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Abstract
This paper presents an exact H∞ tuning methodology for a positive position feedback (PPF) controller applied to a
single-degree-of-freedom (SDOF) system. To this end, an equivalence between the closed-loop receptances of a PPF
controller and a resistive-inductive shunt with a negative capacitance is put forward, which, in turn, enables us to adopt
the existing shunt tuning rule in the active control case. The resulting tuning procedure is demonstrated using two
numerical examples, namely an SDOF system and a finite element model of a cantilever beam. Based on the results
obtained on the cantilever beam, it is shown that the influence of higher-frequency modes cannot be neglected to obtain
effective vibration damping. The design procedure proposed for the PPF controller is then extended to this case and
validated using an experimental cantilever beam.
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Introduction

The attenuation of structural vibration is a well-known
engineering problem. Today, mechanical structures tend to
be more and more lightweight, which results in low structural
damping and increased susceptibility to fatigue. One way to
tackle this problem is to control the structure using an active
damping device. Classical active control approaches are the
direct velocity feedback (Balas 1979) and the integral force
feedback (Preumont et al. 1992). An interesting alternative
is a digital shunt absorber whose control authority can be
enhanced with a negative capacitance (NC) (Fleming and
Moheimani 2005; de Marneffe and Preumont 2008).

Another popular approach for active control is positive
position feedback (PPF) (Goh and Caughey 1985; Fanson
1987; Fanson and Caughey 1990). In this approach, the
structure’s dynamics are attenuated by a compensator that
controls the displacement with an actuation force and
acts like a filter. This controller takes its name from the
fact that the position coordinate measured by a sensor is
both positively fed to the compensator and fed back to
the structure via an actuator (Fanson and Caughey 1990;
Agnes 1997). For a second-order PPF strategy, the controller
function comprises three parameters, namely the pole
frequency, the damping ratio and the controller gain. An
advantage of PPF is that it can be designed based on an
experimental transfer function so that no analytical model of
the structure is needed. In addition, given its low-pass filter
characteristic, the controller rolls off at higher frequency,
and, hence, does not risk to excite residual modes (Inman
2006). Through a comparison between velocity feedback
and PPF, Goh and Caughey (1985) pointed out that the

system stability can be more easily guaranteed with the latter
approach. A downside of PPF controllers is that they induce
low-frequency softening.

To design the PPF controller, a maximum attainable
closed-loop damping strategy in combination with tuning
filters in the multimodal case can be adopted (Goh and
Caughey 1985). Dosch et al. (1992b) designed a self-sensing
PPF controller using piezoelectric transducers acting as
sensor and actuator at the same time. To choose adequate
controller parameters, they used an optimization algorithm
seeking optimal damping of the plant resonance (Dosch et al.
1992a,b). Kwak and Han (1998) used genetic algorithms to
choose the PPF parameters (Kwak and Han 1998). However,
only the controller frequency was varied therein while the
other parameters were kept constant. PPF controllers are also
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often tuned to resonate at the natural frequency of the host
structure so that the main focus is on the pole frequency
(Huertas and Rohaľ-Ilkiv 2012). If a maximum flatband
response is targeted, the PPF controller can be designed
by means of a fifth-order Butterworth filter for a specific
frequency as it was done by Russell et al. (2016).

Recent works aimed to provide systematic and effective
tuning rules for PPF controllers, all the while limiting the
undesirable low-frequency softening effects. Paknejad et al.
(2020) optimized all three controller parameters based
on maximum damping. In order to limit the softening
introduced at low frequencies, they minimized the H2 norm
of the response during the final design. Their findings were
demonstrated both numerically and experimentally. Another
way to tackle the increased static response is to express
the PPF filter in a fractional-order format (Marinangeli
et al. 2018; Niu et al. 2018). If the system dynamics are
well known, one could also add a feedforward control to
counteract the increasing static response (Mokrani 2022). A
thorough study of the interplay between desired damping
performance, the static softening and system stability was
presented by MacLean et al. (2022). Visalakshi et al.
(2021) recently showed that PPF controllers can be tuned
with a pole placement method with guaranteed stability
properties. PPF controllers were also used in an adaptive
setting (Saeed et al. 2021), with advanced composite (Silva
et al. 2023) and aerospace (Gülbahçe and Çelik 2023; Yuan
et al. 2024) structures, and with nonlinear systems (Zhao
et al. 2019; Hamed et al. 2020; Saeed et al. 2021; Amer
et al. 2022). Of special interest for this work is that of Zhao
et al. (2019), which proposed to tune the PPF controller by
adapting the fixed-point theory developed by Den Hartog
for tuned mass dampers. The receptance of the controlled
system thus features two peaks of approximately equal
amplitude in place of the targeted resonance. However, this
approach does not provide an exact solution in the H∞ sense.

