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ABSTRACT
Despite recent advances in multi-modal AI tools (e.g., tools

leveraging text-to-image models), there is a significant gap in
the ability of such systems to be incorporated into complex
design and engineering work. This gap is further exacerbated
in contexts where sketch-based inputs are desirable due to the
difficulty in recognizing freehand sketches or interpreting
underlying human intent. To better surface requirements for
emerging sketch-based AI systems for complex design context,
we consider a case study involving architectural design; this is
a domain for which, to our knowledge, there have been no
architectural sketch-based AI tools that recognize freely
produced plans or perspectives for downstream applications,
including generating inspirational images. Using a Wizard of
Oz experimental paradigm, we substitute the “tool” with
human agents and conduct a lab-based study in which
professional architects complete a design brief using this
“tool”. Results demonstrate that human agents not only rely on
visible sketch elements (i.e., lines) and architectural drawing
codes, but also on their memory of previous lines and their
knowledge of the design brief to comprehend perceived lines. In
addition to gradually developing an understanding of the
designed artifact, human agents also construct an
understanding of the designer's intentions. These activities are
crucial for the agent to obtain a functional model of the
designed object, beyond a purely topological and geometric
perception model. Insights about this human workflow bring
new potential techniques of sketch recognition for design tasks,
informing the inclusion of new resources and software within AI
tools.

Keywords: Design aid, Analogical reasoning, Sketch-based
AI, Sketch recognition, Wizard of Oz.

1. INTRODUCTION
Preliminary design phases define a significant portion of

the final performance of a designed artifact, impacting both the

economy and ecology of a project [1]. Therefore, it is crucial to
make appropriate design choices from the early phases. To meet
this need, we work on design aid to improve preliminary
design, specifically in generating and evaluating solutions. A
promising approach, according to several researchers [2-8], is
to use creative ideation and automate analogical reasoning.
Indeed, idea generation can be driven by analogical reasoning,
a recognized powerful design strategy that has been studied
extensively over the last 20 years, with reemerging interest in
recent work [3-7]. Visual analogies, in particular, can improve
design quality and the performance of proposed solutions [8],
as well as enhancing creativity by overcoming the fixation
problem. This cognitive strategy (Fig. 1) involves pairing an
inspirational source and a characteristic of the artifact to be
designed, and then transferring certain properties of the
source-object to integrate them into the designed object [2].

FIGURE 1: Pairing scheme in analogy [2].

In this pathway, AI image generators are a promising tool
to support creative activity. These generative software programs
(e.g. Midjourney or DALL-E) produce images based on text
commands, known as prompts [9]. Although text-to-image
generators offer potential for augmenting ideation, they have
limitations. These generators only work on the basis of text
prompts, and pausing to write a command to receive images
may disrupt the designer's flow of thought when sketching.
Furthermore, it has been observed by researchers that
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formulating accurate textual prompts can be challenging in
practice. This limitation affects the suitability of the received
images to the designers' requirements [9,10]. Therefore, we
propose to investigate the potential of sketch-based generative
AI tools that work with sketched inputs, instead of textual
prompts, as complex as whole plans or elevation perspectives
to generate the inspirational images for designers.

Despite recent advances in ideation stimulation tools and
generative AI, there is still a significant need in the complex
design domain where freehand sketches remain the primary
medium of ideation. The architectural sector, in particular, lacks
tools to assist in solution generation and evaluation during
ideation phases [11]. This domain presents an interesting case
study for improving multi-modal AI tools and bridging the gap
in the need for sketch-based tools with complex and freely
produced sketched inputs. We thus envision a future tool for
complex design environment (e.g. architecture) that suggests
inspirational images, based on the actual drawings used in these
creative phases, to improve generation and evaluation of ideas.

In our previous work [12,13], we demonstrated the added
value of using sketch input for non-disruptive tools. The design
activity was indeed studied under sketch-based inspirational
stimuli, and it was demonstrated that sketch-based AI tools
retain the well-known benefits of generative AI for ideation
while overcoming their limitations by sending images that are
more accurate to the object designed and with no disruption of
the design flow. Sketch-based generated images were also used
for larger activities than only idea generation. However, we
now need to study how to achieve the recognition of design
sketches. As such, this study is positioned prior to any
prototype development, and the focus in this paper is on the
human agent's sketch recognition activity. The purpose of this
paper is to explore the challenges of building a tool for
architectural design sketch recognition and inspirational image
generation, with the goal of gaining a better understanding of
the necessary inputs, including data and rules, to improve
architectural line-by-line sketch recognition. To accomplish
this, we assume that observing the human workflow in
performing the task of interpreting architectural line-by-line
sketches could provide the necessary information. Therefore,
we aim to answer the two following research questions:

- What resources do human agents use to understand
the architectural object under design?

