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Results of Kahane about Brownian motion
Let B denote the standard Brownian motion on R. The Khinchin law of the
iterated logarithm allows to control the behavior of B at a given point, in the
sense that for every t ∈ R, it holds

lim sup
r→0

|B (t + r ) − B (t) |√︁
|r | log log |r |−1

=
√
2 (1)

on an event of probability one.
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There exists exceptional points, called fast points, where the law of the
iterated logarithm fails.
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Kahane used the expansion of the Brownian motion in the well-chosen
Faber-Schauder system, to propose an easy way to study its regularity and
irregularity properties. It allows to recover the law of the iterated logarithm
and the estimation of the modulus of continuity of the Brownian motion.
Furthermore, Kahane obtained the existence of a third category of points,
presenting a slower oscillation: 1/26



Results of Kahane about Brownian motion
for every t ∈ R, it holds

lim sup
r→0

|B (t + r ) − B (t) |√︁
|r | log log |r |−1

=
√
2 (1)

on an event of probability one.
almost surely, one has

lim sup
r→0

sup
t ∈[0,1]

|B (t + r ) − B (t) |√︁
|r | log |r |−1

=
√
2.

there exist points, called slow points, satisfy the condition

lim sup
r→0

|B (t + r ) − B (t) |√︁
|r |

< +∞.
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The Faber-Schauder System

Λ(x ) =


x if 0 ≤ x < 1

2

1 − x if 1
2 ≤ x < 1

0 otherwise
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The Faber-Schauder System

Λ(x ) =


x if 0 ≤ x < 1

2

1 − x if 1
2 ≤ x < 1

0 otherwise

Let 𝜀 and (𝜀j ,k )j ∈N,0≤k ≤2j−1 be iid N(0, 1) random variables, for all t ∈ [0, 1] ,
set

B (t) =
+∞∑︁
j=0

2j−1∑︁
k=0

𝜀j ,k2
−j /2Λ(2j t − k ) + 𝜀t .

B = {B (t) : t ∈ [0, 1]} is a Brownian motion on [0, 1].
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The Faber-Schauder System

𝜓(x ) =


1 if 0 ≤ x < 1

2

−1 if 1
2 ≤ x < 1

0 otherwise

is the Haar wavelet.
Let 𝜀 and (𝜀j ,k )j ∈N,0≤k ≤2j−1 be iid N(0, 1) random variables, for all t ∈ [0, 1] ,
set

B (t) =
+∞∑︁
j=0

2j−1∑︁
k=0

𝜀j ,k2
−j /2Λ(2j t − k ) + 𝜀t .

B = {B (t) : t ∈ [0, 1]} is a Brownian motion on [0, 1].
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Wavelets
Under some general assumptions, there exist two functions 𝜙 and 𝜓, called
wavelets, which generate two orthonormal bases of L2(R).Namely

{𝜙(· − k )}k ∈Z ∪ {𝜓(2j · −k ) : j ∈ N, k ∈ Z}

and
{𝜓(2j · −k ) : j ∈ Z, k ∈ Z}.
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Wavelets
Under some general assumptions, there exist two functions 𝜙 and 𝜓, called
wavelets, which generate two orthonormal bases of L2(R).
Any function f ∈ L2(R) can be decomposed as follows,

f =
∑︁
k ∈Z

Ck𝜙(· − k ) +
∑︁
j ∈N

∑︁
k ∈Z

cj ,k𝜓(2j · −k ) =
∑︁
j ∈Z

∑︁
k ∈Z

cj ,k𝜓(2j · −k )

where
cj ,k = 2j

∫
R
f (x )𝜓(2j x − k ) dx

and
Ck =

∫
Rn

f (x )𝜙(x − k ) dx .
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Under some general assumptions, there exist two functions 𝜙 and 𝜓, called
wavelets, which generate two orthonormal bases of L2(R).∫

R
𝜓(x )dx = 0.
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Wavelets
Under some general assumptions, there exist two functions 𝜙 and 𝜓, called
wavelets, which generate two orthonormal bases of L2(R).∫

R
𝜓(x )dx = 0.

• 𝜙 and 𝜓 belong to the Schwartz class S(R).
• 𝜙 and 𝜓 are compactly supported.
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Wavelets
One can also work with biorthogonal wavelets bases : a couple of two two
Riesz wavelet bases of L2(R) generated respectively by 𝜓 and 𝜓 and such that

2j /22j
′/2

∫
R
𝜓(2j x − k )𝜓(2j ′x − k ′)dx = 𝛿j ,j ′𝛿k ,k ′ .