A PPF controller usually targets a specific resonance
frequency of the host system. However, a real system
cannot always be accurately described as a single-degree-
of-freedom (SDOF) system; it is thus desirable to account
for the influence of other structural modes during the
tuning process. From a modeling perspective, for collocated
control, Clark (1997) proposed to account for their influence
by directly adding a feedthrough term to a state-space
model that includes the overall displacement contribution
of the out-of-bandwidth modes. Optionally, they suggested
adding a second-order system in parallel to the model of
the truncated system, simulating a single out-of-bandwidth
mode representative of the other-mode dynamics. These
corrections were shown to replicate the pole-zero pattern
of the full system more faithfully. The influence of higher-
order modes is also of crucial importance from the tuning
perspective. Hoffmeyer and Høgsberg (2020) added a
fictitious stiffness to simplify the system. The stiffness
was then used to tune a PPF controller and to successfully
introduce system damping in a numerical model. Fenik, S.
and Starek, L. (2008) accounted for the influence of higher-
order modes by including a constant as a correction of the
controller gain in their formulas for the optimal controller
parameters. They achieved maximum closed-loop damping

but expressed the controller gain as a function of the
controller frequency and damping ratio. Additionally, they
presented a multimodal PPF strategy where they accounted
for the influence of each PPF controller in descending order
with respect to their natural frequencies (Fenik, S. and
Starek, L. 2008). There also exist approaches to account for
the influence of higher-order modes in piezolectric shunt
damping by exploiting the dynamic capacitance function
(Berardengo et al. 2016; Høgsberg and Krenk 2017; Raze
et al. 2021).

In spite of a number of successful advanced applications,
there still remains fundamental aspects on the PPF tuning
currently unaddressed in the literature. First, to the authors’
knowledge, there exists no closed-form solution to the H∞
optimization problem in the case of a SDOF structure with
a PPF controller. Second, a method such as that of Fenik,
S. and Starek, L. (2008) allowing to extend simple SDOF
tuning rules to the MDOF context is extremely useful for
quick and effective tuning. Yet, the latter is limited to the pole
placement problem. This work aims to solve these issues
by drawing results from the research field of piezoelectric
shunts. Interestingly, Agnes (1997) was the first to point
out a dynamical similarity between a resistive-inductive
(RL) shunt and a PPF controller. In fact, there exists a full
equivalence between the receptance functions of an RL shunt
with an NC and of a PPF controller, as will be shown in
this work. Building upon this equivalence, a new optimal
controller design aiming at equal peaks of the controlled
receptance function is proposed for the PPF. This work can
be seen as a continuation of a conference paper (Dietrich
et al. 2022), making it applicable to multiple-degree-of-
freedom (MDOF) structures and providing an experimental
validation. Specifically, the original contributions of this
work are as follows:

a) The equivalence of the closed-loop receptances of
SDOF structures controlled by an RL shunt with
an NC or by a PPF controller is mathematically
demonstrated, suggesting that identical performance
can be attained by the two approaches.

b) The coefficients of the receptances are functions of
the tunable parameters. Using the aforementioned
equivalence, exact H∞ tuning rules are extended to
the PPF to find the optimal values of the tunable
parameters. In particular, it is shown that there exists a
gain value that leads to a global minimum of the H∞
norm.

c) For practical applications, these tuning rules are
adapted to account for the influence of non-resonant
modes in the MDOF case in an approximate way.
This simple yet effective correction can substantially
improve performance and without need for complex
numerical optimization procedures. We will also show
that the correction factors can be easily extracted from
plant transfer functions.

d) These adapted tuning rules are eventually numerically
and experimentally demonstrated with a piezoelectric
beam. It is also shown how they improve upon the
state-of-the-art method for H∞ optimization of Zhao
et al. (2019) .
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The proposed tuning rules and corrections for non-resonant
modes are simple and usable with experimentally identified
models, making them widely applicable.

This work is organized as follows. First, the exact H∞
tuning rule is applied to an SDOF example to demonstrate
its performance and to investigate the open-loop transfer
function and stability margins. Second, through correction
factors applied to all controller parameters, the procedure
is extended to account for the influence of higher-frequency
modes. The developments are validated both numerically and
experimentally. Finally, the effectiveness and limitations of
the proposed tuning rule in an MDOF context are discussed.

PPF controller tuning

An SDOF system with a PPF controller
For an SDOF structure, the equation of motion using the
Laplace variable s is given by

mxs2 + kx = f , (1)

where x is the displacement, f is an external force, and m
and k are the mass and stiffness of the mechanical system,
respectively. We regard the case of a system controlled by a
PPF controller, considering a collocated displacement sensor
and voltage actuator. The equations of motion then read{

mxs2 + kx = f + ω2
cgcuc

(s2 + 2ωcζcs+ ω2
c )uc = x

. (2)

The variables uc, ζc, ωc and gc refer to the control
signal, damping ratio, frequency and gain of the controller,
respectively. Inserting the second line of equation (2) into
the first line yields

(ms2 + k)x = f +
ω2
cgcx

s2 + 2ωcζc + ω2
c

. (3)

Dividing equation (3) by x and forming its reciprocal results
in the closed-loop receptance function

x

f
=

[
ms2 + k − ω2

cgc
s2 + 2ωcζcs+ ω2

c

]−1

. (4)

Using the definitions given by Ikegame et al. (2019),

xst :=
f

k
, ω0 :=

√
k

m
, ŝ :=

s

ω0
, νc :=

ωc

ω0
, g :=

gc
k
, (5)

equation (4) can be written in dimensionless form:

h(ŝ) =
x

xst
=

[
ŝ2 + 1− g

ŝ2

ν2
c
+ 2ζc

ŝ
νc

+ 1

]−1

. (6)

