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Let 2o € R? a function f € L* (R%) belongs to the Holder space C(x)

loc
(0 < a < 1) if there exists C' > 0 s.t., for j large enough,

If = £ (20) | 2o (B (20,2-1)) < C277%.
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If f € L*([a, b]) and the constant C' > 0 is uniform, then f belongs to the
uniform Holder space C“([a, b])
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If = £ (20) | 2o (B (20,2-1)) < C277%.

h”(x) =0,6
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Let 25 € R a function f € L (R?) belongs to the Holder space C* ()
O<a<1)if

If = £ (20) | 2o (B (20,2-1)) < C277%.

h¢ (o) = sup{a : f € C%(x0)}.




Khintchine law of iterated logarithm il

UNIVERSITE DU
LUXEMBOURG

Let {B(t)}sr be a (two-sided) Brownian motion on a probability space
(Q, F,P), almost surely, for almost every t e R

Jimn sup |B(t+71)— B(t)1| _ 2

r—0 /[r[loglog|r|~
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Let {B(t)}sr be a (two-sided) Brownian motion on a probability space
(Q, F,P), almost surely, for almost every t e R

timsup 2D = BOL_ 5 (1)

70 |r|loglog |r|~
This means that, almost surely, for almost every ¢, hp(t) = % but B ¢ Cz ().

Usual Holder spaces are unadapted to detect precise pointwise behaviours
that we wish to put into evidence.
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A sequence o = (0;),en, Of real positive numbers is called admissible if there
exists a positive constant C' such that

C_lo'j < 0j41 < Coj, J
forany j € N.
One sets
lo ; T
s(0) = tim 2 ) i 10820%) J
J J J J

so that for any ¢ > 0, there exists C > 0 s.t. forall 5, k

0—12j(§(‘7)_5) < Tj+k < CQJ(E(U)+5)_ J
Ok
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Example
If s e R, s = (2¥); is admissible with s(s) = 5(s) = s

Definition
A strictly positive function 1 is a slowly varying function if

P(rt)

haASLZA

0 (0)

forany r > 0.
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Example
If s e R, s = (2¥); is admissible with s(s) = 5(s) = s

Definition

A strictly positive function 1 is a slowly varying function if
o p(rt)
@ b

forany r > 0.

Example
If ¢ is a slowly varying function and u € R, the sequence o = (27%4)(27)); is
admissible with s(o) = 5(0) = u.
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Definition
Let o = (0;),; be an admissible sequence such that 0 < s(o™!) <s(c!) < 1,
a function f e L* (R?%) belongs to the pointwise generalized Hélder space

loc
C? (1) if there exists C' > 0 s.t., for j large enough,

If = f(@0)|l Lo (B(a0,2-3)) < Coj-
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Definition
Let o = (0;),; be an admissible sequence such that 0 < s(o™!) <s(c!) < 1,
a function f e L* (R?%) belongs to the pointwise generalized Hélder space

loc
C? (1) if there exists C' > 0 s.t., for j large enough,

If = f(@0)|l Lo (B(a0,2-3)) < Coj-

Definition
A modulus of continuity is an increasing function § : Rt — RT satisfying
6(0) = 0 and for which there is C' > 0 such that §(2z) < C6(z) forall z € R™.

Proposition (D. Kreit and S. Nicolay, 2017)

Leto = (0;), be an admissible sequence. There exists a modulus of continuity
¢ suchthato; = 6(277) if and only if o is a non-increasing sequence. Moreover,
we can choose # continuous at 0 if and only if o converges to 0.
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Let¢y : R — R be a smooth function satisfying the admissibility condition
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Let¢y : R — R be a smooth function satisfying the admissibility condition

R !fl
Any function f € L?(R) can be decomposed as
F=2 (@ —k), 3)
JEZ kel
where

c]k—2]ff V(2 — k) de.

The expansion (3) holds true in many function spaces.
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Characterization of the uniform spaces (D. Kreit and S. Nicolay)
A function f e L*(R¢) belongs to the generalized Holder space C°(R?) if and
only if there exists C' > 0 such that, for all j € N,

|C]"k| < CO']‘.

If ¢ is a wavelet,

V5 = 2/9(27 - —k) is “localized” around the dyadic interval

E k+1
vi= g
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Definition
The wavelet leader of scale j at the point 1 is the quantity

dj(zp) = max sup |cy|.

Ae3X;(z0) M

Nearly-characterization of the pointwise spaces (D. Kreit, L.L. and S.

