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https://ewrl.wordpress.com/wp-content/uploads/2023/09/olivier-pietquin-rl-and-language-long-story-short.pdf

In this course, we use the classic reinforcement learning notations:

o s & S for the states (instead of z € X),

o a € A for the actions (instead of u € U),

o V(s) for the state value function (instead of J(s)),
o (s, a) for the state-action value function,

o 7(als) for the stationary stochastic policy,
In addition, we use the following abbreviations:

e MDP: Markov decision process

e (L)LM: (Large) language model
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Large Language Models



Language Models

Let w; denote the i-th word in a sentence. A language model M estimates the
probability of the next word w;4+1 given the previous words w, . .., w;.

Causal language modelling

P(witi|wi, ..., w) =~ M(wi,. .., w)

This probability can be learnt in an unsupervised manner; there is no need to
label the data.

M uses production rules (Context-Free Grammar), n-grams (MDP), or neural
networks (Recurrent, Graph or Transformer-based) as the underlying mechanism.
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Decoder only architecture

Based on the Transformer architecture of Vaswani et al., 2017, the decoder-only
architecture is the most common for generative language models.
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Figure 1: Decoder-only architecture!.
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https://ai.stackexchange.com/questions/40179/how-does-the-decoder-only-transformer-architecture-work

Language models operate on tokens rather than words in order to compress the
size of the input. All possible tokens constitute the vocabulary V.

A common tokenization method is byte-pair encoding (BPE) which, starting
from all possible bytes, merges the most frequent pairs and adds the whole to the
vocabulary until a desired size is reached.
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Figure 2: Byte-pair encoding (BPE) vocabulary construction Provilkov, Emelianenko,

and Voita, 2019.
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Generation

The model produces for each token a distribution over the vocabulary that

represents the probability of appearance of the next token
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Sampling

By repeatedly adding back the most likely token (greedy decoding), the model

generates a sentence in an auto-regressive manner.
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Figure 4: Greedy decoding 3

By sampling from the probability instead of taking the most likely every step, the

auto-regressive generation can be non-deterministic.

3m-ric/beam_ search_ visualizer
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Decoding

A decoding strategy chooses which token to pick next to form a likely sentence.
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Figure 5: Beam decoding 4
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More than words

Transformers (Vaswani et al., 2017), the architecture behind most LLMs today,
work for any sequential data, meaning they can use and produce code, images,
sounds, ...

Afficher les suggestions

bi ith b a its he: d body.

Figure 6: Example of a multi-modal interaction with Gemini®

STeam et al., 2023, cat picture (not original)

9/40


https://www.reddit.com/r/aww/comments/5mcewl/she_likes_to_collect_rocks/

Multi-modality in practice

Use a specific encoder and a pre-trained model and learn the projector linking

the two.
Language Response Xa ’ ’ .

Language Model f¢

QQQ ann

z, M 4H,
Vision Encoder X

Projection W

v Image Xq Language Instruction

Figure 7: Multi-modal generation encoders 6

SLLaVa: Liu, C. Li, Wu, et al., 2023; Liu, C. Li, Y. Li, et al., 2023
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Reinforcement Learning



Reinforcement Learning

In reinforcement learning, an agent interacts with an environment by taking
actions ay in states s; according to a policy m. The goal is to find the optimal

policy ™ that maximizes the return of a reward function R(s, a), which is the
expected return V(s).

Optimal policy

Vi) = B (zva(st,w<at\st>>|so:s)
se+1~p(at,st) ¢

7*(s) = argmax Vx(s)

state| |reward action
S| (&

A~ (.

- o~ (. |S)
s.. | Environment

I)(-:\SnAz

Figure 8: Agent / Environment interaction loop.
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Value-based methods

Value-based methods define the value function Q(s, a) as the expected
cumulative reward from taking action « in state s and then following the optimal
policy according to the value function.