- What is their work procedure from receiving graphic
features from line-by-line sketches to constructing a
mental model of the design?

To gain insight into the functionality of sketch-based
generative AI tools, this paper begins with some key elements
of current research on sketch-based AI tools for architectural
design. This establishes what is currently possible and what
does not yet exist (section 2). Next, a Wizard of Oz experiment
is set up, substituting the tool with human agents, to observe the
human workflow in performing the architectural sketch
recognition task (section 3). By understanding the resources
and cognitive strategies used by human agents to interpret
complex sketches, we provide insights about procedures and
rules, but perhaps more interestingly about the knowledge bases
mobilized, as well as the challenges involved with such a

complex task of sketch understanding (see section 4). The
research outcomes will be valuable for various design domains,
offering new possibilities for shaping AI tool workflows when
textual inputs are not applicable, and other modalities of
interaction would be more applicable (e.g., sketches), while
keeping human agency over the interactive process intact.

2. CURRENT SKETCH-BASED AI TOOLS
This section investigates each of the proposed tools’ three

features - sketch as an input (section 2.1), recognition of more
specifically architectural sketches (section 2.2), and
inspirational images as an output (section 2.3) - before
synthesizing the general issue (section 2.4).

2.1 Sketch-based tools in design domains
Sketch-based tools have been studied for a long time in

academic design research and have evolved to understand more
and more hand drawings for a wide range of applications.

In the late 1990s, mechanical engineering researchers
began developing design aids based on sketches, such as
SketchIt [14], ASSIST [15], and UDSI [16]. These technologies
were capable of interpreting line pixels to generate geometric
shapes and abstract drawings by combining direction and speed
information [14, 15]. They could also recognize text, geometric
shapes, arrows, and expected symbols [14-16]. Thus, they were
able to comprehend a drawing, and descriptions of the desired
behavior, in the case of ASSIST or SketchIt, to generate the
corresponding component. In mechanical engineering, it was
even possible to suggest variations of these components [14].

Over the years, different types of input have been
developed, such as 2D drawings in plane, 2D drawings in
multiple specified planes forming a 3D space, immersion
drawings in a 3D model, or perspective drawings [17].
However, the initial SketchIt, ASSIST or UDSI tools were only
capable of recognizing simple, clean-lined drawings composed
of basic geometric shapes and pre-encoded symbols [14-16].

More recently, to support visual and multi-modal
design-by-analogy in the engineering design process, Jiang et
al. encourage the development of novel tools to process
non-textual inputs such as sketches, images, or 3D models [6].
Zhang and Jin propose a framework for the search and retrieval
of visual stimuli to enable the discovery of visual analogies
from large datasets of design materials (e.g., sketches, CAD
drawings, photographs, etc.) based on designers’ initial
sketches [18]. They demonstrate how visually related sketches
to a designer’s sketch-based input can be discovered to support
visual analogy [19]. Kim et al. also develop a co-creative
sketching AI partner to provide inspirational sketches based on
visual and conceptual similarity to a designer’s sketch [20].
Arora et al. [21] developed a sketch-based tool that generates
new sets of inspirational sketches based on input images of
rough sketches from the designer. Some tools can additionally
recognize motion significance arrows and propose 3D-model
solutions that meet sketched mechanical constraints [22].
Image-based search has also been explored by Jiang et al. to
retrieve visually relevant patent images [23] and by Kwon et al.
to discover alternative uses for products [24]. Beyond tools that
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support image and sketch inputs, Kwon et al. built a
multi-modal platform to retrieve 3D-model parts based on
similarities in visual and functional features to 3D-modeled
inputs specified by the designer [25].

However, these tools are not designed to manage the
complexity, amount of information, and vagueness of
architectural sketches. The sketches used in these tools are
clean and unambiguous (see Fig. 2).

