

INTEGRATED CARBON OBSERVATION SYSTEM

ICOS VS PI PROCESSING

On the need to understand and quantify the differences between custom PI and standardised ICOS processing

Focus on denoising procedure

Ariane Faurès, Giacomo Nicolini, Dario Papale, Simone Sabbatini, Bernard Heinesch ICOS Spring MSA, Antwerp 21-23 May 2024

Introduction

Flux calculation

ICOS pipeline:

- Protocol by Sabbatini et al. 2018
- Vitale et al. 2020 for QC
- Package RFlux ETC on GitHub (<u>https://github.com/icos-etc/RFlux/tree/master</u>)

→Use of EddyPro

Theory reminder : spectral corrections

EC system acts as a **low-pass** filter

 → The measured fluxes are therefore
→ systematically underestimated : need to correct them

Visualisation in the frequency domain : use of (co)spectra

Theory reminder : spectral corrections

Correction procedure:

1. Evaluation of losses: transfer function approach

2. Correction factor computation

- Experimental approach \rightarrow spectral/co-spectral
- Use of sonic temperature (co)spectra as reference
- Ratio of real over ideal normalised (co)spectra

Theory reminder : spectral corrections

Correction procedure:

1. Evaluation of losses: transfer function approach

2. Correction factor computation

Ratio of degraded (through TF) to ideal covariances

Denoising

Risk : removal of true signal thus artificially attenuating it. cof decreases, CF increases → Fluxes are overcorrected

Noise : potential bias in TF computation for spectral approach *Removal option:*

- 1. fit unconstrained linear equation in a defined frequency range where only noise is present
- 2. extrapolation to all the frequencies

Limitations:

- Assumption of **white noise**
- Visual inspection for frequency range selection
- Assumption of **absence of signal** in the selected range

ICOS : default denoising at 1 Hz. **OK?**

Materials and methods

0 Hz (no denoising)

1 Hz (EP default)

ETC dataset : ICOS (Class 1 and 2) sites, three denoising thresholds

	Flux calculation	5 Hz (old EP default)	
Raw data			
QA/QC routines			
Coordinate rotations Time lag compensation Trend removal			
Uncorrected fluxes			
Spectral corrections			
Corrected fluxes			
Gapfilling and partitioning algorithms	3		
GPP, RECO			

Input files (EP) :

- Full output
- Spectral assessment file
- Passive gases ensemble spectra

Data cleaning :

- FC > 15 or FC < -70 $\mu mplm$ -2s-1
- qc == 2
- Unstable : Zeta <= 0
- Stable : Zeta > 0

	TEGRATED ARBON SSERVATION STEM
--	---

	Α	В	С	D
1	ld	Name	Site type	Low site
2	BE-Bra	Brasschaat	evergreen needleleaf forests	0
3	BE-Dor	Dorinne	grasslands	1
4	BE-Lon	Lonzee	croplands	1
5	BE-Maa	Maasmechelen	closed shrublands	1
5	BE-Vie	Vielsalm	mixed forests	0
7	CH-Dav	Davos	evergreen needleleaf forests	0
3	CZ-BK1	E 26 citor	5	0
9	CZ-Lnz	L 20 SILES		0
0	DE-Geb	d 11 low-measurement sites		1
1	DE-HoH			0
2	DE-RuS			1
3	DE-Tha	Tharandt	evergreen needleleaf forests	0
4	DK-Sor	Soroe	deciduous broadleaf forests	0
5	DK-Vng	Voulundgaard	cropland	1
6	FI-Hyy	Hyytiala	evergreen needleleaf forests	0
7	FI-Sii	Siikaneva	permanent wetlands	1
8	FI-Sod	Sodankyla	evergreen needleleaf forests	0
9	FR-Bil	Bilos	evergreen needleleaf forests	0
0	FR-FBn	Font-Blanche	evergreen needleleaf forests	0
1	FR-Fon	Fontainebleau-Barbeau	deciduous broadleaf forests	0
2	FR-Gri	Grignon	cropland	1
3	FR-Hes	Hesse	deciduous broadleaf forests	0
4	FR-Lam	Lamasquere	croplands	1
5	FR-Lqu	Laqueuille	grasslands	1
6	FR-Lus	Lusignan	grasslands	1
7	FR-Pue	Puechabon	evergreen broadleaf forests	0

Results: white noise?

BE-Lon: denoising

Results: white noise?