In that case, any function f ∈ L2(R) can be decomposed as

f =
∑︁
j ∈Z

∑︁
k ∈Z

cj ,k𝜓(2j · −k )

where
cj ,k = 2j

∫
R
f (x )𝜓(2j x − k )dx .
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Wavelets expansion of Fractional Brownian
Motion

Y. Meyer – F. Sellan – M. S. Taqqu (1999)
If𝜓 is a Lemarié-Meyerwavelet (in the Schwartz class), any fractional Brownian
motion Bh of Hurst index h ∈ (0, 1) can be written as

Bh (t) =
∑︁
j ∈N

∑︁
k ∈Z

2−hj 𝜉j ,k𝜓h+1/2(2j t − k ) + R(t) (2)

where R is a smooth process, (𝜉j ,k )j ∈N,k ∈Z is a sequence of independent
N(0, 1) random variables, and 𝜓𝛼 is a fractional primitive of 𝜓. Note that such
a function leads to a biorthogonal wavelet basis.
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Systematic study of gaussian wavelet series
We consider any function of the form

fh =
∑︁
j ∈N

∑︁
k ∈Z

𝜉j ,k2
−hj𝜓(2j · −k ) (3)

where (𝜉j ,k ) (j ,k ) ∈N×Z denote a sequence of independent N(0, 1) random
variables and where 𝜓 is any compactly supported or smooth wavelet.
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Systematic study of gaussian wavelet series
We consider any function of the form

fh =
∑︁
j ∈N

∑︁
k ∈Z

𝜉j ,k2
−hj𝜓(2j · −k ) (3)

We will study the precise pointwise regularity of fh with the help of different
moduli of continuity: an increasing function 𝜔 : R+ → R+ satisfying 𝜔(0) = 0
and for which there is C > 0 such that 𝜔(2x ) ≤ C𝜔(x ) for all x ∈ R+.
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fh =
∑︁
j ∈N

∑︁
k ∈Z

𝜉j ,k2
−hj𝜓(2j · −k ) (3)

𝜔 : R+ → R+ satisfying 𝜔(0) = 0 and for which there is C > 0 such that
𝜔(2x ) ≤ C𝜔(x ) for all x ∈ R+. Wavelet characterizations of regularity require
the following additional regularity property for moduli of continuity:

∞∑︁
j=J

2Nj𝜔(2−j ) ≤ C2NJ𝜔(2−J )

J∑︁
j=−∞

2(N+1)j𝜔(2−j ) ≤ C2(N+1)J𝜔(2−J )
(4)
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Systematic study of gaussian wavelet series
We consider any function of the form

fh =
∑︁
j ∈N

∑︁
k ∈Z

𝜉j ,k2
−hj𝜓(2j · −k ) (3)

• the modulus of continuity 𝜔r of the rapid points is defined by

𝜔
(h)
r (x ) = |x |h

√︁
log |x |−1

• the modulus of continuity 𝜔o of the ordinary points is defined by

𝜔
(h)
o (x ) = |x |h

√︁
log log |x |−1

• the modulus of continuity 𝜔s of the slow points is defined by

𝜔
(h)
s (x ) = |x |h .
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Regularity properties
We want to bound |f (s) − f (t) | for (s , t) ∈ (0, 1), by the mean of one of the
three moduli of continuity.

In each situation we use the same strategy:
1. For all j , we set

fh ,j :=
∑︁
k ∈Z

𝜉j ,k2
−hj𝜓(2j · −k )

Almost surely, fh ,j is differentiable, we work on this event of probability 1.
2. Let 𝜈 ∈ N be such that 2−𝜈 < |t − s | ≤ 2−𝜈+1.
3. For all j ≤ 𝜈, use mean value theorem to get x ∈ (s , t) such that

|fh ,j (t) − fh ,j (s) | ≤ |t − s | |Dfh ,j (x ) | ≤ 2(1−h)j |t − s |
∑︁
k ∈Z

|𝜉j ,k | |𝜓(2j x − k ) |

4. For all j > 𝜈, we bound separately |fh ,j (t) | and |fh ,j (s) |.
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Rapid points

A. Ayache – M.S. Taqqu (2003)
There are an eventΩ∗ of probability 1 and a positive random variableC2 of finite
moment of every order such that, for all 𝜔 ∈ Ω∗ and (j , k ) ∈ Z2, the inequality

|𝜉j ,k (𝜔) | ≤ C2(𝜔)
√︁
log(3 + |j | + |k |)

holds.
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Rapid points

C. Esser – L.L. (2021)
Almost surely, there exists a constant C1 > 0 such that, for all t , s ∈ (0, 1) we
have

|fh (s) − fh (t) | ≤ C1 |t − s |h
√︁
log |t − s |−1.
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Rapid points

C. Esser – L.L. (2021)
Almost surely, there exists a constant C1 > 0 such that, for all t , s ∈ (0, 1) we
have

|fh (s) − fh (t) | ≤ C1 |t − s |h
√︁
log |t − s |−1.