FIGURE 2: Type of sketches managed by recent tools [19,21,22].

2.2 Architectural sketch recognition feasibility
In the field of architectural design, some researchers have

attempted to address the task of recognizing architectural
sketches, regardless of what these tools are used for. The tools
developed for recognizing architectural sketches differ slightly
from other design tools mentioned previously. In addition to the
sketch recognition strategies used in engineering design, these
tools include disambiguation steps and are trained to recognize
typical architectural drawing codes. They also typically
recognize written characters to understand room labels and
common annotations.

These tools include Valveny and Marti's tool [26], Lee et
al. 's tool [27], Sketch It Make It [28], SolidSketch [29],
EsQUIsE [30], and NEMo [31]. EsQUIsE, developed by
Leclercq, Juchmes, and Azar [30], utilizes a multi-agent system
to interpret the sketched plans and generate a 3D model of the
building (refer to Fig. 3) as well as a semantic model of the
plan, then used to perform simulations and evaluations of
constructive applications [30]. Addressing the limitations of
EsQUIsE, NEMo [31] recognizes freehand drawings using
conventional symbols commonly found in architecture and
generates a 3D model of the building.

FIGURE 3: Illustration of EsQUIsE [30].

These prototypes demonstrate that architectural sketch
recognition is currently achieved by limiting the drawing

process to conform to drawing codes that can be understood by
the software. The most advanced sketch recognition prototype
to date, to our knowledge, is NEMo, which was developed in
the 2010s. No more recent or advanced documented similar
prototypes for architecture were found. Recent research on
sketch recognition has mainly concentrated rather on software
architecture and the performance of neural or deep learning
systems. It is only applied to tasks that involve interpreting
drawings of everyday objects, such as SketchPointNet by Wang
[32] or SketchGAN by Liu [33]. These methods are not
currently utilized in design. Moreover, the recognition is
typically based on CAD plans or 3D models rather than
freehand sketches.

Regarding the output, the current architectural softwares
can produce 2D and/or 3D models based on the interpretation
of sketches, resulting in 2D representations, 3D models, and
semantic diagrams. Assembly techniques involve modeling
geometric shapes and positioning them in relation to each other,
modeling scenes composed of semantically recognized
components, and modeling 3D meshes [17]. However, none of
these techniques produce inspiring images as output.

2.3 Generative AI tools for image generation
When searching for sketch recognition tools that generate

images, some tools are designed to aid in the ideation process
by providing either inspirational or rendered images.

Instrumented co-creation was already being studied around
or even before 2015, prior to the recent surge in AI image
generators. For example, the Electronic Cocktail Napkin [34]
retrieves and displays architectural components related to the
designer's sketch. Drawing Apprentice [35] is a sketching
support tool that responds to the designer's sketch by sending a
similar sketch, thus maintaining engagement in design. Sentient
SketchBook [36] and 3Buddy [37] are two design tools aiming
to improve the designer's exploration of the solution-space
through ideation human-machine conversations. They provide
more goal-oriented accurate outputs. Two recent sketch-based
tools for co-creation by image generation are of interest:

Sketch2Pix (Fig. 4) is an interactive application that
supports architectural sketching augmented by an automated
image-to-image translation process [38]. Designers can sketch
using augmented brushes that translate strokes into
pre-programmed images. For instance, they can quickly create a
perspective sketch by using pre-trained brushes like 'fence' or
'hedge' to draw rendered fences or hedges. The Creative
Sketching Partner (Fig. 5 [39]) and the similar Collaborative
Ideation Partner [20] are interactive systems that recognize a
current design sketch and propose a response sketch (CSP) or
an image (CIP) from another category or domain that shares
some structural or semantic aspects. The response sketch is
modulated by specified level of visual/conceptual similarity.

FIGURE 4: Composition of a sketch using preset brushes [38].
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FIGURE 5: Examples of participants’ new sketch based on inspiring
sketch [39, p. 225].