	<u>1 Hz</u>	5 Hz
BE-Bra	-0.73(0.37)	0.44(0.95)
BE-Dor	-0.99(0.99)	-0.54(0.58)
BE-Lon	-1.15(0.98)	-1.37(0.95)
BE-Maa	-0.33(0.74)	0.56(0.94)
BE-Vie	-0.12(0.07)	0.18(0.17)
CH-Dav	-0.17(0.50)	0.53(0.95)
CZ-BK1	-0.73(0.81)	0.40(0.86)
CZ-Lnz	-0.55(0.85)	0.47(0.94)
DE-Geb	-1.29(0.84)	-1.45(1.00)
DE-HoH	-0.34(0.75)	0.55(0.86)
DE-RuS	-0.44(0.51)	0.65(0.98)
DE-Tha	-0.22(0.36)	<mark>0.89(1.00)</mark>
DK-Sor	-0.02(0.03)	NA
DK-Vng	-1.15(0.98)	-0.28(0.50)
FI-Hyy	0.01(0.01)	NA
FI-Sii	-0.48(0.98)	NA
FI-Sod	-0.11(0.25)	NA
FR-Bil	-0.28(0.44)	0.56(0.94)
FR-FBn	0.04(0.02)	<mark>0.94(1.00)</mark>
FR-Fon	-0.18(0.31)	0.75(1.00)
FR-Gri	-0.78(0.97)	0.04(0.05)
FR-Hes	-0.38(0.50)	0.59(0.98)
FR-Lam	-0.68(0.99)	NA
FR-Lqu	-1.00(0.98)	-1.22(1.00)
FR-Lus	-0.80(0.92)	0.62(0.65)
FR-Pue	-0.25(0.42)	<mark>0.90(0.99)</mark>

Assumption of white noise for denoising procedure

Slope of unconstrained linear equation should be = 1

Table: slope of linear regression (R² value)

Results : impact of denoising

Results : impact of denoising

scf = spectral correction factor. Final flux will be given by FC * scf

Results : impact of denoising

Results : forest sites

DE-HoH

ICC

INTEGRATED

OBSERVATION

CARBON

SYSTEM

DE-Tha

DK-Sor

FR-Fon

FR-Hes

CZ-Lnz

FI-Sod

FR-Pue

Results : H2O

The same denoising procedure is applied to H2O (for each RH class). **OK?**

1. Check presence of white noise through slope of linear regression

→ Not found

– 2. Impact of denoising on fluxes?

Stronger attenuation for H2O in the high frequencies (lower cof than CO2) → less/no true signal artificially removed → less impact on fluxes Spectral corrections calculated and applied by RH class

RH class : 35% - 45%	<u>1 Hz</u>	5 Hz
BE-Bra	-1.60(0.73)	-0.04(0.01)
BE-Dor	-1.14(0.79)	0.29(0.04)
BE-Lon	-2.25(0.99)	-1.15(0.92)
BE-Maa	-2.01(0.99)	-1.15(0.96)
BE-Vie	-1.51(0.99)	-0.72(0.86)
CH-Dav	-1.44(0.98)	-0.38(0.92)
CZ-BK1	-2.21(0.99)	-1.84(0.99)
CZ-Lnz	-1.97(0.99)	-1.43(0.95)
DE-Geb	-2.07(0.98)	-2.41(1.00)
DE-HoH	-1.54(0.99)	-0.56(0.79)
DE-RuS	-2.10(0.99)	-0.97(0.90)
DE-Tha	-1.55(0.96)	0.07(0.09)
DK-Sor	-0.37(0.21)	NA
DK-Vng	-1.87(0.86)	<mark>0.95(0.96)</mark>
FI-Hyy	-1.56(1.00)	NA
FI-Sii	-1.69(0.99)	NA
FI-Sod	-1.55(0.98)	NA
FR-Bil	-1.82(1.00)	-1.11(0.95)
FR-FBn	-1.13(0.88)	0.58(0.96)
FR-Fon	-0.78(0.70)	<mark>0.81(0.99)</mark>
FR-Gri	-2.15(0.99)	-2.16(0.99)
FR-Hes	-1.69(0.99)	-0.97(0.95)
FR-Lam	-1.91(1.00)	NA
FR-Lqu	-2.11(0.98)	-3.04(1.00)
FR-Lus	-2.45(0.99)	-1.45(0.78)
FR-Pue	-1.23(0.87)	<mark>1.02(0.99)</mark>

Table: slope of linear regression (R² value)

Results : H2O

run 0_Hz = run 1_Hz =

run 0_H run 1_H run 5_H

run 0 Hz = 17 run 1 Hz = 18 run 5 Hz = 3

> 2023-07 Time

FR-Lus: H2O

run 0_Hz run 1_Hz run 5_Hz

Conclusions

- Tricky to apply the denoising procedure with a default threshold : potential major impact on fluxes
- Overall, no white noise detected in LI7200 for CO2 and H2O
- Suggestion:

Option I : deactivate denoising procedure

Option II : implement Aslan et al. 2021 approach (documented, tested). No need of visual inspection but need to know the type of noise!

...Other?

What's next

- Denoising is a non-issue when using co-spectra : noise does not correlate with wind speed
- Our historical procedure uses co-spectra: can it explain the differences we still see ?
- Can either the spectral or co-spectral method be considered more robust than the other?

Work in progress ... for ICOS SC 2024 !

Thank you!