Idea of the proof : we use the fast decay of the Wavelet to reduce to bound
terms of the form∑︁

|k | ≤2j+1

√︁
log(3 + j + |k |)
(1 + |2j x − k |)4 +

∑︁
|k |>2j+1

√︁
log(3 + j + |k |)
(1 + |2j x − k |)5
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Ordinary points
If j ∈ N0, and t ∈ (0, 1), we denote by kj (t) the unique positive integer in
{0, . . . , 2j − 1} such that t ∈ [kj (t)2−j , (kj (t) + 1)2−j ).
Using a reindexation of N × Z , almost surely, there are an event Ω∗

t of
probability 1 and a positive random variable Ct of finite moment of every
order such that, for all 𝜔 ∈ Ω∗ and (j , k ) ∈ N × Z,

|𝜉j ,k | ≤ Ct

√︃
log(3 + j + |k − kj (t) |).
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Ordinary points

C. Esser – L.L. (2021)
Almost surely, for almost every t ∈ (0, 1),

lim sup
s→t

|fh (s) − fh (t) |
|t − s |h

√︁
log log |t − s |−1

< +∞.
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Ordinary points

C. Esser – L.L. (2021)
Almost surely, for almost every t ∈ (0, 1),

lim sup
s→t

|fh (s) − fh (t) |
|t − s |h

√︁
log log |t − s |−1

< +∞.

Idea of the proof: fix t , on Ω∗
t , we reduce to bound terms of the form∑︁

k ∈𝜅tj (n)

√︁
log(3 + j + |k − kj (t) |)

(1 + |2j x − k |)4 +
∑︁

k∉𝜅tj (n)

√︁
log(3 + j + |k − kj (t) |)

(1 + |2j x − k |)4

where
𝜅tj (n) = {k ∈ Z : |k − kj (t) | ≤ n}

for some n well chosen. Conclusion by Fubini Theorem. 8/26



Slow points

C. Esser – L.L. (2021)
Almost surely, there exists t ∈ (0, 1) such that

lim sup
s→t

|fh (s) − fh (t) |
|x |h

< +∞.
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Slow points – Kahane procedure
m such that 1

m < h , 𝜇 fixed (for now)

At distance 0, is the realisation of the associated g.r.v. between 𝜇 and 2𝜇?
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At distance 2lm is the realisation of the associated g.r.v. between 2l 𝜇 and
2l+1𝜇?
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Slow points – Kahane procedure
m such that 1

m < h , 𝜇 fixed (for now)

If we answer NO at each step, we keep the dyadic interval
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Slow points – Kahane procedure
m such that 1

m < h , 𝜇 fixed (for now)

If we answer YES at one step

10/26



Slow points – Kahane procedure
m such that 1

m < h , 𝜇 fixed (for now)

If we answer YES at one step, we kill the dyadic interval
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Slow points – Kahane procedure
m such that 1

m < h , 𝜇 fixed (for now)

We denote by F 𝜇

j the union of remaining intervals at step j , we want to show
that, almost surely, there exists 𝜇 ∈ N such that

S
𝜇

low(𝜔) =
⋂
j

F
𝜇

j ≠ ∅

which is equivalent to the fact that, for all J ∈ N0,

S
𝜇

low,J
(𝜔) =

⋂
j ≤J

F
𝜇

j

is non-empty.
10/26



Slow points – Kahane procedure
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Slow points – Kahane procedure
m such that 1

m < h , 𝜇 fixed (for now)

We denote by N 𝜇

J
(𝜔) the number of subintervals of S 𝜇

low,J
, we want to show

that

P(
⋃
𝜇

⋂
J

(N 𝜇

J
≥ 1)) = 1.
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Slow points – Kahane procedure
m such that 1

m < h , 𝜇 fixed (for now)

If N 𝜇

J
= N , deciding wether erasing a given interval because of an interval at

distance between 2ml and 2m (l+1) is a Bernoulli trial of parameter

pl (𝜇) = P(2l 𝜇 < |𝜉 | ≤ 2l+1𝜇).
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distance between 2l 𝜇 and 2l+1𝜇 is a Bernoulli trial of parameter

pl (𝜇) = P(2l 𝜇 < |𝜉 | ≤ 2l+1𝜇).

By Tchebycheff’s inequality applied on B(2N , pl (𝜇)) laws, this will remove at
most

2N (2ml+1 + 1) (pl (𝜇) + l
√︁
pl (𝜇) (1 − pl (𝜇)))

intervals with probability greater than 1 −N −1.
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J
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distance between 2ml and 2m (l+1) is a Bernoulli trial of parameter

pl (𝜇) = P(2l 𝜇 < |𝜉 | ≤ 2l+1𝜇).
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2N (pl (𝜇) + l
√︁
pl (𝜇) (1 − pl (𝜇)))

intervals with probability greater than 1 −N −1. In total, we remove at most

2N
+∞∑︁
l=0

(2ml+1 + 1) (pl (𝜇) + l
√︁
pl (𝜇) (1 − pl (𝜇)))

intervals with probability greater than 1 −N −1. 10/26



Slow points – Kahane procedure
m such that 1

m < h , 𝜇 great enough.

