
Reinforcement learning
and
Large Language Models

Lize Pirenne (lize.pirenne@uliege.be)
May 7, 2024

mailto:lize.pirenne@uliege.be

Outline

Large Language Models

Reinforcement Learning

Learning from humans

RL Methods for LLMs

Current Challenges

Inspired by EWRL: RL & Languages, Olivier Pietquin

1/40

https://ewrl.wordpress.com/wp-content/uploads/2023/09/olivier-pietquin-rl-and-language-long-story-short.pdf

Notations

In this course, we use the classic reinforcement learning notations:

• s ∈ S for the states (instead of x ∈ X),

• a ∈ A for the actions (instead of u ∈ U),

• V (s) for the state value function (instead of J(s)),

• Q(s, a) for the state-action value function,

• π(a|s) for the stationary stochastic policy,

In addition, we use the following abbreviations:

• MDP: Markov decision process

• (L)LM: (Large) language model

2/40

Large Language Models

Language Models

Let wi denote the i-th word in a sentence. A language model M estimates the
probability of the next word wi+1 given the previous words w1, . . . ,wi.

Causal language modelling
P(wi+1|w1, . . . ,wi) h M(w1, . . . ,wi)

This probability can be learnt in an unsupervised manner; there is no need to
label the data.

M uses production rules (Context-Free Grammar), n-grams (MDP), or neural
networks (Recurrent, Graph or Transformer-based) as the underlying mechanism.

3/40

Decoder only architecture

Based on the Transformer architecture of Vaswani et al., 2017, the decoder-only
architecture is the most common for generative language models.

Figure 1: Decoder-only architecture1.

1Image source

4/40

https://ai.stackexchange.com/questions/40179/how-does-the-decoder-only-transformer-architecture-work

Tokens

Language models operate on tokens rather than words in order to compress the
size of the input. All possible tokens constitute the vocabulary V.

A common tokenization method is byte-pair encoding (BPE) which, starting
from all possible bytes, merges the most frequent pairs and adds the whole to the
vocabulary until a desired size is reached.

Figure 2: Byte-pair encoding (BPE) vocabulary construction Provilkov, Emelianenko,
and Voita, 2019.

5/40

Generation

The model produces for each token a distribution over the vocabulary that
represents the probability of appearance of the next token.

Figure 3: Token distributions 2

2Holtzman et al., 2020

6/40

Sampling

By repeatedly adding back the most likely token (greedy decoding), the model
generates a sentence in an auto-regressive manner.

Figure 4: Greedy decoding 3

By sampling from the probability instead of taking the most likely every step, the
auto-regressive generation can be non-deterministic.

3m-ric/beam_search_visualizer

7/40

Decoding

A decoding strategy chooses which token to pick next to form a likely sentence.

Figure 5: Beam decoding 4

4m-ric/beam_search_visualizer

8/40

More than words

Transformers (Vaswani et al., 2017), the architecture behind most LLMs today,
work for any sequential data, meaning they can use and produce code, images,
sounds, …

Figure 6: Example of a multi-modal interaction with Gemini5

5Team et al., 2023, cat picture (not original)

9/40

https://www.reddit.com/r/aww/comments/5mcewl/she_likes_to_collect_rocks/

Multi-modality in practice

Use a specific encoder and a pre-trained model and learn the projector linking
the two.

Figure 7: Multi-modal generation encoders 6

6LLaVa: Liu, C. Li, Wu, et al., 2023; Liu, C. Li, Y. Li, et al., 2023

10/40

Reinforcement Learning

Reinforcement Learning

In reinforcement learning, an agent interacts with an environment by taking
actions at in states st according to a policy π. The goal is to find the optimal
policy π∗ that maximizes the return of a reward function R(s, a), which is the
expected return V (s).

Optimal policy

Vπ(s) = E
st+1∼p(.|at ,st)

(∑
t

γtR(st, π(at|st))|s0 = s
)

π∗(s) = argmax
π

Vπ(s)

Figure 8: Agent / Environment interaction loop.

