

Genericity results

C. Esser & L.L. (2022)

Let h > 0. The set of functions f such that $f \notin C^{h}(t)$ for every $t \in [0,1]$ is prevalent in $C^{\nearrow h}$.

Genericity results

C. Esser & L.L. (2022)

Let h > 0. The set of functions f such that $f \notin C^{h}(t)$ for every $t \in [0, 1]$ is prevalent in $C^{\nearrow h}$.

C. Esser & L.L. (2022)

Let h > 0. The set of functions f such that $f \notin C^{h}(t)$ for every $t \in [0,1]$ is Baire-residual in $C^{\nearrow h}$.

Baire-residual means that it contains a countable intersection of dense open sets.

Generalized Regularity and Stochastic Processes

Laurent Loosveldt

Workshop "Regularity of Stochastic Processes"

May 19th 2022

UNIVERSITÉ DU LUXEMBOURG