2.4 General issue
This background synthesis revealed a lack of tools that

utilize sketch-based Generative AI capable of understanding
typically complex and non-pre-coded architectural drawings
(e.g. Fig. 6) while also providing designers with inspirational
images. Furthermore, most AI image generators currently
utilize LLMs and require text as input. Large Language Models
(LLMs) have shown effectiveness in processing images, but
they are not yet capable of processing 'line-by-line' sketches.
Current results are still in the early stages [40]. The current
tools are performative, but they lack alignment with the
characteristics and specificities of architectural sketches. This
raises the general question of what makes the task of
recognizing architectural design sketches so difficult.

FIGURE 6: Examples of typical architectural ideation sketches.

3. MATERIALS AND METHODS
This section describes the experiment conducted to

simulate the task of architectural sketch recognition with human
agents. It begins by explaining the global experiment and the
task, as well as the implementation of the physical space, data
collection, and coding.

3.1 General experiment procedure
To better understand the challenges of this proposal, and to

develop an ecologically valid aid, we seek to recreate a realistic
task context. Instead of providing pre-selected sketches to
human agents, we simulate a design situation where
professional architects create a single-family house project
according to a given design brief and sketch it on a tablet with
drawing software designed to resemble natural drawing, as
they would in a normal design scenario, and interact with the
“intelligent tool” for 1h30. The tool manages dynamic,
evolving, realistic sketches. Designers are provided with live
inspirational images generated based on their sketches.

We therefore mobilize the principle of the Wizard of Oz to
simulate this sketch-based tool. The Wizard of Oz is a

technique that consists of simulating the functionalities of an
innovative technology by replacing them with equivalent
human work, hidden and in real time. In this way, the observed
subject believes that he/she is using the so-called technology
without the need for it to be developed. This makes it possible
to assess in advance its impact on users and their interaction
with the machine [41] and thus help to figure out the
development needs. Figure 7 shows the Wizard of Oz set up.

FIGURE 7: Experiment principle - a design session instrumented
through a Wizard of Oz protocol.

The content generated by the intelligent tool is transmitted
to the designer with the objective of capitalizing on the
potential of analogical reasoning and stimulating ideation with
inspirational stimuli and project rediscovery. Figure 8 illustrates
the tool's ability to transform sketches into content that can then
be employed in design activities.

FIGURE 8: Example of input from the designer, corresponding
output of the pixies and design iteration based on these outputs.

Prior publications from our team have investigated the
designer’s activity [12,42] and usage of this tool. We have
observed a creative exchange between the designer and the tool,
which was used as an informative, evaluative, and creative
resource. This was achieved through design by analogy and
project rediscoveries. Our focus in this paper is thus now the
sketch recognition part of the “intelligent tool”, through the
human agent's sketch recognition activity.

3.2 Simulated software’s task
In accordance with the Wizard of Oz principle, human

agents are placed in the same conditions as the tool. They
receive the real-time evolving sketch from the designer in the
adjacent room and are informed of the design brief, including
the site and program. Each human agent has a specific sub-role.
This team includes an "image pixie" who searches for inspiring
images online, a "2D pixie" who creates a normalized clean
plan of the building to be designed, a "3D pixie" who creates a
basic 3D model of the building, and a "coordinator" who
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manages the team and triggers the sending of the pixies'
creations back to the designer every 5 minutes. During this
five-minute interval, the designer continues to engage in
sketching and design activities. The roles of the three pixies
have been selected in accordance with the prevailing practice of
utilizing reference images and the capacity of multiple
representations (both in 2D and 3D) to facilitate rediscovery.

To carry out their production task and place them in the
same conditions as the future technology they are simulating,
the modelers have been given specific instructions to follow:
- forbidding them to design an architectural proposal, their role
being limited to translating the received representations;

- providing them with a 2D and 3D library of standard
furnishings to use by-default;

- specifying the by-default measurements to be assumed,
unless otherwise stipulated by the designer, for wall
thicknesses, ceiling heights, roof slopes, etc.

- providing them with the site’s layout plan and the 3D model;
- informing them of the content of the design brief.

3.3 Participants and data collection
Two teams of four pixies, totaling eight subjects, were

observed. They were all graduate students in architecture and
engineering. The students were selected based on their
performance in a preliminary assessment, and they will assume
the same role for each design capsule, the one in which they
demonstrated the greatest efficiency. The designers (N=9)
varied in gender, professional experience, and architectural
sensibility, resulting in documentation of the interpretation of
nine creatively really distinct projects’ propositions.

