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(Pointwise) Hölder spaces
Let x0 P Rd ; a function f P L8

locpRd q belongs to the Hölder space Cαpx0q

(0 ă α ă 1) if there exists C ą 0 s.t., for j large enough,

}f ´ f px0q}L8pBpx0,2´j qq ď C2´jα.
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If f P L8pra, bsq and the constant C ą 0 is uniform, then f belongs to the
uniform Hölder space Cαpra, bsq
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(Pointwise) Hölder spaces
Let x0 P Rd ; a function f P L8

locpRd q belongs to the Hölder space Cαpx0q

(0 ă α ă 1) if

}f ´ f px0q}L8pBpx0,2´j qq ď C2´jα.

hf px0q “ suptα : f P Cαpx0qu.

1/21



Khintchine law of iterated logarithm
Let tBptqutPR be a (two-sided) Brownian motion on a probability space
pΩ,F ,Pq, almost surely, for almost every t P R

lim sup
rÑ0

|Bpt ` rq ´ Bptq|
a

|r | log log |r |´1
“

?
2 (1)

This means that, almost surely, for almost every t , hB ptq “ 1
2 but B R C

1
2 ptq.

Usual Hölder spaces are unadapted to detect precise pointwise behaviours
that we wish to put into evidence.
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Admissible sequences
A sequence σ “ pσj qjPN0 of real positive numbers is called admissible if there
exists a positive constant C such that

C´1σj ď σj`1 ď Cσj ,

for any j P N.

One sets

spσq “ lim
j

log2pσj q

j
, spσq “ lim

j

log2pσj q

j
,

so that for any ε ą 0, there exists C ą 0 s.t. for all j , k

C´12j pspσq´εq ď
σj`k

σk
ď C2j pspσq`εq.
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Admissible sequences

Example
If s P R, s “ p2sj qj is admissible with spsq “ spsq “ s

Definition
A strictly positive function ψ is a slowly varying function if

lim
tÑ0

ψprtq

ψptq
“ 1,

for any r ą 0.

Example
If ψ is a slowly varying function and u P R, the sequence σ “ p2juψp2j qqj is
admissible with spσq “ spσq “ u.
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Generalized Hölder spaces

Definition
Let σ “ pσj qj be an admissible sequence such that 0 ă spσ´1q ď spσ´1q ă 1,
a function f P L8

locpRd q belongs to the pointwise generalized Hölder space
Cσpx0q if there exists C ą 0 s.t., for j large enough,

}f ´ f px0q}L8pBpx0,2´j qq ď Cσj .

Definition
A modulus of continuity is an increasing function θ : R` Ñ R` satisfying
θp0q “ 0 and for which there is C ą 0 such that θp2x q ď C θpx q for all x P R`.

Proposition (D. Kreit and S. Nicolay, 2017)
Letσ “ pσj qj be an admissible sequence. There exists amodulus of continuity
θ such that σj “ θp2´j q if and only ifσ is a non-increasing sequence. Moreover,
we can choose θ continuous at 0 if and only if σ converges to 0.
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Wavelet analysis
Let ψ : R Ñ R be a smooth function satisfying the admissibility condition

ż

R

| pψpξq|

|ξ|
dξ ă 8, (2)

Any function f P L2pRq can be decomposed as

f “
ÿ

jPZ

ÿ

kPZ
cj ,kψp2j ¨ ´kq, (3)

where
cj ,k “ 2j

ż

R
f px qψp2j x ´ kq dx .

The expansion (3) holds true in many function spaces.
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Wavelet analysis on Hölder spaces

Characterization of the uniform spaces (D. Kreit and S. Nicolay)
A function f P L8pRd q belongs to the generalized Hölder space CσpRd q if and
only if there exists C ą 0 such that, for all j P N,

|cj ,k | ď Cσj .

If ψ is a wavelet,

ψj ,k “ 2jψp2j ¨ ´kq is “localized” around the dyadic interval

λj ,k “

„

k

2j
,
k ` 1

2j

˙
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Wavelet analysis on Hölder spaces

Definition
The wavelet leader of scale j at the point x0 is the quantity

dj px0q “ max
λP3λj px0q

sup
λ1Ďλ

|cλ1 |.
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Wavelet analysis on Hölder spaces

Definition
The wavelet leader of scale j at the point x0 is the quantity

dj px0q “ max
λP3λj px0q

sup
λ1Ďλ

|cλ1 |.