An SDOF system with an RL shunt in series
with an NC
The equations of motion of the piezoelectric SDOF structure
connected to an RL shunt with an NC are given by{

mxs2 + kocx− θq = f
θx− 1

Cε
p
q = V . (7)

q is the electrical charge of the electrodes of the piezoelectric
transducer, and V is the voltage across them. koc is the
system stiffness when the transducer is in open-circuit,
and Cε

p is the capacitance of the piezoelectric transducer
under constant strain. The equations are coupled through
the electromechanical coupling coefficient θ. This coefficient
characterizes how much energy is transformed between
the piezoelectric transducer and the mechanical system
(Hagood and von Flotow 1991). In open-circuit (q = 0),
the resonance frequency is ωoc =

√
koc/m. In short-circuit

(V = 0), ωsc =
√

ksc/m where

ksc = koc − θ2Cε
p . (8)

A way to assess the electromechanical coupling is the
dimensionless electromechanical coupling factor (EMCF)
Kc, that relates the modal strain energies when the transducer
is in short- and in open-circuit (Toftekær et al. 2020):

K2
c =

ω2
oc − ω2

sc

ω2
sc

. (9)

Thus, the coupling factor depends on the fixed properties of
the host system through θ and Cε

p . One could also normalize
the coupling factor with ωoc, defining the EMCF as

α2 =
ω2
oc − ω2

sc

ω2
oc

=
K2

c

1 +K2
c

. (10)

When the piezoelectric transducer is connected to an RL
shunt circuit in series with a negative capacitance Cn, we
obtain (

Ls2 +Rs− 1

Cn

)
q = V. (11)

Thus, the electrical part of equation (7) reads

Ls2q +Rsq +
1

Ceff
q − θx = 0, (12)

where the effective capacitance is (Berardengo et al. 2016)

1

Ceff
=

1

Cε
p

− 1

Cn
. (13)

The transfer function from the force to the displacement is
obtained from equations (7) and (12)

x

f
=

[
ms2 + koc −

θ2

Ls2 +Rs+ 1
Ceff

]−1

. (14)

Considering the electrical frequency and damping ratio of the
shunt

ω2
e :=

1

CeffL
, 2ωeζe :=

R

L
(15)

and (Ikegame et al. 2019)

xst :=
f

koc
, α̃2 :=

θ2Ceff

koc
, νe :=

ωe

ωoc
, ŝ :=

s

ωoc
, (16)

the transfer function of the SDOF system with the
piezoelectric shunt can be expressed in dimensionless form

h(ŝ) =
x

xst
=

[
ŝ2 + 1− α̃2

ŝ2

ν2
e
+ 2ζe

ŝ
νe

+ 1

]−1

, (17)
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where tilde refers to the case when an NC is used.

From the dimensionless receptance functions in equations
(6) and (17), we conclude that a PPF controller and an
RL shunt with an NC are completely equivalent in terms
of closed-loop receptance. The correspondence between the
different parameters reads as follows

g ≡ α̃2, νc ≡ νe, ζc ≡ ζe . (18)

Specifically, the gain of the PPF controller g corresponds to α̃
which is related to the enhanced electromechanical coupling
of the structure and is influenced directly by the NC.

The implications of this equivalence are discussed in depth
in Dietrich et al. (2022) for an SDOF system. As was shown
therein, the PPF results in much better stability margins than
the RL shunt with an NC, which is why the former is the
main focus of this work.

H∞ optimization
Exact tuning rules for the H∞ optimization of passive RL
shunts were introduced by Soltani et al. (2014). Specifically,
these rules are based on the optimization of the receptance
of the controlled system. The optimal tuning results in
two resonance peaks featuring identical amplitudes in the
receptance function. As is well-known from the literature,
adding an NC to this system leads to the same model class
as in the case without NC (Berardengo et al. 2016). It was
also shown herein that this same model class represents the
case of a SDOF structure with a PPF controller. Therefore,
both the NC and PPF optimization problems can be treated
with the method of Soltani et al. (2014) (a similar philosophy
was followed for electromagnetic shunts by Ikegame et al.
(2019)). These results can directly be exploited to tune the
parameters of a PPF controller, thereby providing an exact
closed-form solution to the H∞ control problem for the
PPF case. The parameters for which there is an equivalence,
namely g, νc and ζc can thus be optimized for the PPF. As
for the NC, one can first optimize the parameters α̃2, νe
and ζe, and deduce the shunt parameters Cn, R and L using
equations (13) and (17).

Thanks to the incorporation of the controller gain g, there
is however an additional free parameter in comparison with
the passive RL shunt approach. First, we fix g to find optimal
values for νc and ζc by minimizing the H∞ norm of the
transfer function h(iω̂). Here, i is the imaginary number, and
ω̂ is a circular frequency normalized by ω0:

minνc,ζc∥h(iω̂c)∥∞
→ find νc, ζc such that |h(iω̂c,A)| = |h(iω̂c,B)| ≡ h0.

h0 is the maximum amplification of the two equal resonance
peaks located at dimensionless frequencies ω̂c,A and ω̂c,B .
h0 is expressed as a function of g (Soltani et al. 2014):

h0 =
8

√
g
√
2
√
54g2 − 144g + 64 + 9g + 16

(19)

which yields

135h4
0g

4 − 864h4
0g

3 + 1152h2
0g

2 + 2048h2
0g − 4096 = 0.