The teams of pixies are observed during nine
one-and-a-half-hour design sessions, resulting in 54 hours of
architectural sketch interpretation. The actions of these human
agents were recorded through room and screen recordings,
allowing for observation of their activities using the AEIOU
format to structure field observations [E-LAB, in 43]. We then
conduct self-confrontation semi-structured interviews with the
pixies. Based on these recordings, we identify questionable and
illustrative moments, i.e. every disruptive moment or ones
diverging from usual design activities theories. We then discuss
these moments with each human agent, showing them the
pre-selected video samples and asking them to explain the
rationale behind their actions. The starting questions are “How
were you able to recognize this part of the sketch? What was
your strategy and the elements you used?”. We then elaborate
on their answers with new questions, individually adapted to
the discussion. This approach allows us to access an extensive
collection of overall representative behaviors, as well as
singular unexpected behaviors and their declared workflow.

3.4 Data coding
The interviews are transcribed and coded according to the

principles of the Grounded Theory Method, following a method
of coding elaborated by Lejeune [44], as shown in Figure 9.
Each action noted in the AEIOU Method or explained during
the interviews is conceptualized as a 'tag', visually represented
by a verb in a box. When saturation is achieved, meaning that
all observed or cited actions are represented by a tag, we

qualify the articulation between them. These relations can be
conjoint (indicated by a green arrow), inverse (red arrow),
discrete (square box), continuous (hexagonal box), or
dependent on conditions (dotted link showing the condition).
As an easily understandable example, extracted from Lejeune’s
theory [44], the hip-hop dancing practice can be documented as
shown in Figure 9. Coding by applying labels to describe what
is happening, in its abductive interplay between data and
researcher, is recognised by many researchers as a rigorous
empirically based approach, if done to saturation, with rigor
and to provide greater conceptualisations, that is powerful to
study phenomena where there is little research [45].

FIGURE 9: Example of Grounded Theory Method’s schema [44].

4. RESULTS AND DISCUSSION
As a reminder, this study aims to understand the challenges

of architectural sketch recognition by characterizing the human
workflow in performing this task. We examine the resources
utilized to understand the architectural object being designed,
as well as the procedure constructing a mental model from
received graphic features.

FIGURE 10: GTM diagram describing human agents’ actions.
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Based on the data collected documenting the sketch
recognition task done, we obtain a general GTM diagram (Fig.
10), which details all the human agent’s actions and sub-actions
implemented to carry out the sketch recognition task, as they
were either observed on camera or described in interviews.

4.1 The need for a functional model
As a first result, we observe that human agents seek to

identify the function of the elements sketched, beyond just
shapes and symbols (Fig. 11). It appears necessary for them to
push their understanding of the sketch to the construction of a
functional mental model of the designed object, in order to be
able to carry out their production tasks. Building a geometric
and topological mental model is not enough to collect all the
data that will be needed. In addition to information on shapes,
zones and symbols, agents need information on
function-spaces, furniture and functional characteristics, so they
can decide which inspirational images to produce.

FIGURE 11: Seeking for functional information (GTM extract).

4.2 A three step sketch recognition process
Once the sketch has been captured, the sketch recognition

task leading to the elaboration of the functional mental model
of the designed object is in fact a succession of three sub-tasks:
synthesis, recognition and interpretation.

4.2.1 Line synthesis
When seeing the sketch, the first action of the agents is to

synthesize the lines received. Indeed, architects often multiply
the lines symbolizing the same element to reinforce its mass or
confirm its location. They also sketch both the alternatives and
the final proposal, often on the same drawing, superimposing
the different solutions and then anchoring their final choice by
passing over its lines several times. It is thus necessary to
differentiate between strokes representing architectural
elements, graphic construction strokes, annotation strokes,
texture strokes and stylistic strokes. As an illustrative example,
an agent said that “He [the designer] draws a lot of short

parallel lines close together, so we understand that it's a texture
of material. A lathing of something. It's very different from the
long, rather straight strokes he makes afterwards for walls (...)
And then he'll go over the same wall lines several times, so we
know there's no new information”.

Agents sort perceived lines into three families: lines that
mean nothing, lines that embellish and lines that convey
information. Only the latter are retained and anchored in the
agent's visual memory at the end of this synthesis action.