11/40

Value-based methods

Value-based methods define the value function Q(s, a) as the expected
cumulative reward from taking action a in state s and then following the optimal
policy according to the value function.

Policy construction

Q(s, a) = E
st+1∼p(.|at ,st)

(
R(st, at) + γmax

b∈A
Q(st+1, b)|s0 = s, a0 = a

)
π∗(s) = argmax

b
Q(s, b)

While a bit faster thanks to bootstrapping (use estimates), value-based methods
can be biased and offer only an indirect access to the policy.

12/40

Policy-based methods

Policy-based methods directly optimize the policy π(a|s) by maximizing the
expected cumulative reward using a gradient based approach.

Policy construction

πk(s) = πk−1(s) + α δVπ(s)
δπ

Policy-based methods often use Monte-Carlo (use only observations) and thus are
unbiased and offer a direct access to the policy, but they can be slow and
high-variance.

13/40

Choice of approach

Due to the large action space, taking the max function becomes dangerous: the
differences of values become too small compared to the noise.

Policy based methods are also preferred because they are more sample efficient
and lead to more stable training.

14/40

Learning from humans

Imitation learning

Imitation learning7 is a method to learn a policy π from a set of demonstrations
D.

Behavioral cloning
π∗ = argmin

π

∑
(s,a)∈D

loss(π(a|s), a)

The policy is trained to mimic the expert’s actions, but it can be brittle
(sensitive to the proximity of the training distribution) and biased (expert does
not provide π∗).

7Useful imitation library

15/40

https://imitation.readthedocs.io/en/latest/algorithms/mce_irl.html

RL in LLMs

Next token prediction is already behavior cloning with the LLM as the agent. We
can draw a parallel between the two fields:

Figure 9: RL and LLM parallel8

8EWRL: RL & Languages, Olivier Pietquin.

16/40

https://ewrl.wordpress.com/wp-content/uploads/2023/09/olivier-pietquin-rl-and-language-long-story-short.pdf

Drifting

Behavior cloning is subject to the open-loop drifting problem: the model
accumulates errors over time and diverts too far from the learnt policy.

Figure 10: Open-loop drifting problem.

Methods like DAgger9, which asks experts to annotate some observations,
GAIL10, which discriminates expert and agent trajectories, or IRL, which aims to
learn the higher concept of reward, can alleviate this problem.

9Ross, Gordon, and Bagnell, 2010
10Ho and Ermon, 2016

17/40

Hallucinations

LLM thus suffer from the same drifting problem, named hallucinations.

Figure 11: Different hallucinations11.

11Y. Zhang et al., 2023 18/40

Short-sightedness

LLMs are able to measure the “quality” of a sentence through the perplexity but
they cannot target a specific one.

Perplexity

PPL(w1 : wN) = exp
(
−

t∑
i

log (pθ(wi|w<i))

)

Heuristics help guide the generation based on the distributions.

• Temperature Sampling
Modifies the distribution (0 → argmax, ∞ → uniform).

• Beam search
Explores multiple paths and keeps the best ones.

• Nucleus sampling (top-p)
Selects tokens until cum-sum p is reached.

• Top-k sampling
Keeps only the k most likely tokens.

19/40

Metrics

Most useful metrics in Natural Language Processing (NLP) are
non-differentiable, and thus cannot be used as a loss function.

NLP metrics LLM metrics

• BLEU

• ROUGE

• METEOR

• CIDEr

• …

• Truthfulness

• Factuality

• Verbosity

• Toxicity

• Neutrality

• Personna

• …

20/40

Benefits of RL

Why use RL in LLMs?

• RL can optimize for any scalar score (even NLP metrics)

• RL can provide the sequence-level optimization that LLMs lack.

