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Context

Additive manufacturing holds significant potential in the space sector, especially within the context

of the ”New Space” or ”Space 4.0” paradigm, which emphasizes novel satellite architectures and

their miniaturization, reusable launchers, innovation, etc.

In particular, AM enables innovative structural design, opening up new possibilities:
– optimized and built in one piece;

– unmanufacturable using conventional methods;

– made off materials with intriguing properties, such as self-healing capabilities.

Figure 1. Two different 3D printed parts from mottcorp.com.

Meanwhile, new opportunities and challenges emerge from the microstructure resulting from AM

processes and post-processing (e.g. gaps, porosities, inclusions, etc.), affecting the material’s

strength and behaviors.

(a) As built. (b) After stir friction processing.

Figure 2. Different microstructures of AlSi10Mg alloys, obtained by additive manufacturing [1].

ä However, taking into account the microstructure with all its subtleties and potential effects on the

macroscopic scale, still remains a significant challenge, especially in numerical simulations.

Why should we care about the microstructure?

Traditional numerical methods, such as the finite element method, may overlook small-scale

effects or assume homogeneity that isn’t present in real-world materials. Multiscale analysis

enables more accurate predictions by incorporating finer details from smaller scales into the

analysis, leading to more realistic results.

Considering this microscopic scale provides insights into the relationship between microscale

phenomena and macroscale behavior. By studying how small-scale features influence overall

performance, engineers can optimize designs for specific applications.

In the case of additive manufacturing, numerical studies may outline optimal microstructures

targeted for printing.

ä This is particularly compelling for aeronautical and space structures, where an optimal material

representation can facilitate lighter-weight designs, ultimately reducing costs.

Objectives

Considering the microstructure in a conventional finite element analysis is impractical due to

resource constraints.

While multiscale methods like homogenization attempt to address these challenges, they remain

non-industrializable to date.

ä Hence, a primary objective of this thesis is to explore the potential of machine learning for

multiscale thermomechanical simulations. The goal is to substitute the microscopic scale with a

neural network surrogate.

ä Additionally, another aspect involves constructing an efficient database for the training of such

neural networks, based on 3D scans of microstructures.

All developments are implemented in Metafor [2], our in-house nonlinear finite element solver.
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Non-linear finite element analysis

Finite Element Method (FEM) is a numerical technique used to solve differential equations by

dividing the domain into smaller, simpler sub-domains known as finite elements.

The latter aims to predict and analyze the behavior of mechanical structures and components

under different loading conditions to ensure structural integrity and optimize design.

ä The user must define how the material responds to applied forces or deformation, i.e. choose

the right constitutive equations at macroscale.

Figure 3. Examples of finite element analysis done with Metafor [3, 2]

Multiscale analysis

Taking into account all length scales in a conventional finite element analysis (FEA) is unfeasible.

As always, there is the classical trade-off between accuracy and computation cost.

Multiscale methods aim to mitigate these demands but still remain, to date, non-industrializable.

ä This thesis is currently based on the finite element squared (FE2) [4]:
– both macro and micro scales are considered seperatly in the FE simulation;

– There is no constitutive equation at the macroscale; instead, the behavior of the material is obtained from a

representation of its microstructure (RVE);

– although the two scales seem separated, the homogenization principle manages the scale transition, i.e. the

communication between them.
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Figure 4. Finite element squared.

Replacing the microscale by a neural network

A neural network (NN) can be viewed as a powerful function that has been trained to produce

specific outputs given particular inputs by adjusting its internal parameters.

Correct predictions only occur if the data—sets of inputs and outputs—have already been seen

by the NN during its training. Therefore, neural networks rely on large amounts of (quality) data.
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Figure 5. Training a neural network.

ä One could use such a tool to accelerate multiscale simulations, i.e. the neural network has been

trained with data from the microscale. In other words, the neural network emulates the

behavior of the microstructure.

ä While it does reduce computation time compare to vanilla FE2, it is important to consider the

”offline resources” invested in generating the data and training the neural network.
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Figure 6. Finite element neural network (FENN).

Current main challenges faced

Establishing a database for path-dependent materials without resorting to random-walk

algorithms for representing deformation paths.

Neural network architectures capable of handling time sequences with uneven spacing.

The inner workings of advanced neural networks often remain opaque, resembling a black box,

where understanding how inputs translate into outputs can be challenging.

Convergence of the Newton-Raphson procedure with the finite element squared.

Extending current mechanical results to thermomechanical simulations.
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