4.2.2 Line recognition
The agents then recognize these lines as shapes located in

relation to each other. They thus construct a topological
geometrical mental model of the drawn object. From the lines
selected during the synthesis stage, combined with the lines
previously seen and stored in their memory, the agents now
perceive various closed or open shapes defining spaces with
certain adjacent or inclusive relationships between them, as
well as symbols An agent said about a drawing: “it's the
rectangular geometric shape formed by four long, more or less
straight lines that makes it a room. (...) And here we have a
series of parallel or perpendicular lines that form a solid U
inside the earlier rectangle. Next, we'll be able to tell that this
is kitchen furniture”.

To proceed to the line recognition, the agents also use the
memorization of previously seen lines which are no longer
necessarily visible, either because they have been erased or
because they are in another part of the drawing sheet (Fig. 12).
This is essential here to build a mental model of the whole
object and not just the part visible at the moment. This also
helps build-up a global understanding of the drawing, rather
than a collection of snapshots of unrelated parts of the object.
This memory effect is particularly essential for architectural
sketches that develop over several building levels or drawings
in plans, sections and elevations.

FIGURE 12: Using memory to gather information (GTM extract).

4.2.3 Line interpretation
The last sub-action carried out by human agents to move

from the topological geometric mental model they have so far
constructed to the functional mental model they need is the
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most complex, and the one that brings out a number of very
interesting strategies. To interpret the visible geometry and
deduce the functions and characteristics of the shapes, agents
call on 4 key resources: (1) knowledge of the context, (2)
knowledge of the designer, (3) knowledge of the architecture,
and (4) knowledge of the designer's intentions.

Contextual knowledge refers to known information about
the requested program, the project site and the phase of the
design process in which the session takes place. Indeed,
knowing the site on which the project is to be built, as well as
the program requested, already enables the agents to deduce a
number of characteristics expected in the designed project. On a
steeply sloping site, you can expect at least two levels (one at
garden level, the other at street level). Based on the width of the
lot, they can guess whether it's a semi-detached, 3-facade or
4-facade housing project. Knowing that a playroom and an
office are required means that these functions can be found in
the spaces drawn, even if the layout of the rooms is not shown.

Their knowledge of the designer refers to a learning
mechanism of the agents. They start to learn the personal codes
of representation used by the designer to better understand the
sketches. One subject, for example, began to use colors to
identify the different types of rooms - bedrooms, bathrooms,
corridors, etc. - which the agents then understood (Fig. 13a) and
used as information to better understand the project’s evolution.

a b
FIGURE 13: a. Example of construction of the knowledge of the
designer b. Color coding in component sketching.

This learning process is as much about absorbing personal
drawing codes (colors, symbols, abbreviations, etc.) as it is
about design methods (designing plan by plan, progressing in
detail, going back and forth between plans and sections, testing
different versions with little detail, etc.). The agents also
mention a recurrence across all the designers in the color codes
used. Walls are represented in dark, cold colors such as blue or
black, while the detailed layout is represented in black, blue or
orange, and the annotations are made in warm colors (yellow,
orange, red, purple) or in black. In addition, blue commonly
symbolizes glazing or water; green, vegetation; yellow, light;
and orange, wood (Fig. 13b). Black remains the default color.

The use of color codes should be tempered. Although the
meaning of a color is consistent and not changed by the
designer during its design process, all elements of the same
essence are not systematically colored. For example, an element
is colored blue in the façade to emphasize its glazed nature as
opposed to the solid door, but this does not mean that
everything that is not blue is not glazing (Fig. 13b). So color is
information, but the absence of color is not.

Their knowledge of architecture refers both to knowledge
of architectural drawing codes and to the principles of good

architectural composition. Architectural codes are, of course,
the least ambiguous way of identifying drawn components. For
example, a thicker wall is a cut or load-bearing wall, as
opposed to a low wall or partition, which is drawn thinner.
Doors, staircases, dining tables, beds, sinks, bathtubs and toilets
all have their own unique symbolism (Fig. 14). By
extrapolating these codes, a room will be a bedroom if it has a
bed, a kitchen or dining room if it has a table. Finally,
components are also sometimes listed or labeled in the sketch.

