

Terahertz off-axis digital holography reconstruction using inverse problem resolution with the Alternating Direction Method of Multipliers

Murielle Kirkove¹, Yuchen Zhao¹, Olivier Leblanc², Laurent Jacques², Marc Georges^{*1}

- 1. Centre Spatial de Liège, STAR Research Unit, Université de Liège, Belgium
- 2. ICTEAM, Université catholique de Louvain, Louvain-la-Neuve, Belgium

Joint session "Unconventional Optical Imaging" and "Thz Photonics"

Outline

- THz domain and applications
- THz coherent imaging methods
- Digital holography
 - THz setup
 - Hologram formation
 - Usual method of reconstruction
- Inverse methods reconstruction
 - Main principles
 - Our method
- Results

Various potential applications

The THz domain

Nondestructive inspection applications

THz coherent imaging methods

Alternative to TDS pulsed imaging

• No lengthy scanning with single point emitter-detector

• They use

- Coherent CW light (e.g. in FIR: lasers)
- THz focal plane array (FPA)
- Reconstruction algorithm based on coherent diffraction imaging
- Lensless imaging

Some examples

- Digital holography
- Ptychography
- Phase retrieval

L. Valzania, Y. Zhao, L. Rong, D. Wang, M. Georges, E. Hack, and P. Zolliker, "THz coherent lensless imaging," Appl. Opt. **58**, G256-G275 (2019)

Digital Holography

• Digital holography off-axis setup

295-FIR, Edinburgh Instrument

Uncooled THz microbolometer 388 × 284 pixels Pitch 35 μm

Digital Holography

Problem

Obstruction of hologram pattern recorded because

- object close to sensor for increased resolution
- large angles between beams are used at such wavelengths

Model of hologram formation

also called here the "forward model"

we record $I(x, y, 0) = |o(x, y, 0) + r(x, y, 0)|^2$ we want to estimate $\psi(x, y) = o(x, y, -d)$

The forward model of hologram formation can be written as

 $\boldsymbol{I} = \boldsymbol{\overline{I}} + \boldsymbol{n} = \left| \boldsymbol{A}_{d} \boldsymbol{\psi} + \alpha \boldsymbol{r} \right|^{2} + \boldsymbol{n}$

sampled version of by N pixels camera

 $\begin{array}{l} \pmb{\Gamma} & \text{unit reference field} \\ \pmb{\Omega} & \text{relative amplitude of reference field} \end{array}$

The object wave is the propagated object field $oldsymbol{o} = oldsymbol{A}_d oldsymbol{\psi}$

 \mathbf{A}_d instrumental PSF + propagation at distance d

n additive noise

Hologram reconstruction

Artifact fringes are observed and due to uncorrect knowledge of the reference field phase To improve this, we already tried iterative phase-retrieval assisted reconstruction Y. Zhao et al., *Appl. Opt.* 58(33), 9208-9216 (2019)

Inverse method reconstruction

The reconstruction problem-1

from measurement of $\mathbf{I} = [\mathbf{A}_{d} \boldsymbol{\psi} + \alpha \mathbf{r}]^{2} + \mathbf{n}$ deduce unknown $\begin{cases} \boldsymbol{\psi} \text{ (complex object field)} \\ \boldsymbol{\overline{I}} : \text{noise free} \end{cases}$

retrieve estimates $\begin{cases} \widetilde{\mathcal{W}} \\ \alpha \end{cases}$ which minimize **Data Fidelity**

$$D(\boldsymbol{\psi}, \boldsymbol{\alpha}) = \left\| \boldsymbol{I} - \left| \boldsymbol{A}_{d} \boldsymbol{\psi} + \boldsymbol{\alpha} \boldsymbol{r} \right|^{2} \right\|_{2}^{2}$$

difference between measurement and noise-free model

Challenges:

- Non-convex problem because of Many local minima
- Problem ill-posed: dimension of and larger than number of measurements I
- High frequency distribution of leads to instabilities and noise sensitivity •

Mathematical regularization is mandatory

Previous works with inverse methods:

Bourguard et al. Optics Express 21(3), 2013

 $Regularization = TV^{ph}(\boldsymbol{\psi}) + \delta . TV^{amp}(\boldsymbol{\psi})$