Nicolay)
If f belongs to the space C? (1), then there exists C' > 0 such that, forall j € N,

dj(z) < Co; 4)

Conversely, if o; tends to 0 as j tends to o, if f belongs to C¢(R¢) for some
e > 0, then (4) implies f € 7, (a0) :

If — f(20) ]| oo (B(g.2-7)) < Coj|log(o;)|.
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To characterize the generecity of this logarithmic correction , we use the
notion of prevalence.

If 1. is a Borel measure on an infinite dimensional real normed vector space
which is translation invariant and o-finite, then it is necessarily null.

= One cannot define a proper counterpart to the Lebesgue measure on such
spaces.

In the Euclidean space, it is well known that one can associate a probability
measure . to a Borel set B such that (B + z) vanishes for very z € R" if and
only if the Lebesgue measure £(B) of B also vanishes
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Let E be a complete metric vector space; a Borel set B of E is Haar-null if there

exists a compactly-supported probability measure p such that u(B + z) = 0
for every x € E. A subset of F is Haar-null if it is contained in a Haar-null Borel
set; the complement of a Haar-null set is a prevalent set.
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Prevalence

Let E be a complete metric vector space; a Borel set B of E is Haar-null if there
exists a compactly-supported probability measure p such that u(B + z) = 0
for every x € E. A subset of F is Haar-null if it is contained in a Haar-null Borel
set; the complement of a Haar-null set is a prevalent set.

LUXEMBOURG

if £ is finite-dimensional, B is Haar-null if and only if £(B) = 0,
if F is infinite-dimensional, the compact sets of £ are Haar-null,
the translated of a Haar-null set is Haar-null,

a prevalent set is dense in F,

the intersection of a countable collection of prevalent sets is still
prevalent.
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B (w) = {f € C°(RY) : (Jj_ldj(xo))j € (™},
equipped with the norm

| lms )+ B (20) = [0,+00) = f = Ifl geqray + (05 dj(20)); e
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B (w) = {f € C°(RY) : (Jj_ldj(zro))j € (™},
equipped with the norm

|55y = EZ(a0) = [0,4+90) + f > [fll o= may + (05" dj(20))] e

L.L. & S. Nicolay (2022)
If 2 € R%, forall0 < ¢ < M from the the prevalence point of view, almost
every function of EZ (zo) beIongs to G7, (20)\C7 4 (70)-
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C.Esser & L.L. (2022)
1. If ¢ is compactly supported then, for all ;,

|dj (20)| < CIlf — f(20)ll Lo (B(a0,R2-7))

where R is computed from the support of the wavelet and C'is a positive
constant only depending on the wavelet.
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C.Esser & L.L. (2022)
1. If ¢ is compactly supported then, for all ;,

|dj (20)| < CIIf — f(20)ll L0 (B(a0,R2-7))

where R is computed from the support of the wavelet and C'is a positive
constant only depending on the wavelet.

2. If ¢ € S(R) and o is an admissible sequence such that

I = £ (@) = (B, R2-)) _

lim sup
jo+oo 9j
then ;
lim sup M < o0

jotoo  0j
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C. Esser & L.L. (2022)
1. If ¢ is compactly supported then, for all j,

d:
0< limsupM = 0 < limsu
joto T jo+o0 75

. If — f(ﬂ?O)||L°0(B(x0,R2ﬂ'))

2. If ¢ € S(R) and o is an admissible sequence such that

lim sup I/ _f(x())||Loo(B($O,R2_j)) o

then y
lim sup —| ](xo)|
joto  Oj

< O
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C.Esser & L.L. (2022)
1. If ¢ is compactly supported then, for all j,

d4
0< limsupM =0 < lims
joto G jotoo 9j

w Ilf = f(20)[| 2o (B(20, R27))

2. If ¢ € S(R) and o is an admissible sequence

d.
0< limsupM = lims
Jj—+o 0j j—+0o Yi

- If = £ (@)l z (B, R2)) _

for all v admissible such that ~; = o(o;) if j — +o0.
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If there exist o > 0, 3 > 0 and a constant C' > 0 such that, forall s, ¢ € I,

E[(X, — X;)*] < Cls — ¢)°

then there is a version of {X;}:c; whose paths belong to C7(x), for all 2y € T
and0 < v < g
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Let {X;}s (1 interval in R) be a stochastic process on the probability space
(Q,F,P).