But beyond architectural drawing codes, knowledge of the
architectural composition and what can be expected in terms of
spatial planning can be used to deduce the meaning of uncoded
lines. A shape can be understood because it is associated with
another, reducing its potential for meaning to a single solution.
Let's take a circle as an example: this basic shape can, a priori,
symbolize many things, such as an area, a carpet, cooking
stoves, a table, a chair, etc. If this circle is intersected by other
strokes and is wide, it's more likely to be an annotation
delimiting an area. If it's in the middle of a room, it represents a
carpet. If this circle, in the middle of a room, is surrounded by
smaller identical circles, squares or lines, it symbolizes a table.
If, on the other hand, it is grouped with one or three other
circles, all inscribed in a rectangle or square, it represents a
stove. The scale of the lines also plays a role in interpreting the
sketches. Take the same rectangle, thin and long, with its two
diagonals marked: this is the architectural code for a tall
cabinet. However, if this rectangle takes up a third of a room's
surface area, it becomes the cross symbolizing the emptiness of
a mezzanine. And this can only be deduced if the agent
understands architecture.

FIGURE 14: Example of common furniture symbols and codes.

Finally, their knowledge of the designer's intentions is
built up as the design session progresses and as the functional
mental model of the designed object is constructed. The agents
perceive the concepts and principles structuring the proposal
that the designer sketches out as he goes along, which helps
them deduce where he's going. This progressive iterative
understanding of the designer's architectural intentions is also
possible thanks to the agents' architectural knowledge.

4.3 Holistic human agent’s workflow
With a better understanding of the recognition actions,

strategies, and resources used, we can summarize the human
agents' architectural sketch recognition activity using the
following holistic model (Fig. 15).
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FIGURE 15: Holistic model of the sketch recognition process.

This process begins with the reception of the sketch (far
left) and progresses through three recognition steps (line
synthesis, recognition, and interpretation) before ending with
the start of the task of producing the deliverables that the
"software" sends back to the designer (far right). This workflow
starts with the initial lines being used to create a mental model
of the sketch by performing visual filtering to remove
unnecessary lines and retaining only the synthetic lines. The
features - together with the memory of other previous lines - are
recognized as elements (shapes, zones, equipment symbols,
etc.). This model is then used to complete the synthetic features
received with the previous features. By combining their
knowledge of the design context (brief, site), the subject's
personal drawing codes (gradually built up), their architectural
knowledge (sequences of often adjacent functions, expectation
of specific furnishings, etc.), and the designer's architectural
intentions (also gradually discovered), they are able to interpret
the geometric and topological mental model. This interpretation
results in a functional model of the designed building, which
identifies the various function-spaces, their boundaries and
connections, and the aesthetic/functional characteristics of the
furniture elements. The functional model provides feedback on
the designer's intentions and personal drawing codes to the
agents. The agents then produce inspirational images and other
external representations to stimulate the designer's creativity in
line with their intentions and the project's direction.

In addition to the discovered resources and strategies, we
observed two interesting phenomena : the usefulness of the
dynamic evolution of the sketch and the need to make design
choices. Indeed, beyond all the possible deduction of the
meaning of lines, the key to understanding architectural
sketches lies in their dynamic evolution. Understanding a
sketch taken from its context and frozen at a given moment in
time can be extremely complicated. The temporality of the
appearance of lines, and the knowledge of the project built up
as it is represented, is a crucial key to understanding
architectural sketches. Furthermore, for some of the sketches
they received, the agents had to make architectural choices,
despite their instructions to stick to representation, in order to
accomplish their task. When designers don't draw to a realistic
scale, agents have had to decide between respecting the

proportions of the drawing and therefore representing furniture
that is larger, or smaller, than normal, or drawing furniture with
standard dimensions and therefore not filling the space of the
room or overloading it. The boundary is a tricky one to define,
as architects are just as likely to design custom-made furniture
with specific intentions to create a spatial effect, as they are to
furnish their rooms with standardized furniture. How, then, to
distinguish between a scale intentionally different from
standard dimensions and a representational error? Faced with
this difficulty of positioning, the agents were asked to represent
the furniture in standard dimensions, waiting to be corrected if
necessary. Some designers thus became aware of their
dimensioning errors thanks to the "software".