Inverse method reconstruction

• Our works

Solution proposed:

- represented by its wavelet components : use of Discrete Wavelet Transform
- Regularization in the wavelet domain: minimize -norm of wavelet coefficients

We rewrite the noise-free model

$$= |\boldsymbol{A}_{d}\boldsymbol{\psi} + \boldsymbol{\alpha}\boldsymbol{r}|^{2} \qquad \qquad \boldsymbol{\overline{I}}(\boldsymbol{c}_{\psi},\boldsymbol{\alpha}) = |\boldsymbol{A}_{d}\boldsymbol{W}^{-1}\boldsymbol{c}_{\psi} + \boldsymbol{\alpha}\boldsymbol{r}$$

W Matrix of fast Discrete Wavelet Transform

The data fidelity becomes

 $\overline{I}(\boldsymbol{\psi},\boldsymbol{\alpha})$

$$D(\boldsymbol{c}_{\psi},\boldsymbol{\alpha}) = \left\|\boldsymbol{I} - \overline{\boldsymbol{I}}(\boldsymbol{c}_{\psi},\boldsymbol{\alpha})\right\|_{2}^{2}$$

The wavelet-based regularization of the off-axis DH reconstruction leads to the following regularization

$$(\widetilde{\boldsymbol{c}}_{\psi}, \widetilde{\boldsymbol{\alpha}}) = \underset{\boldsymbol{c}_{\psi}, \alpha}{\operatorname{argmin}} (D(\boldsymbol{c}_{\psi}, \alpha) + \delta \|\boldsymbol{c}_{\psi}\|_{1})$$

Inverse method reconstruction

• The reconstruction algorithm

- Iterative process
- Inspired by ADMM (Alternating Direction Method of Multipliers)
 - It's a convex method which can be used in non-convex problem
 - ADMM used in many fields of image processing, machine learning, etc
 - Mostly used on real data, but was extended to complex numbers by Li et al. "ADMMCP" see Li et al. *Math. Probl. Eng.* (2015)

• Novelty of our works:

- We propose ADMMCP in Digital Holography inverse reconstruction
- We propose extension of ADMMCP for optimizing variable in addition to

• Experimenting the algorithm

- On simulated data
- On real data

Comparison with

- Direct Fourier Transform
- Inverse method by Bourquard et al.
- Our method

• Consider

- the effect of noise
- with preprocessing or not
- Details can be found in Kirkove et al. JOSA A 41(3) (2024)

Results

• Experimenting the algorithm on simulated data

• Study of noise effect on results

• Experimenting the algorithm on simulated data

Noiseless data

icteam

UCLouvain

• Experimenting the algorithm on simulated data

Input SNR 10dB

Results

• Experimenting the algorithm on real data

+ preprocessing by apodization

1.6

0.0

-1.6

-3.2

1.0

0.8

0.5

0.2

0.0

Conclusion

- We have demonstrated a new inverse method approach to reconstruct digital holography measurement
- In particular it addresses images obtained in THz where a lot of artifacts are present
- Our inverse approach is based on
 - Wavelet decomposition
 - Minimizing Data fidelity + regularization term using wavelet coefficient
 - iterative ADMM algorithm
 - adapted to complex numbers (typical of DH)
 - modified by us to cope with 2 variables
- The methods better performs compared to
 - usual direct Fourier transform approach
 - other inverse approach

Conclusion

Details can be found in

ADMM-inspired image reconstruction for terahertz off-axis digital holography

MURIELLE KIRKOVE,^{1,*} ^(D) YUCHEN ZHAO,¹ ^(D) OLIVIER LEBLANC,² LAURENT JACQUES,² AND MARC GEORGES¹

¹Centre Spatial de Liège, STAR Research Unit, Université de Liège, Liege Science Park, B-4031 Angleur, Belgium ²ISPGroup, INMA, ICTEAM Institute, Université Catholique de Louvain, 1348 Louvain-La-Neuve, Belgium *M.Kirkove@uliege.be

Received 25 August 2023; revised 24 October 2023; accepted 20 November 2023; posted 20 November 2023; published 8 December 2023