P(N 𝜇

J+1 ≥ 3

2
NJ |N 𝜇

J
= N ) ≥ 1 −N −1

10/26



Slow points – Kahane procedure
m such that 1

m < h , 𝜇 great enough.

P(N 𝜇

J+1 ≥ (3
2
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2
N

𝜇
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) ∩ (N 𝜇

J
≥ (3

2
)J ))

=
∑︁

N ≥( 32 )J
P(N 𝜇
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2
NJ |N 𝜇

J
= N )P(N 𝜇

J
= N )

≥
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J
= N )

≥ (1 − (2
3
)J )
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N ≥( 32 )J

P(N 𝜇

J
= N )

= (1 − (2
3
)J )P(N 𝜇

J
≥ (3

2
)J ).
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Slow points – Kahane procedure
m such that 1

m < h , 𝜇 great enough.

For all J ≥ J1

P(N 𝜇

J
≥ 1) ≥ P(N 𝜇

J
≥ (3

2
)J )

≥ P(N 𝜇

J1
≥ (3

2
)J1)

(
J∏

j=J1

(1 − (2
3
)j )

)
.
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For all 𝜀 > 0, as

lim
J1→+∞

+∞∏
j=J1

(1 − (2
3
)j ) = 1,

one can choose J1 such that
+∞∏
j=J1

(1 − (2
3
)j ) > 1 − 𝜀.
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(1 − (2
3
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By increasing 𝜇 if necessary, we can choose to remove the intervals [0, 2−J1]
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𝜇
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, if necessary, and assume
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2
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3
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2
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and thus

P
( ⋂
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(N 𝜇

J
≥ 1)

)
≥ P(N 𝜇
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≥ (3

2
)J1)

( ∞∏
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(1 − (2
3
)j )

)
> (1 − 𝜀)2.
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Slow points – Kahane procedure
m such that 1

m < h , 𝜇 great enough.

In total, we showed that, for all 0 < 𝜀 < 1
2 ,

P
( ⋃
𝜇∈N

⋂
J ∈N0

(N 𝜇

J
≥ 1)

)
> (1 − 𝜀)2.
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Slow points

C. Esser – L.L. (2021)
Almost surely, there exists t ∈ (0, 1) such that

lim sup
s→t

|fh (s) − fh (t) |
|x |h

< +∞.

Idea of the proof :

Λ0
j (t) = {0 ≤ k < 2j : |kj (t) − k | ≤ 1}

and, for all 1 ≤ l

Λl
j (t) = {0 ≤ k < 2j : 2m (l−1) < |kj (t) − k | ≤ 2ml },

+∞∑︁
l=0

∑︁
k ∈Λl (t)

|𝜉j ,k | |
1

(3 + |2j x − k |)4
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Irregularity properties

C. Esser – L.L. (2021)
1. If 𝜓 ∈ S(R) and 𝜔 is a modulus of continuity such that

lim sup
s→t

|fh (s) − fh (t) |
𝜔( |s − t |) < ∞

then
lim sup
j→+∞

|cj ,kj (t) |
𝜔(2−j ) < ∞

2. If 𝜓 is compactly supported then, for all j ,

|cj ,kj (t) | ≤ C sup
x ∈B (t ,R2−j )

|fh (x ) − fh (t) |

where R is computed from the support of the wavelet and C is a positive
deterministic constant. 12/26



Behaviours of i.i.d N(0, 1) random variables

C. Esser – L.L. (2021)
1. Almost surely, for every t ∈ R, one has

lim sup
j→+∞

|𝜉j ,kj (t) | ≥ 2−3/2
√
𝜋.

2. Almost surely, for almost every t ∈ R, one has

lim sup
j→+∞

|𝜉j ,kj (t) |√︁
log j

> 0 .

3. Almost surely, for every non-empty open interval I of R, there is t ∈ I
such that

lim sup
j→+∞

{ |𝜉j ,kj (t) |√
j

}
> 0 .

13/26



Slow, ordinary and rapid points for Gaussian
Wavelets Series

C. Esser – L.L. (2021)
Let I denote any non-empty interval of R. Almost surely, the random wavelets
series fh satisfies the following property:
1. For almost every t ∈ I ,

lim sup
s→t

|fh (s) − fh (t) |
𝜔

(h)
o ( |s − t |)

< +∞ (4)

and if 𝜔 is a modulus of continuity such that 𝜔 = o (𝜔 (h)
o ), then

lim sup
s→t

|fh (s) − fh (t) |
𝜔( |s − t |) = +∞, (5)

Such points are called ordinary points. 14/26
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Wavelets Series

C. Esser – L.L. (2021)
Let I denote any non-empty interval of R. Almost surely, the random wavelets
series fh satisfies the following property:
2. There exists t ∈ I such that

lim sup
s→t

|fh (s) − fh (t) |
𝜔

(h)
r ( |t − s |)

< +∞ (4)

and if 𝜔 is a modulus of continuity such that 𝜔 = o (𝜔 (h)
r ), then
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Such points are called rapid points.
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Slow, ordinary and rapid points for Gaussian
Wavelets Series

C. Esser – L.L. (2021)
Let I denote any non-empty interval of R. Almost surely, the random wavelets
series fh satisfies the following property:
3. There exists t ∈ I such that

lim sup
s→t

|fh (s) − fh (t) |
𝜔

(h)
s

< +∞. (4)

and if 𝜔 is a modulus of continuity such that 𝜔 = o (𝜔 (h)
s ), then

lim sup
s→t

|fh (s) − fh (t) |
𝜔( |s − t |) = +∞. (5)

Such points are called slow points.
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Slow points are exceptional !

