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INTRODUCTION

Large Language Model (LLM) are advanced artificial intelligence designed to un-

derstand and generate human-like text based on massive amounts of data.

Their emergence has revolu-

tionized recently the approach

to natural language tasks by

achieving state-of-the-art

performance across various

applications. Despite their

remarkable performance, the

size of LLMs poses significant

challenges for their usage

in lower-resource environ-

ments. Hence, our study will focus on addressing the following question:

Which techniques can we use to reduce

the size of LLMs while maintaining essen-

tial information to minimize their compu-

tational and memory footprint?

Through a series experiments and eval-

uation, we aim to identify the most

efficient methods for minimizing the

computational and memory footprint of

LLMs without compromising their per-

formance on important tasks.

PROBLEM STATEMENT

Our problem centers of the resolution of the following optimization problem

formulated as follows:

min
k

L(Wk, W ), subject to the constraint Wk = f (W ), (1)

where:

L is the loss function;
W0 represents the pre-training weight matrix;

W represents the updated weight matrix in the lower-dimensional space;

f denotes the transformation function.

The aim is to find the optimal transformation function f that minimizes the loss
function.

METHODOLOGY

Our methodology involves updating the parameters of the pre-trained language

model (LLM) based on its new representation in a lower-dimensional space while

minimizing information loss. While our method is yet to be implemented, we plan

to adapt it for decoder-only transformer-based large language models, including:

Llama 2 x Billion of parameters;

Mixtral x Billion of parameters;

Falcon x Billion of parameters.

Our goal is to optimize their performance to operate efficiently in resource-

constrained settings while maintaining high accuracy and reliability through rig-

orous testing and evaluation, across various NLP tasks, including

Question-Answering, Intent Detection, and Topic Modeling

Our approach to finding the optimal transformation function involves

implementing two dimensionality reduction techniques: Singular Value

Decomposition (SVD), a classical mathematical method, and Autoencoders, a

deep learning approach.

1. Singular Value Decomposition

Singular Value Decomposition is a matrix factorization method that decomposes

a given matrix W into three matrices: U a left singular matrix, S a diagonal matrix
containing singular values, and V a right singular matrix. U and V are orthogonal

matrices.

To reduce the dimensionality of the given matrix W0 , we truncate it to retain only

the k most important singular values, as they represent the amount of
information captured by each singular vector in U and V .

2. Autoencoders

Autoencoder is an artificial neural network-based model that learns efficient

representations of data by capturing the most important features while ignoring

noise and irrelevant information. An autoencoder has the following parts:

1. Encoder: It is a part of the network that compresses the input into a

lower-dimensional latent space while extracting the essential features of the

input data;

2. Bottleneck: It is the lower-dimensional hidden layer where the important

features of the input data are captured and represented.

3. Decoder: It reconstructs the input data from the compressed representation in

the lower-dimensional space to produce an output that is approximately similar

to the input data.

By decoding the information encoded in the lower-dimensional space, the

decoder attempts to capture the essential features of the input while minimizing

the loss of information.
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