(20)

This quartic equation in g can be solved in closed form
so that the gain g can be determined from a desired
amplification h0. The peak amplitude h0 is now minimized.
Using Mathematica (Wolfram Research Inc. 2022):

∂h0

∂g
= −

4

(
216g3/2−288

√
g√

54g2−144g+64
+ 18

√
g

)
√
g
(
9g + 2

√
54g2 − 144g + 64 + 16

)3/2

− 8

g
√
9g + 2

√
54g2 − 144g + 64 + 16

.

(21)
Equating this derivative to zero eventually yields the value
gopt that minimizes the peak amplitude h0,

gopt =
8

15
= 0.5333 . (22)

The minimum attainable H∞ norm can be found by inserting
gopt in equation (19):

h0,opt =
√
5. (23)

Using gopt, the parameters νc and ζc can now be found. For
the shunt, they are expressed as a function of the coupling
factor in Soltani et al. (2014). For the PPF controller, we
introduce K2 = g

1−g and apply the tuning rules provided by
Soltani et al. (2014). With the intermediate parameter

r =

√
64− 16K2 − 26K4 −K2

8
, (24)

the optimal frequency and damping ratios are

νc =

√
3K2 − 4r + 8

4K2 + 4
(25)

and

ζc =

√
27K4 + 80K2 + 64− 16r (4 + 3K2)√

2 (5K2 + 8)
, (26)

respectively.

Performance and stability investigations
The performance of the derived PPF tuning rule is
demonstrated herein. Both the open-loop transfer function
and the stability of the controlled system are investigated.

Performance
The transfer functions between the structural response
and the external force are compared in Figure 1 in the
uncontrolled (equation (1)) and controlled (equation (6))
cases. The optimal case is represented by ( ). Thanks to
the PPF, the original resonance peak has been replaced with
two resonance peaks featuring much lower — and equal —
amplitudes. However, we also observe that the controller
increases the static response which is confirmed by the
formula (cf. equation (6))

h(0) =
1

1− g
. (27)
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(a) FRFs for g = 0.85gopt ( ), g = gopt ( ) and
g = 1.046gopt = gmax ( ).
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(b) FRFs for g = 0.2gopt ( ), g = 0.5gopt ( ), g = 0.75gopt ( )
and g = gopt ( ).

Figure 1. FRFs between the structural response and the
external disturbance voltage of the SDOF system controlled by
a PPF controller with different gain settings. The uncontrolled

response is represented with ( ).

Frequency response functions (FRFs) for different values
of the gain are displayed in Figure 1. If g < gopt, the
static response is smaller than in the optimal case but the
magnitude of the resonance amplitude is greater.

Soltani et al. (2014) stated that the α for shunts should
not be chosen higher than α̃max = 0.74815 to guarantee
an equal-peak design. This translates into gmax = 0.5597
for the PPF controller. Figure 2 compares the maximum
amplitude of the receptance function h0 with the amplitude
of the static response for different values of the gain g.
Indeed, when g > gmax, the maximum of the receptance
function is shifted to ŝ = 0. The minimum amplitude in
equation (23) obtained for gopt is thus an absolute minimum.
In addition, the H2 norm of the FRF response is presented in
Figure 2. It can be observed that it decreases in a relatively
similar fashion to the H∞ norm; however, the minimum of
the H2 norm occurs for a lower value of the gain (g ≈ 0.49).

For the fixed-points-based method from Zhao et al. (2018,
2019), the gain needs to be chosen according to a trade-
off between the static softening and the amplitude reduction.
Zhao et al. stated that, for ideal performance, the gain should
be chosen as large as possible while respecting the stability
limit. However, doing so will substantially enlarge the static
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Figure 2. Maximum amplitude h0 ( ), H2 norm of the
FRF amplitude ( ), and static response ( ) of the
controlled SDOF system as a function of the gain g.

response of the controller so that, eventually, g needs to be
smaller. It is set to gopt herein. The comparison with the
proposed tuning rule is displayed in Figure 3. It can be
seen that the fixed-points method does not yield resonance
peaks with equal amplitude whereas the static responses are
identical, and the resulting H∞ norm is lower.
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Figure 3. FRFs between the structural response and external
force of an SDOF system. Uncontrolled ( ), controlled by a

PPF controller with exact H∞ rules ( ) and by a tuning
based on fixed points ( ).

Stability and stability margins
In order to explain the stability of the controlled system, we
consider the open-loop transfer function for a plant GPPF

controlled by a PPF controller, expressed as

Hol,PPF (ŝ) = −GPPF (ŝ)PPF (ŝ). (28)

The plant transfer function GPPF (s) is the transfer function
between the controller force fPPF = ω2

cgcuc and the
displacement x when f = 0:

GPPF (s) =
1

ms2 + k
. (29)

The PPF controller function is the second-order filter

PPF (s) =
gcω

2
c

s2 + 2ωcζcs+ ω2
c

. (30)
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Figure 4. Bode plot of the open-loop transfer function of a
dimensionless SDOF system with a PPF controller tuned
according to the H∞ tuning rule. Decisive phase margins

are indicated with a •.