If 𝛼 ∈ (0, 1), a function f belongs to Hölder space of order 𝛼 on [0, 1] ,
C 𝛼 ( [0, 1]) if, there exists a constant C > 0 such that, for all s , t ∈ [0, 1] ,

|f (s) − f (t) | ≤ C |s − t |𝛼.

If 𝛼 < 𝛽 then C 𝛽 ( [0, 1]) ⊆ C 𝛼 ( [0, 1]). We set

C↗h :=
⋂
𝛼<h

C 𝛼 ( [0, 1]).

Remark: fh ∈ C↗h \ C h ( [0, 1]).
Remark: C↗h is a Fréchet space.
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Two commonly used notions of genericity

1. The notion of prevalence which supplies an extension of the notion of
“almost everywhere” (for the Lebesgue measure) in infinite dimensional
spaces.

In fact, in a metric infinite dimensional vector space, no measure
is both 𝜎-finite and translation invariant.However, the notion of
prevalence is a natural extension of the notion of “almost everywhere”
which is translation invariant.

2. In the sense supplied by the Baire category theorem. Let us recall that a
subset A of a Baire space X is of first category (or meagre) if it is
included in a countable union of closed sets of X with empty interior.
The complement of a set of first category is Baire-residual; it contains a
countable union of dense open sets of X .
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Genericity of slow points
Let 0 < h < 1 and t ∈ [0, 1] , a function f belongs to the pointwise Hölder
space of order h at t , C h (t) if there exists R > 0 and C > 0 such that, for all
s ∈ B (t ,R),

|f (t) − f (s) | ≤ C |t − s |h .

C. Esser – L.L. (2021)
Let h > 0. The set of functions f such that f ∉ C h (t) for every t ∈ [0, 1] is
prevalent in C↗h .

C. Esser – L.L. (2021)
Let h > 0. The set of functions f such that f ∉ C h (t) for every t ∈ [0, 1] is
Baire-residual in C↗h .
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Extension 1 : multifractal case
If h < h ′, C h′ (t) ⊆ C h (t) so one can define the pointwise Hölder of a locally
bounded function f at t by

hf (t) = sup{h > 0 : f ∈ C h (t)}.
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bounded function f at t by

hf (t) = sup{h > 0 : f ∈ C h (t)}.

When the function t ↦→ hf (t) is not constant we say that f is multifractal.
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Extension 1 : multifractal case
We consider a compact set K ⊆ (0, 1) and a function H : R→ K
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We consider a compact set K ⊆ (0, 1) and a function H : R→ K , we will
assume that H satisfies a regularity condition slightly stronger than
continuity: there exits CH > 0 such that for all x , y with |x − y | < 1, we have

|H (x ) −H (y) | ≤ CH

| log |x − y | | . (6)
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Daoudi - Lévy Véhel - Meyer (2011)
If H is the Hölder function of a continuous function then there exists (Pj )j
sequence of polynomials such that

H (t) = lim inf j→+∞ Pj (t)

∥DPj ∥∞ ≤ j
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continuity: there exits CH > 0 such that for all x , y with |x − y | < 1, we have

|H (x ) −H (y) | ≤ CH

| log |x − y | | . (6)

Daoudi - Lévy Véhel - Meyer (2011)
If H is the Hölder function of a continuous function then there exists (Pj )j
sequence of polynomials such that

H (t) = lim inf j→+∞ Pj (t)

∥DPj ∥∞ ≤ j

If ∃C > 0 s.t., for all t , |H (t) − Pj (t) | ≤ Cj −1, we have log-regularity condition. 18/26



A multifractal process
With such a function, we define the multifractal random wavelets serie

fH =
∑︁
j ∈N

∑︁
k ∈Z

𝜉j ,k2
−H (k2−j )j𝜓(2j · −k ).

19/26



A multifractal process

C. Esser – L.L. (2021)
Let I denote any non-empty interval of R. If H : R → K satisfies the log-
regularity condition, almost surely, the multifractal random wavelets series fH
satisfies the following property:
1. For almost every t ∈ I ,

lim sup
s→t

|fH (s) − fH (t) |
𝜔

(H (t))
o ( |s − t |)

< +∞ (7)

and if 𝜔 is a modulus of continuity such that 𝜔 = o (𝜔 (H (t))
o ), then

lim sup
s→t

|fH (s) − fH (t) |
𝜔( |s − t |) = +∞, (8)
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A multifractal process
This log regularity condition comes from the fact that, in the proof, we need to
deal with terms of the form

|H (t) −H (k2−j ) |

where k2−j is a dyadic number close to t .
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Extension II : the Rosenblatt process (WIP)
The (generalized) fractional Rosenblatt motion is a real-valued non-Gaussian
self-similar process with stationnary increments which belongs to the second
order Wiener chaos.