Nearly-characterization of the pointwise spaces (D. Kreit, L.L. and S.
Nicolay)
If f belongs to the spaceCσpx0q, then there existsC ą 0 such that, for all j P N,

dj px0q ď Cσj (4)

Conversely, if σj tends to 0 as j tends to 8, if f belongs to C εpRd q for some
ε ą 0, then (4) implies f P Cσ

logpx0q :

}f ´ f px0q}L8pBpx0,2´j qq ď Cσj | logpσj q|. 8/21



Prevalence
To characterize the generecity of this logarithmic correction , we use the
notion of prevalence.

If µ is a Borel measure on an infinite dimensional real normed vector space
which is translation invariant and σ-finite, then it is necessarily null.
ñ One cannot define a proper counterpart to the Lebesgue measure on such
spaces.

In the Euclidean space, it is well known that one can associate a probability
measure µ to a Borel set B such that µpB ` x q vanishes for very x P Rn if and
only if the Lebesgue measure LpBq of B also vanishes
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Prevalence

Prevalence
LetE be a completemetric vector space; a Borel setB ofE is Haar-null if there
exists a compactly-supported probability measure µ such that µpB ` x q “ 0
for every x P E . A subset of E is Haar-null if it is contained in a Haar-null Borel
set; the complement of a Haar-null set is a prevalent set.

‚ if E is finite-dimensional, B is Haar-null if and only if LpBq “ 0,
‚ if E is infinite-dimensional, the compact sets of E are Haar-null,
‚ the translated of a Haar-null set is Haar-null,
‚ a prevalent set is dense in E ,
‚ the intersection of a countable collection of prevalent sets is still

prevalent.
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Prevalence of the logarithmic correction

E ε
8px0q “ tf P C εpRd q : pσ´1

j dj px0qqj P ℓ8u,

equipped with the norm

} ¨ }Eε
8px0q : E ε

8px0q Ñ r0,`8q : f ÞÑ }f }C εpRd q ` }pσ´1
j dj px0qqj }ℓ8 .

L.L. & S. Nicolay (2022)
If x0 P Rd , for all 0 ă ε ă

spσq

4 , from the the prevalence point of view, almost
every function of E ε

8px0q belongs to Cσ
logpx0qzCσ

{s log
px0q.
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Nevertheless...

C. Esser & L.L. (2022)
1. If ψ is compactly supported then, for all j ,

|dj px0q| ď C }f ´ f px0q}L8pBpx0,R2´j qq

where R is computed from the support of the wavelet and C is a positive
constant only depending on the wavelet.
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constant only depending on the wavelet.

2. If ψ P SpRq and σ is an admissible sequence such that

lim sup
jÑ`8

}f ´ f px0q}L8pBpx0,R2´j qq

σj
ă 8

then
lim sup
jÑ`8

|dj px0q|

σj
ă 8
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σj

2. If ψ P SpRq and σ is an admissible sequence

0 ă lim sup
jÑ`8

|dj px0q|

σj
ñ lim sup

jÑ`8

}f ´ f px0q}L8pBpx0,R2´j qq

γj
“ 8

for all γ admissible such that γj “ opσj q if j Ñ `8.
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Regularity of Stochastic Processes
Let tXtutPI (I interval in R) be a stochastic process on the probability space
pΩ,F ,Pq.

Kolmogorov-Censtov
If there exist α ą 0, β ą 0 and a constant C ą 0 such that, for all s, t P I ,

ErpXs ´ Xtq
αs ď C |s ´ t |β

then there is a version of tXtutPI whose paths belong to C γpx0q, for all x0 P I
and 0 ă γ ă

β
α .It means that, almost surely, for all x0 P I , hX px0q ě

β
α .
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Stochastic Processes and Wavelets : How?
How to obtain wavelet coefficients and wavelet (type) expansion for
stochastic processes?

1. If X is smooth enough,
˝ For all ω P Ω, one can apply the wavelet expansion to the simple path
t ÞÑ X pt , ωq.

˝ This way, one defines a sequence of random wavelet coefficients
pcj ,k pωqqj ,kPZ.

2. If X can be written as
ż

f pt , sqµpdsq

where µ is a random measure and f is a deterministic function such that,
for all t , s ÞÑ f pt , sq is square-integrable

˝ For all t , one can apply the wavelet expansion to s ÞÑ f pt , sq

˝ After some works we can get random series converging to X involving the
wavelet coefficient cptq

λ of s ÞÑ f pt , sq and the random variables
ş

ψλpsqµpdsq.
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Stochastic Processes and Wavelets : Why?

1. (Numerical) approximation

2. One can enjoy the nice properties of wavelet analysis in our study:
˝ Compactly supported wavelet OR
˝ Functions with fast decay

3. One can use the information provided by wavelet leaders
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Some results concerning FBM...

C. Esser & L.L. (2022)
For all H P p0, 1q, there exists an event ΩH of probability 1 satisfying the following
assertions for all ω P ΩH and every non-empty interval I of R.