4.4 Insights for future intelligent design tool
While some of the boxes shown in the holistic model in

Figure 15 can be easily replaced by currently existing
techniques, others present real challenges. The first main
challenge lies in the initial step of synthesizing the received
lines. As we have seen, sketches can consist of numerous lines,
some of which may carry implicit or explicit information, while
others may be texture or unnecessary lines that obscure the
drawing's legibility. Additionally, integrating information
from multiple parallel sketches (such as plans, cross-sections,
and detailed sub-sketches) is also a challenge. After that,
transitioning from synthetic lines to a topological geometric
model is a technique that has already been mastered in many
design domains [19-21], including architecture [28, 29].
Interpreting drawings by recognizing drawing codes and
symbols is also a well-established practice [30, 31]. But the
limits are reached when users add personal codes or do not use
the pre-recorded codes. Indeed, while using architectural
drawing code databases and pre-encoded context information is
easily done by software agents, the challenge is to utilize the
designer's habits and intentions, and to predict the probability
of certain design elements based on the project context or rules
of good composition. Populating the databases for user
knowledge, architectural knowledge, and design intentions
in this holistic model will be a substantial task.
Finally, despite being already possible to create a model for
functional understanding of a drawing from simple sketches in
design domains with explicit and objectifiable codification [35,
39], it remains very challenging for architectural sketches,
which are inherently complex, incomplete, and contain implicit
information.

Based on the priorly presented results, we provide insights
for overcoming these challenges and developing powerful
sketch-based generative AI tools for complex design situations
where current tools are insufficient.
Firstly, the sketch recognition module should be integrated
into the drawing medium instead of relying on frozen images
or sketch extracts. This allows access to sketches under
construction, providing more information such as the
temporality of line appearance and process perception beyond
what is currently visible. The tool should also have the ability
to memorize and store features that have been seen, in
addition to those currently visible at the time of the recognition
request. This helps the line recognition and the building of a
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global understanding of the drawing, rather than a collection of
snapshots of unrelated parts of the object. This is particularly
important for sketches that develop over several building levels
or drawings in plans, sections, and elevations.
Secondly, the tool should combine symbolic and
connectionist logic. Symbolic logic uses predefined rules and
explicit instructions to narrow down the field of possible
interpretation. On the other hand, connectionist logic relies on
statistical recognition probabilities and the knowledge provided
to solve the problem. The resources used by human agents to
understand the received drawing belong to both logics. The
recognition strategy involves deducing the meaning of features
based on shape associations, feature scale, color codes,
architectural codes and the probability of expecting a particular
compositional element (according to rules of good architectural
composition principles). Another part of the recognition
strategy involves learning the designer's habits and intentions to
start recognizing his/her own drawing codes and the probability
of expecting a particular element according to his/her recurrent
design method and even architectural style.
Finally, in order to be able to generate appropriate inspirational
images for the object being designed, the tool, in recognizing
the sketch, must go as far as a fine level of identification of the
functions (circulation space, kitchen, living room, etc.) and of
the architectural or aesthetic characteristics (daylight,
massiveness, lightness, natural materials, etc.) of the various
elements drawn. This has been shown by the need to build a
functional mental model to complement the topological
geometric model.

5. CONCLUSION
In this work, a wizard of oz protocol for an architectural

design task was used in order to surface future requirements for
sketch-based generative AI systems that could be used in
design practice. To answer our research questions, we have
highlighted a three-step human recognition activity - synthesis,
recognition and interpretation - that involves the mobilization
of four knowledge resources - related to the project context, the
design domain, the designer's habits and the designer's
intentions - and is enabled by two key characteristics: visual
memory and the dynamic nature of the sketches received in this
experience. Studying this recognition activity highlighted the
specific challenges of understanding complex design sketches
and provided insights for designing AI tool workflows and
overcoming the capability gap of current systems.

Based on our results, we find that future sketch-based
generative AI tools should incorporate: (1) integration in the
dynamic construction of the sketch and continuous storage of
features in memory; (2) synthesis of symbolic and
connectionist logic to operate various recognition resources;
and (3) extension beyond geometrical models to build a
functional model of the object, in order to be able to generate
interesting and accurate inspirational images. Taken together,
these findings can be incorporated into the development of new
approaches to recognize sketches at the fundamental level, and
a perspective to recognize sketches that were previously too
complex at the applied level. Finally, they inform the inclusion
of new resources and software architecture within AI tools.
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