• RL improves over behavior cloning

Figure 12: RL for LLMs12

12H. Sun, 2023

21/40

RL Methods for LLMs

Inverse reinforcement learning

Inverse reinforcement learning (IRL) is a method to learn a reward function
R(s, a) from a set of demonstrations D. To do this, we learn the vector w in the
expression R(s, a) = wTφ(s, a), where φ is a feature map.

Valid reward function13

Vπ(s) = wTµ(π, s) = wT E
st+1∼p(.|at ,st)

(∑
t
γtφ(st, π(st))|s0 = s

)
Find w∗T

satisfying w∗T
µ(π∗, s) >= w∗T

µ(π, s)

IRL needs an access to the environment, and methods to alleviate the reward
ambiguity (existence of trivial solutions)14.

13Ng, Russell, et al., 2000
14Stanford.edu

22/40

https://web.stanford.edu/class/cs237b/pdfs/lecture/lecture_10111213.pdf

Human feedback

On top of demonstrations, the feedback can take the form of :
• Preferences

• Ranking
• Pairwise comparison

- The sequences y0, y1 generated from x are compared by the expert and given
a preference index µ ∈ {0, 1}.

Reward assumption under Bradley-Terry model15

p[y0 � y1|x] := exp(r(x,y0))
exp(r(x,y0))+exp(r(x,y1))

Pairwise reward function loss16

loss(rφ) = − E
(x,y0,y1,µ)∼D

[
log σ

(
rφ(x, yµ)− rφ(x, y1−µ)

)]

• Rewards
• Scores
• Ratings
• Thumbs up / down

• Advice
• Corrections

15Bradley and Terry, 1952
16Christiano et al., 2017; Rafailov et al., 2024

23/40

Policy Gradient Theorem

Given a sentence τ , the likelihood of the sentence according to the LLM πθ being
pπθ (τ), the expected return is Vπθ =

∫
pπθ (τ)R(τ)dτ .

∇θVπθ =

∫
∇θpπθ (τ)R(τ)dτ

=

∫
pπθ (τ)

∇θpπθ (τ)

pπθ (τ)
R(τ)dτ

= E
[
∇θpπθ (τ)

pπθ (τ)
R(τ)

]
= E [∇θ log pπθ (τ)R(τ)]

24/40

Policy Gradient Theorem (cont’d)

We can decompose τ into a sequence of tokens w1, . . . ,wN and, since the policy
defines wt given w<t, we can write the likelihood of the sentence as follows.

pπθ (τ) = p(w1)

N∏
t=2

πθ(wt|w<t)

The gradient of the log-likelihood is then:

∇θ log pπθ (τ) =
N∑

t=1

∇θ log πθ(wt|w<t)

Policy Gradient Theorem17

∇θVπθ = E
[

N∑
t=1

∇θ log πθ(wt|w<t)R(τ)

]
17Sutton et al., 1999

25/40

Reinforce applied to LLMs

The REINFORCE algorithm18 uses the policy gradient theorem to update the
policy πθ.

REINFORCE

∇̂θVπθ = 1
D

D∑
i=1

[(
N∑

t=1
∇θ log πθ(wi

t |wi
<t)

)(
N∑

t=1
r i

t

)]

We can use a baseline b to reduce the variance of the estimator.

REINFORCE with baseline

∇̂θVπθ = 1
D

D∑
i=1

[(
N∑

t=1
∇θ log πθ(wi

t |wi
<t)

)(
N∑

t=1
r i

t − b
)]

18Williams, 1992

26/40

Reinforcement Learning from Human Feedback

Figure 13: Simple RLHF paradigm 19

19HuggingFace RLHF

27/40

https://huggingface.co/blog/rlhf

Reward hacking

Continued training leads to decrease in performance due to reward hacking: the
model finds a way to maximize the reward without actually solving the task.