If (H1,H2) ∈ (1/2, 1) and H1 +H2 > 3
2 , {RH1,H2 (t)}t ∈R+ is defined by

RH1,H2 (t) =
∫ ′

R2
KH1,H2 (t , x1, x2) dB (x1)dB (x2)

where, for all (t , x1, x2) ∈ R+ × R2

KH1,H2 (t , x1, x2) =
1

Γ(H1 − 1/2)Γ(H2 − 1/2)

∫ t

0
(s − x1)H1−3/2

+ (s − x2)H2−3/2
+ ds .
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A wavelet type expansion for the gfRm

Ayache – Esmili (2020)∑︁
(j1 ,j2 ,k1 ,k2) ∈Z4

2j1 (1−H1)2j2 (1−H2)𝜀k1 ,k2j1 ,j2

∫ t

0
𝜓H1 (2j1x − k1)𝜓H2 (2j2x − k2) dx

where, if, (j , k ) ∈ Z2

𝜀j ,k = 2j /2
∫
R
𝜓(2j x − k ) dB (x )

is aN(0, 1) random variables and (𝜀j ,k )j ,k is a sequence of independent random vari-
ables and, if j1 ≠ j2 or k1 ≠ k2

𝜀
k1 ,k2
j1 ,j2

= 𝜀j1 ,k1𝜀j2 ,k2

and
𝜀
k ,k
j ,j = (𝜀j ,k )2 − 1.
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Methods for the regularity
If n is such that 2−n−1 < |t − s | ≤ 2−n
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Methods for the regularity
If n is such that 2−n−1 < |t − s | ≤ 2−n

If j1 ≤ n and j2 ≤ n , we can use mean value thm and turn to bound∑︁
k1,k2

𝜀
k1,k2
j1,j2

𝜓H1 (2j1x − k1)𝜓H2 (2j2x − k2)

which easily reduces to what have been done for the FBM.
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Methods for the regularity
If n is such that 2−n−1 < |t − s | ≤ 2−n

If j1 ≤ n and j2 > n or n < j1 ≤ j2 we need to make appear some postive
powers of 2−j2 so that the sum over j2 is finite. We have to bound the sums∑︁

k1∈Z

∑︁
k2∈Z

𝜀
k1,k2
j1,j2

∫ s

t
𝜓H1 (2j1x − k1)𝜓H2 (2j2x − k2) dx

and consider some cases
1. we first deal with the sums over k2 ≤ 2j2t and k2 > 2j2s which easily

reduce to the FBM situation by bounding the sum of k1 directly in the
integral and the sum aver k2 after integration.
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2. for 2j2t ≤ k2 ≤ 2j2s , we write∫ s

t
=

∫
R
−

∫ t

−∞
−

∫ +∞

s
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If j1 ≤ n and j2 > n or n < j1 ≤ j2 we need to make appear some postive
powers of 2−j2 so that the sum over j2 is finite. We have to bound the sums

2j1 (1−H1)2j2 (1−H2)
∑︁
k1∈Z

∑︁
k2∈Z

𝜀
k1,k2
j1,j2

∫ s

t
𝜓H1 (2j1x − k1)𝜓H2 (2j2x − k2) dx

and consider some cases
1. we first deal with the sums over k2 < 2j2t and k2 > 2j2s which easily

reduce to the FBM situation by bounding the sum of k1 directly in the
integral and the sum aver k2 after integration.

2. for 2j2t ≤ k2 ≤ 2j2s , we write∫ s

t
=

∫
R
−

∫ t

−∞
−

∫ +∞

s

3. The integrals
∫ t

−∞ and
∫ +∞
s

can, again, be reduced to the FBM situation. 22/26



The last integrals
It remains us to consider

2j1 (1−H1)2j2 (1−H2)
∑︁
k1∈Z

∑︁
2j2 t≤k2≤2j2s

𝜀
k1,k2
j1,j2

∫
R
𝜓H1 (2j1x − k1)𝜓H2 (2j2x − k2) dx

but,
F k1,k2
j1,j2

=

∫
R
𝜓H1 (2j1x − k1)𝜓H2 (2j2x − k2) dx ≠ 0

if and only if |j1 − j2 | ≤ 1 and, in this case, for all L ∈ N0

• |F k1,k2
j+1,j | ≤ CL2

−j (3 + |k1 − 2k2 |)−L

• |F k1,k2
j ,j | ≤ CL2

−j (3 + |k1 − k2 |)−L

• |F k1,k2
j ,j+1 | ≤ CL2

−j (3 + |2k1 − k2 |)−L

This very nice fast decay property helps us to reduce the sum over k1 < 2j1t
and k1 > 2j1s to the FBM case.
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The very last integral!!
It remains us to bound