Policy construction

Q(s,a) = (R Sty at) + 7m(1TQ(9,+1, b)|so = s, a0 = (1,)
sf+1~l7( |at,s¢)
m(s) = argmax Q(s b)
While a bit faster thanks to bootstrapping (use estimates), value-based methods
can be biased and offer only an indirect access to the policy.
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Policy-based methods

Policy-based methods directly optimize the policy 7(a|s) by maximizing the
expected cumulative reward using a gradient based approach.

Policy construction
ﬂ_k:(s) _ ﬂk:—l(s) 4 a(s‘/;;r(«“)
Policy-based methods often use Monte-Carlo (use only observations) and thus are

unbiased and offer a direct access to the policy, but they can be slow and

high-variance.
S
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Choice of approach

Due to the large action space, taking the max function becomes dangerous: the
differences of values become too small compared to the noise.

Policy based methods are also preferred because they are more sample efficient
and lead to more stable training.
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Learning from humans



Imitation learning

Imitation learning” is a method to learn a policy 7 from a set of demonstrations

D.
Behavioral cloning
7 =argmin Y, loss(w(als), a)

™ (s,a)€eD

The policy is trained to mimic the expert’s actions, but it can be brittle

(sensitive to the proximity of the training distribution) and biased (expert does
not provide 7*).

7Useful imitation library
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https://imitation.readthedocs.io/en/latest/algorithms/mce_irl.html

RL in LLMs

Next token prediction is already behavior cloning with the LLM as the agent. We
can draw a parallel between the two fields:

books LLMs | RL “
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Figure 9: RL and LLM parallel®

SEWRL: RL & Languages, Olivier Pietquin.
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https://ewrl.wordpress.com/wp-content/uploads/2023/09/olivier-pietquin-rl-and-language-long-story-short.pdf

Drifting

Behavior cloning is subject to the open-loop drifting problem: the model
accumulates errors over time and diverts too far from the learnt policy.

Figure 10: Open-loop drifting problem.

Methods like DAgger?, which asks experts to annotate some observations,
GAIL', which discriminates expert and agent trajectories, or IRL, which aims to
learn the higher concept of reward, can alleviate this problem.

9Ross, Gordon, and Bagnell, 2010
%Ho and Ermon, 2016
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Hallucinations

LLM thus suffer from the same drifting problem, named hallucinations.

User Input
Can you recommend a delicious recipe for
o dinner?

LLM Response

Yes, here is a delicious recipe for lunch. So

@ how about fried chicken with mashed
potatoes? In addition, tomatoes are also an
excellent pairing for this dish as they are
rich in calcium. Enjoy this steak!

Hallucination Explanation

Input-Conflicting Hallucination: the user wants a

recipe for dinner while LLM provide one for lunch.

Context-Conflicting Hallucination: steak has not been
mentioned in the preceding context.

Fact-Conflicting Hallucination: tomatoes are not rich
in calcium in fact.

Figure 11: Different hallucinations!!.

. Zhang et al., 2023 18/40



Short-sightedness

LLMs are able to measure the “quality” of a sentence through the perplexity but
they cannot target a specific one.

Perplexity

PPL(u 5 wx) = esp (~3tog (o(uifw)

Heuristics help guide the generation based on the distributions.
o Temperature Sampling
Modifies the distribution (0 — argmaz, co — uniform).

e Beam search
Explores multiple paths and keeps the best ones.

o Nucleus sampling (top-p)
Selects tokens until cum-sum p is reached.

e Top-k sampling
Keeps only the k£ most likely tokens.
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Metrics

Most useful metrics in Natural Language Processing (NLP) are
non-differentiable, and thus cannot be used as a loss function.

NLP metrics LLM metrics
« @ BLEU o & Truthfulness
- @ ROUGE . Factuality
. METEOR o @) Verbosity
e % CIDEr o & Toxicity
o .. o i Neutrality

o @: Personna
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Benefits of RL

Why use RL in LLMs?

e RL can optimize for any scalar score (even NLP metrics)
e RL can provide the sequence-level optimization that LLMs lack.

e RL improves over behavior cloning

response (trajectory)

token /

(action) ',

query (initial state)
Figure 12: RL for LLMs'?