Figure 14: Reward hacking20

Adding a Kullback-Leibler divergence (KL) term to the loss function can help
alleviate this problem.
20Gao, Schulman, and Hilton, 2023

28/40

Reinforcement Learning from Human Feedback (enhanced)

Figure 15: Better RLHF paradigm 21

21HuggingFace RLHF

29/40

https://huggingface.co/blog/rlhf

Examples of RLHF

Figure 16: Misaligned Supervised Fine-Tuning (SFT) Data contains Hallucination22

22Z. Sun et al., 2023

30/40

Examples of RLHF (cont’d)

Figure 17: Collect Human Preference (More Helpful & Less Hallucinated) Data for
Reward Models (RM)23

Train a reward model with pairwise loss
loss(rφ) = − E

(x,σ1,σ2,µ)∼DRM
[log σ (rφ(x, yµ)− rφ(x, y1−µ))]

23Z. Sun et al., 2023

31/40

Examples of RLHF (cont’d)

Figure 18: Factually Augmented Reinforcement Learning from Human Feedback
(Fact-RLHF)24

Train the LLM with the reward model
L(πθ) = − E

x∼DRL,y∼πθ(y|x)
[rφ(x, y)− βDKL(πθ(y|x)||πREF(y|x))]

24Z. Sun et al., 2023

32/40

Direct Preference Optimization

The LLM can be used as its own reward model.

DPO25

LDPO(πθ) = − E
(x,y0,y1,µ)∼D

[
log σ

(
β log

πθ(yµ|x)
πREF (yµ|x) − β log

πθ(y1−µ|x)
πREF (y1−µ|x)

)]
We can add the assumption that ywin is ideal rather than simply better by
adding a regularization term, granted λ large enough.

DPO-Positive 26

LDPO(πθ) = − E
(x,y0,y1,µ)∼D

[
. . .− λmax

(
log

πREF (yµ|x)
πθ(yµ|x) , 0

)]

25Rafailov et al., 2024
26Z. Sun et al., 2023

33/40

Iterative DPO

By doing successive rounds of training, we can vastly improve the performance of
the model.

Figure 19: Iterative DPO27

27Rosset et al., 2024

34/40

Current Challenges

Task complexity evaluation

Choosing the right LLM for the right task while keeping the cost reasonable is
difficult.

Figure 20: Eco-Assistant framework28

28J. Zhang et al., 2023

35/40

Tool usage

LLMs can learn to use tools but choosing the right one is a challenge.

Figure 21: Tool usage29

29Ruan et al., 2023

36/40

Multi-Step Planning

The decoding heuristics are not enough to guide the generation towards a specific
goal.

Figure 22: LLMs still can’t plan30

30Valmeekam et al., 2022

37/40

And many more...

• Life long learning
Gather continual feedback, avoid forgetting, ...

• Personalization
Adapt to the user, to a certain task, ...

• Evaluation
How to evaluate the quality of the generated text?

• Efficient data usage
Learn on its own (goal of RL), reuse data, compress LLMs, ...

38/40

Take-home message

Figure 23: Message by ChatGPT31

Use it for what it’s good at.

31chatgpt.com

39/40

https://chatgpt.com/

Thank you!

Questions?

40/40

References

Bradley, Ralph Allan and Milton E Terry (1952). “Rank analysis of
incomplete block designs: I. The method of paired comparisons”. In:
Biometrika 39.3/4, pp. 324–345.

Christiano, Paul F, Jan Leike, Tom Brown, et al. (2017). “Deep
reinforcement learning from human preferences”. In: Advances in neural
information processing systems 30.

Gao, Leo, John Schulman, and Jacob Hilton (2023). “Scaling laws for
reward model overoptimization”. In: International Conference on Machine
Learning. PMLR, pp. 10835–10866.

Ho, Jonathan and Stefano Ermon (2016). “Generative adversarial
imitation learning”. In: Advances in neural information processing systems 29.

Holtzman, Ari, Jan Buys, Li Du, et al. (2020). “The Curious Case of
Neural Text Degeneration”. In: 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.
OpenReview.net. url: https://openreview.net/forum?id=rygGQyrFvH.