‚ Almost every t P I is ordinary:

0 ă lim sup
sÑt

|BH pt , ωq ´ BH ps, ωq|

|t ´ s|H
a

log log |t ´ s|´1
ă `8.

‚ There exists a dense set of rapid points t P I such that

0 ă lim sup
sÑt

|BH pt , ωq ´ BH ps, ωq|

|t ´ s|H
a

log |t ´ s|´1
ă `8.

‚ There exists a dense set of slow points t P I such that

0 ă lim sup
sÑt

|BH pt , ωq ´ BH ps, ωq|

|t ´ s|H
ă `8.
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... and Rosenblatt processes

L. Daw & L.L. (2022)
For allH1,H2 P p 1

2 , 1q such thatH1`H2 ą 3
2 , there exists an eventΩH1,H2

of probability
1 satisfying the following assertions for all ω P ΩH1,H2

and every I ‰ H.

‚ Almost every t P I is ordinary:

0 ă lim sup
sÑt

|RH1,H2
pt , ωq ´ RH1,H2

ps, ωq|

|t ´ s|H1`H2´1 log log |t ´ s|´1
ă `8.

‚ There exists a dense set of rapid points t P I such that

0 ă lim sup
sÑt

|RH1,H2
pt , ωq ´ RH1,H2

ps, ωq|

|t ´ s|H1`H2´1 log |t ´ s|´1
ă `8.

‚ There exists a dense set of slow points t P I such that

lim sup
sÑt

|RH1,H2
pt , ωq ´ RH1,H2

ps, ωq|

|t ´ s|H1`H2´1
ă `8.
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Comparison of the methods and results

FBM Rosenblatt
Representation
Finiteness of Find nice upper bounds Find nice upper bounds
the limits
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the limits

Results
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ÿ

jPN

ÿ

kPZ
2´Hj ξj ,kψH`1{2p2j ¨ ´kq ` R
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Comparison of the methods and results

FBM Rosenblatt
Representation Wavelet series Wavelet-type series
Finiteness of Find nice upper bounds Find nice upper bounds
the limits

Positiveness of
the limits

Results

ÿ

pj1,j2,k1,k2qPZ4

2j1p1´H1q`j2p1´H2qεk1,k2j1,j2

ż t

0

ψH1p2j1x ´ k1qψH2p2j2x ´ k2q dx
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M
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1

λM
j ,k

ż N

´N
Ψpxq

ż x`k

2j

k
2j

fH1,H2
ps, x1, x2q ds dx dBpx1q dBpx2q, λ

M
j ,k :“

ȷ

k ´ NM

2j
,
k ` N

2j
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Stochastic processes serving Generalized
Hölder spaces

To show that a property P holds only on an Haar-null set of a complete metric
vector space E , one can exhibit a process X whose sample paths lies in a
compact subset of E and such that, for all f P E , almost surely the property P
does not hold for X ` f . Consider the Fréchet space

CÕh :“
č

αăh

Cαpr0, 1sq,

C. Esser & L.L. (2022)
Let pαj qjPN be a non-decreasing sequence of p0, hq with tends to h. The subset

K “

"

f P CÕh : max
kPt0,...,2j ´1u

|cj ,k | ď 2´αj j @j P N
*

is compact in CÕh
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Stochastic processes serving Generalized
Hölder spaces
If pjnqnPN is a sequence satisfying jn`1 ą jn ` tlog2 j

2
n u ` 1 and if we set, set

αn “ h ´ 1?
jn

for every n P N. The random wavelets series

X “
ÿ

nPN

jn`1´1
ÿ

j“jn

2j ´1
ÿ

k“0

2´αn j εj ,kψj ,k ,

where pεj ,k qjPN,kPt0,...,2j ´1u is a sequence of independent Upr´1, 1sq random
variables, takes its values in a compact subset of CÕh .

For all f P CÕh , the
wavelet coefficient of X ` f is given by

2´αn j εj ,k ` cj ,k “ 2´αn j pεj ,k ` 2αn j cj ,k q,

where pcj ,k q are the wavelet coefficients of f . Using Borel-Cantelli Lemma, we
show that, for all M ,

djn ,k ą M 2´hjn if n is large enough.
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Genericity results

C. Esser & L.L. (2022)
Let h ą 0. The set of functions f such that f R C hptq for every t P r0, 1s is
prevalent in CÕh .

C. Esser & L.L. (2022)
Let h ą 0. The set of functions f such that f R C hptq for every t P r0, 1s is
Baire-residual in CÕh .

Baire-residual means that it contains a countable intersection of dense open
sets.
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