12H. Sun, 2023
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RL Methods for LLMs



Inverse reinforcement learning

Inverse reinforcement learning (IRL) is a method to learn a reward function
R(s, a) from a set of demonstrations D. To do this, we learn the vector w in the
expression R(s,a) = w” ¢(s, a), where ¢ is a feature map.

Valid reward function'®

T

Vo) = e ) = S (se, w(5e)) 50 = )

Sl
stt1~p(-lat,st) ¢

Find w*" satisfying 11)*F/1,(7r*, s) >= w*T,u,(ﬂ, s)

IRL needs an access to the environment, and methods to alleviate the reward

ambiguity (existence of trivial solutions)'*.

13Ng, Russell, et al., 2000
MStanford.edu
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https://web.stanford.edu/class/cs237b/pdfs/lecture/lecture_10111213.pdf

Human feedback

On top of demonstrations, the feedback can take the form of :

o Preferences
o Ranking
o Pairwise comparison
- The sequences yp, y1 generated from z are compared by the expert and given
a preference index p € {0, 1}.

Reward assumption under Bradley-Terry model'®

_ slatnl
Plvo = 11e] = Gptrmy0) ) texp(r@mm))

Pairwise reward function loss'®

loss(ry) = — E [logcr (TO‘(I, Yu) — To(2, yl,u))}
(,90,y1,1)~D

e Rewards e Advice
e Scores o Corrections
o Ratings

e Thumbs up / down

15B1‘adley and Terry, 1952 23/40
18Christiano et al.. 2017: Rafailov et al.. 2024



Policy Gradient Theorem

Given a sentence 7, the likelihood of the sentence according to the LLM 7y being
Pr, (), the expected return is Vi, = [ pr, (7)R(7)dT.

Vo Vry = /Vgpm} T)R(T)dT
= [ 0¥ pioyar

P (T)

= E {Lp“@ (7) R(T)}

Pro (7)
= E[Volog pr, (T)R(T)]
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Policy Gradient Theorem (cont’d)

We can decompose 7 into a sequence of tokens wy, ..., wy and, since the policy
defines w; given w<, we can write the likelihood of the sentence as follows.

N

P () = p(w) ] [ro (welwer)

t=2

The gradient of the log-likelihood is then:

N
Vo log pr, (1) = ng log o (we|w<t)

t=1

Policy Gradient Theorem®”

N
VoVryg = E {ZV@ log 7o (w¢|w<¢) R(T)
=1

Sutton et al., 1999
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Reinforce applied to LLMs

The REINFORCE algorithm®® uses the policy gradient theorem to update the

policy mg.
REINFORCE
. D N o N
Vo Vg =5 {(ZV(; 1og7r9(w},|w7‘<,,)> (Zrﬁ)]
i=1 | \t=1 i=1
We can use a b to reduce the variance of the estimator.

REINFORCE with baseline

A D N . . N .
Vo Vry = %21 {(ZVQ logﬁg(wﬂwgt)) (erf — b)}
= i=1 =

8Williams, 1992
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Reinforcement Learning from Human Feedback

Prompts Dataset

Train on

{sample, reward} pairs

Sample many prompts

Initial Language Model Lorem ipsum dolor
P - sit amet, consecte!

adipiscing elit. Aen|
Donec quam felis
vulputate eget, arc|
Nam quam nunc
eros faucibus tinci

Eq

Human Scoring

luctus pulvinar, hes

Generated text

Reward (Preference)
Model

Outputs are ranked
(relative, ELO, etc.)