Liu, Haotian, Chunyuan Li, Yuheng Li, et al. (2023). “Improved Baselines
with Visual Instruction Tuning”. In: arXiv preprint arXiv: 2310.03744.

40/40

https://openreview.net/forum?id=rygGQyrFvH

Liu, Haotian, Chunyuan Li, Qingyang Wu, et al. (2023). “Visual
Instruction Tuning”. In: Neural Information Processing Systems. doi:
10.48550/arXiv.2304.08485.

Ng, Andrew Y, Stuart Russell, et al. (2000). “Algorithms for inverse
reinforcement learning.”. In: Icml. Vol. 1. 2, p. 2.

Provilkov, Ivan, Dmitrii Emelianenko, and Elena Voita (2019).
“BPE-dropout: Simple and effective subword regularization”. In:
arXiv preprint arXiv:1910.13267.

Rafailov, Rafael, Archit Sharma, Eric Mitchell, et al. (2024). “Direct
preference optimization: Your language model is secretly a reward
model”. In: Advances in Neural Information Processing Systems 36.

Ross, Stephane, Geoffrey J. Gordon, and J. Andrew Bagnell (2010). “A
Reduction of Imitation Learning and Structured Prediction to
No-Regret Online Learning”. In: arXiv preprint arXiv: 1011.0686.

Rosset, Corby, Ching-An Cheng, Arindam Mitra, et al. (2024). “Direct
Nash Optimization: Teaching Language Models to Self-Improve
with General Preferences”. In: arXiv preprint arXiv: 2404.03715.

40/40

https://doi.org/10.48550/arXiv.2304.08485

Ruan, Jingqing, Yihong Chen, Bin Zhang, et al. (2023). “TPTU: Large
Language Model-based AI Agents for Task Planning and Tool
Usage”. In: arXiv preprint arXiv: 2308.03427.

Sun, Hao (2023). “Reinforcement Learning in the Era of LLMs:
What is Essential? What is needed? An RL Perspective on RLHF,
Prompting, and Beyond”. In: arXiv preprint arXiv: 2310.06147.

Sun, Zhiqing, Sheng Shen, Shengcao Cao, et al. (2023). “Aligning Large
Multimodal Models with Factually Augmented RLHF”. In: arXiv
preprint arXiv: 2309.14525.

Sutton, Richard S, David McAllester, Satinder Singh, et al. (1999). “Policy
gradient methods for reinforcement learning with function
approximation”. In: Advances in neural information processing systems 12.

Team, Gemini, Rohan Anil, Sebastian Borgeaud, et al. (Dec. 2023).
Gemini: A Family of Highly Capable Multimodal Models. eprint:
2312.11805 (cs). (Visited on 12/20/2023).

Valmeekam, Karthik, Alberto Olmo, S. Sreedharan, et al. (2022).
“PlanBench: An Extensible Benchmark for Evaluating Large
Language Models on Planning and Reasoning about Change”. In:
Neural Information Processing Systems.

40/40

2312.11805

Vaswani, Ashish, Noam Shazeer, Niki Parmar, et al. (2017). “Attention is
all you need”. In: Advances in neural information processing systems 30.

Williams, Ronald J (1992). “Simple statistical gradient-following
algorithms for connectionist reinforcement learning”. In: Machine
learning 8, pp. 229–256.

Zhang, Jieyu, Ranjay Krishna, Ahmed H. Awadallah, et al. (2023).
“EcoAssistant: Using LLM Assistant More Affordably and
Accurately”. In: arXiv preprint arXiv: 2310.03046.

Zhang, Yue, Yafu Li, Leyang Cui, et al. (2023). “Siren’s Song in the AI
Ocean: A Survey on Hallucination in Large Language Models”. In:
arXiv preprint arXiv: 2309.01219.

40/40

	Large Language Models
	Reinforcement Learning
	Learning from humans
	RL Methods for LLMs
	Current Challenges
	References