Kolmogorov-Censtov
If there exist o > 0, 3 > 0 and a constant C' > 0 such that, forall s, ¢ € I,

E[(X, — X;)*] < Cls — ¢)°

then there is a version of {X;}:c; whose paths belong to C7(x), for all 2y € T

or
and 0 < y < 2.1t means that, almost surely, for all 2 € I, hx () = 2.
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o Forall w € Q, one can apply the wavelet expansion to the simple path
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2. If X can be written as
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where 1 is a random measure and f is a deterministic function such that,
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How to obtain wavelet coefficients and wavelet (type) expansion for
stochastic processes?
1. If X is smooth enough,
o Forall w € Q, one can apply the wavelet expansion to the simple path
t— X(t,w).
o This way, one defines a sequence of random wavelet coefficients
(¢j,k(W))j kez-
2. If X can be written as

ff(t,S) u(ds)

where 1 is a random measure and f is a deterministic function such that,
forall t, s — f(t,s) is square-integrable
o For all ¢, one can apply the wavelet expansionto s — f(¢,s)
o After some works we can get random series converging to X involving the
wavelet coefficient c§“ of s — f(¢,s) and the random variables

§¥a(s) u(ds).
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1. (Numerical) approximation
2. One can enjoy the nice properties of wavelet analysis in our study:

o Compactly supported wavelet OR
o Functions with fast decay

3. One can use the information provided by wavelet leaders
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C. Esser & L.L. (2022)

For all H € (0,1), there exists an event Q5 of probability 1 satisfying the following
assertions for all w € Q5 and every non-empty interval 7 of R.

® Almost every ¢ € I is ordinary:

0 < limsup |BH(t,u.))—BH(8,UJ)|

s—t |t — s|H4/loglog|t — s|~1

® There exists a dense set of rapid points ¢ € I such that

< +0.

0 < limsup |BH(t7w) - BH(57W)|

s—t |t —s|H4/log|t — s|~!

® There exists a dense set of slow points ¢ € I such that

< 4.

0 < lim sup |BH(t7w) - BH(57W)|

< +00.
s—t |t—s|H
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L. Daw & L.L. (2022)

Forall Hy, H, € (,1) suchthat H, + H, > 2, there exists an event Q, x, of probability
1 satisfying the following assertions for all w € Qp, g, and every I # .

® Almost every ¢ € [ is ordinary:

X |RH Jae (t w) — Ry, u (S w)|
0 <1 1,112 U 1,112 )
H?_S,]tlp |t — s|HitH2=1]oglog |t — s|~!

< 4.

® There exists a dense set of rapid points ¢ € I such that

. |Rery i1, (8, w) — Ry w1, (5, w)]
0<1 1,412 1,412
TSP e — 5| Bt BT log [t — 5|1

< +00.

® There exists a dense set of slow points ¢ € I such that

|RH1,H2(tvw) — RH1,H2(57W)|
|t _ S|H1+H2—1

lim sup < +00.

s—1
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vector space E, one can exhibit a process X whose sample paths liesin a
compact subset of F and such that, for all f € E, almost surely the property P
does not hold for X + f.
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Holder spaces

To show that a property P holds only on an Haar-null set of a complete metric
vector space F, one can exhibit a process X whose sample paths liesin a
compact subset of F and such that, for all f € E, almost surely the property P
does not hold for X + f. Consider the Fréchet space

= () ¢([0,1]),

a<h

C.Esser & L.L. (2022)
Let (o);en be a non-decreasing sequence of (0, 2) with tends to ~. The subset

K= {f e C7M:  max ¢l <274 V) eN}
ke{0,...,29 -1}

is compactin ¢/
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Holder spaces

If (j,)nen is @ sequence satisfying j, .1 > jn + |log, 2] + 1 and if we set, set
ap =h— % for every n € N. The random wavelets series

Jng1—127—

X = Z Z Z 2 anjej kwj k>

neN j=j, k=0

-----

variables, takes its vaIues in a compact subset of 7.
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Holder spaces

If (j,)nen is @ sequence satisfying j, .1 > jn + |log, 2] + 1 and if we set, set
a, = h — —— for every n € N. The random wavelets series

AV JIn
Jn+1—127 -1
X=2 2 22 et
neN j=j, k=0

where (g k) jen,kefo,....21—1} IS @ sequence of independent /([—1, 1]) random

variables, takes its values in a compact subset of C". For all f e C/*, the
wavelet coefficient of X + f is given by

27 e+ ¢ =27 (g5k + 29 ¢ k),

where (¢; 1) are the wavelet coefficients of f. Using Borel-Cantelli Lemma, we
show that, for all M,

d;, , > M27" if n is large enough.
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Let » > 0. The set of functions f such that f ¢ C"(t) for every ¢t € [0,1] is
prevalent in C%.
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C.Esser & L.L. (2022)
Let » > 0. The set of functions f such that f ¢ C"(t) for every ¢t € [0,1] is
prevalentin C".

C.Esser & L.L. (2022)
Let h > 0. The set of functions f such that f ¢ C"(t) for every ¢ € [0,1] is
Baire-residual in C7".
Baire-residual means that it contains a countable intersection of dense open
sets.
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