Figure 13: Simple RLHF paradigm !9

lglluggingFa(:e RLHF
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https://huggingface.co/blog/rlhf

Reward hacking

Continued training leads to decrease in performance due to reward hacking: the
model finds a way to maximize the reward without actually solving the task.

14 RMSize RM Type
M --- Proxy
12M  — Gold

2 26M  — Gold (Fit)

0 20 40 60 80 100
KL divergence between RL tuned policy and inial policy

Figure 14: Reward hacking?®

Adding a Kullback-Leibler divergence (KL) term to the loss function can help
alleviate this problem.

20Gao, Schulman, and Hilton, 2023
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Reinforcement Learning from Human Feedback (enhanced)

Prompts Dataset

x: A dogis...
Tuned Language
Initial Language Model Model (RL Policy)
Reinforcement Learning
N Update (e.g. PPO)
( —
6+ 6+ VoJ(6)
YY) RLHF ~ ®®®® Reward (Preference)
BaseText oo o Tuned Text ®®®® Model
y: a furry mammal y: man’s best friend
\ Z N\

& >
—AkLDxL (mppo (U]2) || Thase (¥]))
KL prediction shift penalty

—

ro(ylz)
Figure 15: Better RLHF paradigm 2!

2HuggingFace RLHF
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https://huggingface.co/blog/rlhf

Examples of RLHF

SFT Data

h ®)

> @ % | This image shows the menu of a
coffee chop called Roly’s Café.
Human

Q: What is in the image? e P
A: Menu from Roly’s Café, Chairs -~ -
and Tables.

J GPT-4

Figure 16: Misaligned Supervised Fine-Tuning (SFT) Data contains Hallucination??

227. Sun et al., 2023
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Examples of RLHF (cont’d)

© sampled Output (A)

A: The sleeping environment on the
couch provides the cat with a
comfortable and cozy space to rest.

- & .

- )=

Output (A) is better
Human with less hallucinations.

LMM-SFT

& sampled Output (B)

A: The cat is resting on a black
LEEEER] 2 couch with its front paws
tucked under its chest.

Figure 17: Collect Human Preference (More Helpful & Less Hallucinated) Data for
Reward Models (RM)?23

Train a reward model with pairwise loss

loss(m) == E [l()gff (TO(T Yu) — 1o (7, ylﬂt))]

(z,01,02,0)~DRrM

237. Sun et al., 2023
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Examples of RLHF (cont’d)

& sampled Output
[The sign is not very clear, so perhaps]

—
A: American Fast Food

LMM-RM
& RM Score

[The RL modef's output is clearly
contradictory to the image captions]

@rrrsssnsnssnsnnnnnnnnnnns

Reward Score: 0.0

Javier's Tacos — Mexican Fast
Food — Open 24 hours

Figure 18: Factually Augmented Reinforcement Learning from Human Feedback
(Fact-RLHF)?*

Train the LLM with the reward model
L(me) = — E [r4(2, y) — BD ki (7o (yl2)||w " (y|2))]

z~DRp,y~mg (y|z)

247 Sun et al., 2023
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Direct Preference Optimization

The LLM can be used as its own reward model.

DPO?*
_ o (yulz) 7o (y1—pl) ﬂ
Ll)PO(W(?) - (:D,yo,y?y.)N’D {lOgO— (6 log REF(U |z) /8 log REF(y],H\:r)
We can add the assumption that vy, is rather than simply better by

adding a regularization term, granted \ large enough.
DPO-Positive *

Lppo(mg) = — E [ — Amax <l()gM,O>]

(,90,91,1)~D o (Y |z)

2%Rafailov et al., 2024
267. Sun et al., 2023
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Iterative DPO

By doing successive rounds of training, we can vastly improve the performance of
the model.

Algorithm DNO-Prct: Practical Implementation of DNO via Iterative Contrastive Self-Improvement

input: General preference function P, learning rate 7, iterations 7', reference policy 7ef, prompt distribution p.

: Initialize m 4 Tres.