2j1 (1−H1)2j2 (1−H2)
∑︁

2j1 t≤k1≤2j1s

∑︁
2j2 t≤k2≤2j2s

𝜀
k1,k2
j1,j2

∫
R
𝜓H1 (2j1x − k1)𝜓H2 (2j2x − k2) dx

with |j1 − j2 | ≤ 1.
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The very last integral!!
It remains us to bound

2j1 (1−H1)2j2 (1−H2)
∑︁

2j1 t≤k1≤2j1s

∑︁
2j2 t≤k2≤2j2s

𝜀
k1,k2
j1,j2

∫
R
𝜓H1 (2j1x − k1)𝜓H2 (2j2x − k2) dx

with |j1 − j2 | ≤ 1.
Therefore, we consider the random variables

1

j

∑︁k (2) ,K (2)

k (1) ,K (1) =
∑︁

k (1) ≤k1≤K (1)

∑︁
k (2) ≤k1≤K (2)

𝜀
k1,k2
j+1,jF

k1,k2
j+1,j

for all j ≥ n , (k (1) ,K (1) , k (2) ,K (2) ) ∈ S 1
j (𝜆), for 𝜆 ∈ 3𝜆n (t) where

S 1
j (𝜆) =

{
(k (1) ,K (1) , k (2) ,K (2) ) ∈ Z4 :

k (1)

2j+1
,
K (1)

2j+1
,
k (2)

2j
,
K (2)

2j
∈ 𝜆

}
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𝜀
k1,k2
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∫
R
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with |j1 − j2 | ≤ 1.

0

j

∑︁k (2) ,K (2)

k (1) ,K (1) =
∑︁

k (1) ≤k1≤K (1)

∑︁
k (2) ≤k1≤K (2)

𝜀
k1,k2
j ,j F k1,k2

j ,j

for all j ≥ n , (k (1) ,K (1) , k (2) ,K (2) ) ∈ S 0
j (𝜆), for 𝜆 ∈ 3𝜆n (t) where

S 0
j (𝜆) =

{
(k (1) ,K (1) , k (2) ,K (2) ) ∈ Z4 :

k (1)

2j
,
K (1)

2j
,
k (2)

2j
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K (2)

2j
∈ 𝜆
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The very last integral!!
It remains us to bound
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k1,k2
j1,j2

∫
R
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2

j

∑︁k (2) ,K (2)

k (1) ,K (1) =
∑︁

k (1) ≤k1≤K (1)

∑︁
k (2) ≤k1≤K (2)

𝜀
k1,k2
j ,j+1F

k1,k2
j ,j+1

for all j ≥ n ,(k (1) ,K (1) , k (2) ,K (2) ) ∈ S 2
j (𝜆), for 𝜆 ∈ 3𝜆n (t) where

S 2
j (𝜆) =

{
(k (1) ,K (1) , k (2) ,K (2) ) ∈ Z4 :

k (1)

2j
,
K (1)

2j
,
k (2)

2j+1
,
K (2)

2j+1
∈ 𝜆

}
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Regularity property
For the rapid points we want an uniform bound so we consider the events
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Regularity property
For the rapid points we want an uniform bound so we consider the events

An =

∀𝜆 ∈ Λn , sup
j ≥n

max
ℓ∈{0,1,2}

sup
(k (1) ,K (1) ,k (2) ,K (2) ) ∈Sℓ

j (𝜆)

���� ℓj∑︁k (2) ,K (2)

k (1) ,K (1)

���� ℓ

j

∑︁k (2) ,K (2)

k (1) ,K (1)


L2

≤ 𝜅(j − n + 1)n
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P(An ) ≤ C2n exp(−𝜅Ĉ n)

∑︁
j ≥n

24(j−n) exp(−𝜅Ĉ (j − n))

≤ C ′2n exp(−𝜅Ĉ n)
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Regularity property
For the rapid points we want an uniform bound so we consider the events
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max
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k (1) ,K (1)

���� ℓ

j

∑︁k (2) ,K (2)

k (1) ,K (1)


L2

≤ 𝜅(j − n + 1)n


By Borel-Cantelli, on an event of probability 1, one can bound the sum over
j ≥ n of our last integrals by

C1

∑︁
j ≥n

2j (
3
2−H1−H2) (j −n+1)2−n

2 n ≤ C22
n (1−H1−H2)n ≤ c3 |t−s |H1+H2−1 | log |t−s | |.
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Regularity property

L. Daw – L.L. (2021)
Almost surely, there exists a constant C1 > 0 such that, for all t , s ∈ (0, 1) we
have

lim sup
s→t

|RH1,H2 (s) − RH1,H2 (t) | ≤ C1 |t − s |H1+H2−1 log |t − s |−1.
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Regularity property
For the ordinary points we fix a t and we only consider the cubes that
contains it so the events
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By Borel-Cantelli, on an event of probability 1, one can bound the sum over
j ≥ n of our last integrals by