Using equations (29) and (30), and the parameters
in equation (5), the open-loop transfer function in
dimensionless form is

Hol,PPF (ŝ) = −GPPF (ŝ)PPF (ŝ)

= − 1

ŝ2 + 1

g
ŝ2

ν2
c
+ 2ζc

ŝ
νc

+ 1
. (31)

Previous works have shown that as long as the damping
ratio and optimal frequency are greater than zero, the
only parameter that could destabilize the controller is g
(de Marneffe and Preumont 2008; Zhao et al. 2018). A
stability limit is reached when the structure’s stiffness is
counterbalanced by the controller gain. Krenk and Høgsberg
(2013) derived the stability criterion directly using the
stiffness matrix, stating that the stiffness of the structure
(in the MDOF case, including higher-order modes) must
be greater than the gain factor(s). For the SDOF case, this
criterion then condenses into a scalar. Zhao et al. (2018)
defined the stability limit for the gain of a PPF controller
by g < 1. In the context of the shunt analogy, the addition
of an NC into the circuit can be interpreted as introducing
a negative stiffness to the system. Similarly to the PPF
controller, the system then becomes unstable if the negative
stiffness of the transducer cancels out the structure’s stiffness
(as it is seen from the transducer) (de Marneffe and Preumont
2008). A detailed discussion of the analogy with respected to
the system stability can be found in Dietrich (2023).

Closed-loop stability is a necessary requirement to
guarantee the performance of a control system but it is not
a sufficient one. In practice, one has to ensure sufficient
stability margins to account for uncertainties and unmodeled
dynamics in the system. These margins can be deduced from
the open-loop transfer functions (Franklin et al. 1990). The
Bode plot of the open-loop transfer function in the tuned
case in Figure 4 features a phase margin of −53.2◦ or 83.7◦,
which can be considered as acceptable. It should be noted
that a negative phase margin in this case does not result
in an unstable system. It rather means that if the system
undergoes a phase lead (and not lag) modification it will
become unstable, as can be deduced from Figure 4. We
note that the open-loop transfer function in the optimal case

features the smallest phase margin and that all variations of
the controller gain g leave sufficient phase margins for a
viable use in practical applications.

Extension to MDOF systems
In the previous sections, the tuning rule was established for
an SDOF host structure. This section considers the MDOF
case. In this context, the main idea is to tune the parameters
of the PPF controller in order to minimize the H∞ norm of
the modal amplitude of the targeted mode. The influence of
other modes is taken into account via correction factors of
the controller parameters. The proposed correction method is
based on developments for piezoelectric vibration absorbers
(Berardengo et al. 2016; Raze et al. 2022) and adapted to the
active control case. It also shares similarities with the method
of Fenik, S. and Starek, L. (2008), but is not limited to a pole
placement problem.

Accounting for higher-order modes
The equations of motion in modal space of an MDOF system
with a PPF controller are: (s2I+Ω2)η = f +wω2

cgcuc

(s2 + 2ζcωcs+ ω2
c )uc = ω2

cgcxs

xs = vTη
, (32)

where vT and w are vectors indicating the position of the
sensor and of the actuator, respectively. I is the identity
matrix, and Ω is a diagonal matrix with the resonance
frequencies. η is the vector of modal amplitudes, and xs is
the sensor signal. η is partitioned such that

ηT = [ ηT
<i, ηi, η

T
>i ]. (33)

Here, the subscript i stands for the targeted mode so that η<i

and η>i include the modal amplitudes of lower and higher
frequency modes, respectively. Vectors v and w are likewise
partitioned as

vT = [ vT
<i, vi, v

T
>i ] and wT = [wT

<i, wi, w
T
>i ].

(34)
For the following considerations, we set f = 0. For η<i, one
can assume that the dominant term of the first line of equation
(32) is

s2η<i = w<iω
2
cgcuc (35)

as, in this frequency range, Ω is small in relation to s2I. As
for η>i, one obtains

Ω2η>i = w>iω
2
cgcuc, (36)

neglecting the s2I term. The sensed signal xs can be
expressed with equation (33), so that

xs = vT
<iη<i + viηi + vT

>iη>i. (37)

Inserting equations (35) and (36) in equation (37) yields

xs =
1

s2
vT
<iw<iω

2
cgcuc + viηi + vT

>iΩ
−2w>iω

2
cgcuc.

(38)
Introducing the auxiliary variables

κ<i

s2
= vT

<i

1

s2
w<i and κ>i = vT

>iΩ
−2w>i, (39)
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the insertion of equation (38) into equation (32) gives (s2 + ω2
i )ηi = wiω

2
cgcuc(

s2 + 2ζcωcs+ ω2
c − ω2

cgcκ>i − ω2
cgcκ<i

1

s2

)
uc = viηi

.

(40)
In the experiments conducted in this work, the first

structural mode is targeted. Thus, κ<i = 0. If higher-order
modes were targeted, one could as a first approximation
also neglect its associated term, given that its magnitude
decays with the square of the frequency. Introducing now the
parameters

ûc =
uc

vi
, ω̂2

c = ω2
c − ω2

cgcκ>i,

ĝc =
ω2

cgcwivi
ω̂2

c
, ζ̂c =

ζcωc

ω̂c
,

(41)

equation (40) becomes{
(s2 + ω2

i )ηi = ω̂2
c ĝcûc(

s2 + 2ζ̂cω̂cs+ ω̂2
c

)
ûc = ηi

, (42)

which has the same form as equation (2). The tuning
formulas given in equations (22) and (24) - (26) can thus be
used to tune the controller parameters. Using equation (41),
we can then express the corrected PPF controller parameters
as:

gc =
ĝc

viwi + κ>iĝc
, ω2

c =
ω̂2
c

1− gcκ>i
, ζc =

ζ̂cω̂c

ωc
.