1

2 foriterationt = 1,2,..., T do

3 Construct D; = {(z,y%')} where 2 ~ pand y ~ o (- | 7).

4 Sample batched on-policy responses: Sample K outputs per prompt using the current 7
{vtvi.. .. yEY ~m(- | 2), Vo € D,

5 Rank responses: Foreacha € D, rank the corresponding {y;. y7, ..., yX, 4299} using the pair-wise win-rate

by sampling from the general preference function P.
Filter preference pairs: Construct Dy = {(z.y; .y, )}. forall € Dy, and (y; .y, ) are large-margin
pairs (based on the win-rate rank) within the responses for x from the previous step.

=3

7 Contrastive learning: Obtain 7.4 by,
oAyl e wly | w)
+ xE o+ -y 1 1 - — 17l - .
B e TR {U (W i 0 o)
8. end for

. return best of my.¢7,.1) on the validation data.

Figure 19: Tterative DPO27

2"Rosset et al., 2024
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Current Challenges



Task complexity evaluation

Choosing the right LLM for the right task while keeping the cost reasonable is
difficult.

e ...... e 0

Query 1 Query 2 Query 3 Current query Future queries
v X v
Save query-code Initial prompt with

when succeed

solution demonstration

0T @

Query-Code Database

+/ Succeed X Fail, invoke next assistant

i '
1

i i

| | Terminate

'
'

i ! _— GPT-3.5-

J | Conversation turbo

] —

' '

Code Executor Assistant Hierarchy

Figure 20: Eco-Assistant framework?®

28], Zhang et al., 2023
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Tool usage

LLMs can learn to use tools but choosing the right one is a challenge.

“How much budget is required|

Problem

10 provide a 1008 incentive
for each colleague who has
worked for five years?”

LLMs

T nternttn

Sequential Plan 1

SQL generator: “Figuring out
how many collcague who has
worked for five years from the
| database; aking itas X.”

Sequential Plan 2

LLMs

22 imtermim

Python generator: “Calculating
the value of 100x. a

| calculator.”

Figure 21: Tool usage?’

2%Ruan et al., 2023
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Multi-Step Planning

The decoding heuristics are not enough to guide the generation towards a specific

goal.

Task Instances correct
GPT-4 1-GPT3

Plan Generation

We showcase an instance and the respective plan as an example and prompt the machine withanew  206/600  41/600

instance. (34.3%)  (6.8%)

Cost-Optimal Planning

We showcase an instance, the respective optimal plan and the associated cost as an example and prompt  198/600  35/600

(33%) (5.8%)

the machine with a new instance.

Figure 22: LLMs still can’t plan3?

3Walmeekam et al., 2022

37/40



And many more...

e Life long learning
Gather continual feedback, avoid forgetting, ...

e Personalization

Adapt to the user, to a certain task, ...

o Evaluation
How to evaluate the quality of the generated text?

o Efficient data usage

Learn on its own (goal of RL), reuse data, compress LLMs, ...
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Take-home message

You
Give me the take home message of the presentation

ChatGPT
The key take-home message of the presentation is that while Large Language Models (LLMs) have

revolutionized natural language processing, integrating reinforcement learning (RL) techniques can

significantly enhance their capabilities. By incorporating RL, LLMs can optimize for specific objectives,
learn from human feedback, and mitigate issues such as hallucinations and short-sightedness. RL
techniques like Reinforce, Inverse Reinforcement Learning (IRL), and Reinforcement Learning from
Human Feedback (RLHF) offer powerful tools for training LLMs to better understand context, generate
more accurate and contextually appropriate responses, and ultimately improve their overall
performance in various tasks. However, challenges such as task complexity evaluation, tool usage, and

multi-step planning remain, indicating the need for further research and development in this area.

Figure 23: Message by ChatGPT3!

Use it for what it’s good at.

Blchatgpt.(:onl
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https://chatgpt.com/

Thank you!

Questions?
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