C1

∑︁
j ≥n

2j (
3
2−H1−H2) (j−n+1)2−n

2 log(n) ≤ C22
n (1−H1−H2) log(n) ≤ c3 |t−s |H1+H2−1 | log | log |t−s | | |.
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Regularity property

L. Daw – L.L. (2021)
Almost surely, for almost every t ∈ (0, 1),

lim sup
s→t

|RH1,H2 (s) − RH1,H2 (t) |
|t − s |H1+H2−1 log log |t − s |−1

< +∞.
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Regularity property
For the slow points, we want to kill intervals so, in the Kahane procedure, we
also kill a dyadic interval 𝜆 at scale n if it does not satisfy the condition

sup
j ≥n

max
ℓ∈{0,1,2}

sup
(k (1) ,K (1) ,k (2) ,K (2) ) ∈Sℓ

j (𝜆)

���� ℓj∑︁k (2) ,K (2)

k (1) ,K (1)

���� ℓ

j

∑︁k (2) ,K (2)

k (1) ,K (1)


L2

≤ (j − n + 1)𝜇
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The probaility of killing an interval because this condition fails is bounded by

C exp(−𝜇Ĉ )

so if 𝜇 is great, we don’t kill too much.
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≤ (j − n + 1)𝜇

The probaility of killing an interval because this condition fails is bounded by

C exp(−𝜇Ĉ )
so if 𝜇 is great, we don’t kill too much.
On an event of probability 1, one can found a slow point and bound the sum
over j ≥ n of our last integrals by

C1

∑︁
j ≥n

2j (
3
2−H1−H2) (j − n + 1)2−n

2 ≤ C22
n (1−H1−H2) ≤ c3 |t − s |H1+H2−1.
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Regularity property

L. Daw – L.L. (2021)
Almost surely, there exists t ∈ (0, 1) such that,

lim sup
s→t

|RH1,H2 (s) − RH1,H2 (t) |
|t − s |H1+H2−1

< +∞.
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Irregularity : creating independence
Now we work with a compactly supported wavelet 𝜓, with support in (−N ,N ).
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cj ,k = 2j
∫
R
𝜓(2j x − k )RH1,H2 (x ) dx
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cj ,k =

∫ N

−N
𝜓(x )

(
RH1,H2 (

x + k

2j
) − RH1,H2 (

k

2j
)
)
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Irregularity : creating independence
Now we work with a compactly supported wavelet 𝜓, with support in (−N ,N ).

cj ,k = CH1,H2

∫ N

−N
𝜓(x )

(∫ ′

R2

∫ x+k
2j

k
2j

(s − x1)H1−3/2
+ (s − x2)H2−3/2

+ dsdB (x1)dB (x2)
)
dx

with CH1,H2 = 1
Γ (H1−1/2)Γ (H2−1/2)
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Irregularity : creating independence
Now we work with a compactly supported wavelet 𝜓, with support in (−N ,N ).

cj ,k = CH1 ,H2

∫ ′

]−∞, k+N
2j

]2

∫ N

−N
𝜓(x )

(∫ x+k
2j

k
2j

(s − x1)H1−3/2
+ (s − x2)H2−3/2

+ ds

)
dx dB (x1)dB (x2)

We fix M ∈ N and set cj ,k = c̃M
j ,k

+ ĉM
j ,k

where, if A1 =] k−NM
2j

, k+N
2j

]2 and
A2 =] − ∞, k+N

2j
]2\] k−NM

2j
, k+N

2j
]2,

c̃M
j ,k

= CH1 ,H2

∫ ′

A1

∫ N

−N
𝜓(x )

(∫ x+k
2j

k
2j

(s − x1)H1−3/2
+ (s − x2)H2−3/2

+ ds

)
dx dB (x1)dB (x2)

and

ĉM
j ,k

= CH1 ,H2

∫ ′

A2

∫ N

−N
𝜓(x )

(∫ x+k
2j

k
2j

(s − x1)H1−3/2
+ (s − x2)H2−3/2

+ ds

)
dx dB (x1)dB (x2)
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Irregularity : creating independence
Now we work with a compactly supported wavelet 𝜓, with support in (−N ,N ).
The sequence

c̃M
j ,k

∥c̃M
j ,k

∥L2

is identically distributed and, as soon as ( k−NM
2j

, k+N
2j

) ∩ ( k ′−NM
2j

′ , k
′+N
2j

′ ) the
associated coefficients are independent.

∥c̃M
j ,k

∥L2 ≥ C𝜓,H1,H22
−j (H1+H2−1)

and

∥ĉM
j ,k

∥L2 ≤ C ′
𝜓,H1,H2

2−j (H1+H2−1)Mmax{H1,H2 }−1
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