(43)
The tuning procedure for the PPF controller in the MDOF
case is as follows:

1. Identification of the system parameters ωi, wi, vi and
κ>i.

2. Computation of the optimal PPF controller parameters
ω̂c, ζ̂c and ĝc, using ωi as in an SDOF case according
to the previously defined tuning rules.

3. Correction of the controller parameters according to
equation (43).

An advantage of this on-hand methodology is that it is widely
and conveniently applicable since the identification of the
system parameters can be easily achieved with state-of-the-
art methods. In comparison to Clark (1997), it can be used
for different sensor-actuator configurations. However, the
equal-peak design is only enforced on one modal coordinate,
and the corrections depend on the considered plant transfer
function. Thus, an equal-peak design cannot be guaranteed a
priori, and the performance depends on the considered input
and output locations.

Numerical demonstration on a cantilever
beam
The structure chosen to demonstrate the previous develop-
ments numerically and experimentally is the cantilever steel
beam with a thin lamina at its free end schematized in Figure
5. The beam comprises ten piezoceramic patches on each
side of the beam. This structure was the subject of other
studies, often in a clamped-clamped configuration to trigger
the nonlinearity of the thin lamina (see, e.g., Raze et al.

Figure 5. Top view on the cantilever beam setup.

(2020, 2022)). In this study, the clamping of the thin lamina
is freed to remain in a linear regime of motion.

For the model, a steel beam (700mm× 14mm× 14mm)
with a thin steel lamina (100mm × 14mm × 0.5mm)
and with piezoceramic patches of the type PSI-5A4E is
considered. Two piezoelectric patches, namely P1 and P2,
act as voltage sensors, both on one side and close to the
clamping. The patch P3 functions as a voltage actuator
of the controller and P4 as a voltage actuator imposing
a disturbance voltage to the structure. The displacement is
measured at the end of the cantilever beam.

A finite element (FE) model with Euler-Bernoulli beam
elements was built based on the method proposed by Thomas
et al. (2009), considering three DOFs per node (axial,
transversal, rotation), accounting for displacements along the
x- and y-axis and rotations around the z-axis (cf. Figure
5). The other DOFs were neglected as their motions were
considered negligible; more sophisticated and accurate 2D
or 3D models could be built but this was not deemed
necessary given the good agreement of the numerical model
with experimental results. Both the beam and the lamina
were discretized with one element per millimeter, yielding
a model with 4437 DOFs. For simplification, a Craig-
Bampton-based model order reduction was used according to
the technique in Raze et al. (2022). One interface mechanical
DOF and all electrical DOFs for the patches were retained
together with 20 vibration modes. Modal damping of 0.2%
was added in the model. To assess control performance,
the transfer functions from the disturbance voltage to the
tip displacement are regarded. In addition, the transfer
functions from a disturbance force at the beam tip to the tip
displacement are also taken into account.

Plant transfer functions
In control theory, a collocated sensor-actuator pair is
always preferable since it is accompanied by an alternating
pole-zero pattern in the open-loop transfer function, which
offers good stability margins (Preumont 2011). The plant
transfer function of pseudo-collocated (P1 to P3) and non-
collocated (P2 to P3) configurations are displayed in Figure
6. The P1 to P3 case corresponds to two piezoelectric
patches placed at the same location, but on either side of
the beam. It is referred to as pseudo-collocated, because
transversal in-plane motions may cause a disturbance to
the alternating pole-zero pattern at high frequencies. For
simplicity, this case will be referred to as collocated in
what follows. Nonetheless, both configurations feature
an alternating pole-zero pattern, although this feature is
certainly not generic for non-collocated cases.
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Figure 6. Bode plot of the plant transfer functions of the
numerical beam. Non-collocated (P2 to P3) ( ) and pseudo-

collocated (P1 to P3) ( ).

In this numerical experiment, our target is the first mode,
which corresponds to the first bending mode of the cantilever
beam. The identified resonance frequencies are 24.28Hz,
42.13Hz and 152.9Hz for modes #1 - #3, respectively.
Figure 6 shows that the first two poles are relatively close
to each other. Therefore, an SDOF approximation of the first
mode might not be adequate for the tuning process.

Collocated versus non-collocated setups The performance
of the PPF controller designed according to the proposed
H∞ tuning rule is displayed in Figure 7. In Figure 7(a), a
disturbance voltage is acting via P4. Both configurations
yield a substantial resonance amplitude reduction (around
40 dB), but only the non-collocated configuration exhibits
a strong amplification of the static response. Indeed, the
piezoelectric actuator applies a torque which only impacts
the beam section of P4 (the in-plane displacements are
assumed to be small herein). So, in the static case, only
the sensor at P2 can sense the disturbance and activate
the controller. We also note that the two resonance peaks
visible in Fig. 3 are much harder to see here because of the
increased static response and the perturbation due to the
higher-frequency modes.

A disturbance force at beam tip is now considered
in Figure 7(b). The performance in similar in both
configurations leading to an amplitude reduction of 47 dB.
Because the disturbance force at beam tip mostly activates
the first bending mode, the influence of the other modes
is reduced, and two equal peaks can be enforced by the
controller. These observations demonstrate the impact of the
choice of the transfer function on performance assessment.

x

V

PPF

PPF

x

V

(a) From disturbance voltage (P4) to tip displacement.

x f

PPF

PPF

x f

(b) From disturbance force at the beam tip to tip displacement.

