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2. Bottleneck: It is the lower-dimensional hidden layer where the important

PROBLEM STATEMENT 1. Singu|ar Value Decomposiﬁon features of the input data are captured and represented.
3. Decoder: It reconstructs the input data from the compressed representation in

the lower-dimensional space to produce an output that is approximately similar
to the input data.

Singular Value Decomposition is a matrix factorization method that decomposes
a given matrix W into three matrices: U a left singular matrix, .S a diagonal matrix
containing singular values, and V a right singular matrix. U and V are orthogonal
min L(Wy, W), subject to the constraint Wj, = f(W), (1) matrices. By decoding the information encoded in the lower-dimensional space, the

g decoder attempts to capture the essential features of the input while minimizing
n—>»

Our problem centers of the resolution of the following optimization problem
formulated as follows:

where: the loss of information.

= L Is the loss function;

= |V, represents the pre-training weight matrix;

= IV represents the updated weight matrix in the lower-dimensional space;
= f denotes the transformation function.
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