Bulletin of the AAS • Vol. 56, Issue 5 (HEAD 21 Abstracts) properties of the largest Galactic group of Wolf-Rayet stars in the young and massive star cluster Westerlund 1 Konstantina Anastasopoulou¹ Mario Guarcello² Ettore Flaccomio² Salvatore Sciortino² Juan Facundo Albacete Colombo³ Morten Andersen⁴ Costanza Argiroffi² Amelia Bayo⁴ Serena Benatti² Raul Castellanos⁵ Michaël De Becker⁶ Jeremy Drake⁷ Mario Gennaro⁸ Eva Grebel⁹ Marco Miceli² Francisco Najarro⁵ Ignacio Negueruela¹⁰ Loredana Prisinzano² Ben Ritchie¹¹ Massimo Robberto⁸ Elena Sabbi¹² Nicholas Wright¹³ Peter Zeidler⁸ Published on: May 03, 2024 **URL:** https://baas.aas.org/pub/2024n5i201p01 License: Creative Commons Attribution 4.0 International License (CC-BY 4.0) ¹Harvard & Smithsonian, Center for Astrophysics, ²INAF Osservatorio Astronomico di Palermo, ³Universidad de Rio Negro, ⁴ESO, ⁵Departamento de Astrofísica, Centro de Astrobiología, (CSIC-INTA), ⁶STAR Institute, University of Liège, ⁷Lockheed Martin, ⁸Space Telescope Science Institute, ⁹Univ. of Heidelberg, ¹⁰Departamento de Física Aplicada, Universidad de Alicante, ¹¹School of Physical Sciences, The Open University, ¹²STScI, ¹³Astrophysics Group, Keele University Wolf-Rayet (WR) stars are the latest stage in the evolution of very massive stars, before they eventually explode as supernovae (SN) or possibly gamma-ray bursts. They exhibit dense and powerful stellar winds that, along with their ultimate death as core-collapse SN, dominate the feedback to the local interstellar medium in star-forming galaxies. Studying in more detail the properties of the short-lived WR phase, will advance our understanding on star-formation processes and will test stellar evolutionary predictions. The ideal laboratory to investigate the WR phase is the massive young star cluster Westerlund 1. It is the closest massive star cluster to the Sun, and it contains an impressive large sample of coeval massive stars including the largest population (24) of WR stars in our Galaxy. In this meeting, I will present the results of the EWOCS (Extended Westerlund 1 and 2 Open Clusters Survey) project on the WR stars in Westerlund 1 based on a 1Msec Chandra/ACIS-I Large Project. Through this comprehensive Chandra survey, we can unveil the X-ray spectral, and timing properties of the entire WR population, shedding light on their X-ray production mechanism. We will discuss these results in the context of different spectral subtypes of WR stars, as well as their binarity. This is particularly relevant as the majority of these stars show clear signs of very hot plasma produced in the colliding-wind region of a binary system, contributing to a broader understanding of their formation pathway.