Figure 7. FRFs of the numerical beam. Uncontrolled ( );
controlled by a PPF accounting for the influence of higher-

order modes in a non-collocated ( ) and pseudo-
collocated ( ) setup.

The influence of higher modes
Figure 8 compares the receptance functions for the
uncontrolled system, as well as the controlled system with
a PPF controller tuned with and without higher-mode
correction (collocated case). The correction leads to an
improvement of 5.5 dB and 3.5 dB in Figures 8 (a,b),
respectively. In addition, the PPF controller is strongly
detuned when higher modes are neglected, because a
resonance peak remains in the frequency range of interest.

Variations of the controller gain
The variation of the controller gain is now studied for the
collocated controller, similar to what was achieved in Figure
1. Figure 9 presents what happens for a small variation
of g. For a disturbance voltage, we observe an imbalance
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PPF

x

V

(a) From disturbance voltage (P4) to tip displacement.

PPF

x f

(b) From disturbance force at the beam tip to tip displacement.

Figure 8. FRFs of the numerical beam. Uncontrolled ( );
PPF controller accounting for higher-order modes ( )

or not ( ).

between the two resonance peaks, even when the controller
is optimally tuned. As previously discussed, this is probably
due to the influence of other structural modes and to the static
response. Also, the optimally-tuned controller does not yield
the best damping performance in this example, probably
due to the fact that the static response is not amplified.
Considering now the receptance function from a disturbance
force to the tip displacement, an equal-peak design is better
approached. First, the static response is increased as it is
typical for the controller. Second, as already mentioned
before, the influence of the higher order modes is smaller
at this input location. In this transfer function, the theoretical
developments from the beforehand discussed SDOF system
can be reproduced, i.e., the controller with the optimal gain
leads to the best damping performance.

Comparison with the fixed-points method
Figure 10 compares the proposed tuning methodology with
a fixed-points tuning, both with correction for the higher
modes. The former is found to be slightly more effective,
increasing the damping performance by 1 dB. In addition,
considering Figure 10(b), the two peaks of the system with
the H∞-based controller are better balanced. Based on these

PPF

x

V

(a) From disturbance voltage (P4) to tip displacement.

PPF

x f

(b) From disturbance force at the beam tip to tip displacement.

Figure 9. FRFs between the structural response and the
external disturbance voltage of the numerical beam controlled

by a PPF with different gains (uncontrolled response: ).
Gain variations of g = 0.85gopt ( ), g = gopt ( ) and

g = 1.046gopt = gmax ( ).

results, it can be stated that the gopt found in equation
(22) and the consideration of the higher-order modes does
not only lead to an enhancement of the exact but also of
the fixed-points tuning rule in the MDOF case. While the
difference between the two methods in terms of performance
(about 1 dB) might not be substantial, the method proposed
in this work provides a mathematically exact solution (for
the SDOF case) with an optimal gain value, including an
expression of the receptance amplitude.

Experimental demonstration on a cantilever
beam

Experimental setup
The structure of interest corresponds to the beam used during
the numerical simulations. Figure 11 shows the experimental
setup. One piezoelectric patch located next to the clamping
was used as an actuator while the patch next to it was
used to excite the structure with a disturbance voltage.
The patches on the opposite side were used as sensors.
Sensors 1 and 2 correspond to collocated and non-collocated
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PPF

x

V

(a) From disturbance voltage (P4) to tip displacement.

PPF

x f

(b) From disturbance force at the beam tip to tip displacement.

Figure 10. FRFs of the numerical beam. Uncontrolled ( );
controlled by a PPF controller tuning using H∞ rule ( ) or

the fixed-points method ( ).

Figure 11. Experimental setup.

configurations, respectively. The amplitudes of the actuator
and disturbances voltages were increased by a gain equal
to 10 with a voltage amplifier. These gains are included
in the graphical plots for comparison with the numerical
results. The digital controller unit dSPACE MicroLabBox
was used for the excitation signals, measurements and the
implementation of the controller function. An accelerometer
measured the response at beam tip. For comparison with the
numerical simulations, this acceleration was integrated twice
to obtain the displacement.

Figure 12. FRFs and phase evolutions between the voltage
actuator and voltage sensor of the experimental cantilever

beam in a collocated ( ) and a non-collocated ( ) setup.

Plant transfer functions
The system was excited from 1Hz to 200Hz via a
multisine signal with a root-mean-square (rms) amplitude of
A = 0.5V . The signal featured N = 20000 of samples per
period, P = 20 periods and R = 10 realizations (Schoukens
et al. 2016). The sampling rate was 4000 samples per second
yielding in a frequency resolution of 0.2Hz. To build the
FRF functions, the measurements were averaged over P
and R. The measured plant transfer functions are displayed
in Figure 12. The first resonance frequency at 23.2Hz was
targeted by the controller. The influence of the second and
third mode at 44.8Hz and 146Hz, respectively, was taken
into account for the tuning. Based on the measured plant
transfer functions, a state space model was built using
the Matlab functions tfest and tf2ss. Figure 12 reveals
that the FRF of the plant transfer function features small
amplitudes before the first resonance in the non-collocated
setup configuration, in line with the numerical simulations
(cf. Figure 6). Both setups provide an alternating pole-zero
pattern of the plant transfer functions. Comparing Figures 6
and 12, we note that there was a good agreement between
the natural frequencies of the numerically-obtained and
experimentally-identified open-loop plant transfer functions.

Damping performance
The PPF controller parameters were derived based on the
identified state space model. The disturbance signal had an
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rms amplitude of A = 0.5V from 1Hz to 200Hz and the
signal featured a 100000 samples per period, 20 periods and
10 realizations. The sampling rate was 10000 samples per
second yielding a frequency resolution of 0.1Hz. Figure 13
presents the FRFs between the measured displacement and
the disturbance voltage of the uncontrolled and controlled
systems. The controller reduces the amplitude of the first
resonance peak by 36 dB and 30 dB in the collocated and
non-collocated cases, respectively. Due to the influence
of the higher-order modes and possibly also of the static
response, the expected two resonance peaks cannot clearly be
seen in the FRF of the collocated setup. As already observed
in the numerical simulations, the static response is strongly
(not) amplified in the non-collocated (collocated) case.
Overall, the performance of the PPF controller tuned with
the H∞ tuning rules can be regarded as highly satisfactory.
Moreover, the controlled system exhibits phase margins of
−19.46◦ and 61.03◦ in the collocated and non-collocated
cases, respectively (where a negative stability margin does
not imply instability, as in Figure 4).

x

V

PPF

PPF

x

V

Figure 13. FRFs between the voltage actuator and voltage
sensor of the experimental cantilever beam for the uncontrolled

case ( ) and controlled by a PPF controller accounting for
the influence of higher-order modes in a collocated ( ) and a

non-collocated ( ) setup.

Comparison with the fixed-points method
Figure 14 evidences that both controllers lead to a
satisfactory amplitude reduction, reducing the resonance
amplitude by 36.5 dB (exact tuning rule) or 35.80 dB (fixed-
points method). For the fixed-points method, two unbalanced
resonance peaks appear around the resonance frequency. For
the exact tuning rule, there is a single, more strongly-damped
resonance peak.

Gain variations
Gain variations close to the value gopt are presented
in Figure 15(a). The close-up shows that the resonance

PPF

x

V

Figure 14. FRFs between the disturbance voltage and the
tip displacement of the experimental cantilever beam for the
uncontrolled case ( ) and controlled by a PPF controller

tuned with exact H∞ rules ( ) and with a fixed-points
tuning ( ).

amplitude is more reduced using gmax instead of gopt.
Experimental uncertainties might explain this discrepancy
with the theoretical developments, especially since gopt and
gmax are close to each other. Larger gain variations are
shown in Figure 15(b). Damping performance is clearly the
most effective close to gopt. For gains significantly lower
than this value, two resonance peaks are visible. This may be
due to the fact that the resonance amplitude is greater than
the static response.

As a final remark, we mention that taking the higher-
order modes into account was not only essential for optimal
damping but also to guarantee the controller’s stability. When
the controller was tuned without the the proposed correction
procedure, the open-loop transfer function revealed that
the controlled system would be unstable. Thus, the PPF
controller could not have been implemented practically.

Conclusions and outlook
By exploiting the fact that the receptance functions of an
RL shunt with an NC and a collocated PPF controller are
equivalent, a new H∞-based tuning rule was derived for
a PPF controller. This strategy could yield a substantial
reduction of the targeted resonance amplitude, sometimes
at the cost of a growing static response. Thanks to the
developed closed-form solution, this problem could
be tackled and minimized. Our methodology was first
demonstrated on an SDOF system, and its stability margins
were analyzed by means of the open-loop transfer functions
of the controlled systems. The optimal PPF controller
exhibited sufficiently large stability margins, which makes it
viable in practical applications.

Our developments also extend to the MDOF case thanks
to a procedure that accounts for the influence of higher
modes. It was shown that it is essential to include these
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PPF

x

V

(a) Gain variations of g = 0.85gopt ( ), g = gopt ( ) and
g = 1.046gopt = gmax ( ).

(b) Gain variations of g = 0.2gopt ( ), g = 0.5gopt ( ),
g = 0.75gopt ( ) and g = gopt ( ).

Figure 15. FRFs between the structural response and the
external disturbance voltage of the experimental cantilever beam

controlled by a PPF controller with different gain settings in
contrast to the uncontrolled response ( ).

modes for effective vibration mitigation. A numerical study
on a cantilever beam using different actuator and sensor
combinations was conducted, followed by an experimental
verification. The outcome of these studies demonstrated the
effectiveness of the controller with phase margins ensuring
the stability of the controlled system.

The limitations of the approach were also discussed,
especially in view of the equal-peak design in the controlled
FRF. In the MDOF case, the controller performance varied
with respect to the considered transfer function. Even if
it might be possible to exactly enforce equal peaks in the
receptance function, this is beyond the scope of this work.
The presented approach provides rather a practical and easily
applicable procedure to robustly design a PPF controller for
an MDOF host structure.

This work establishes a basis for a new way of tuning
a PPF controller for vibration control. Future works could
include the consideration of lower modes when a higher
mode is targeted or multiple modes are considered at the
same time. In addition, the softening caused by the controller
may decrease the frequency and amplify the amplitude of

modes with a lower frequency than the targeted one; this
effect should be further investigated. Finally, the tuning rules
could also be applied to real-life applications.
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