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ABSTRACT
In the medical fi eld, the measurement of blood fl ow characteristics is often necessary. More specifi cally, blood 
pressure is an essential measure when it comes to assessing health. All over the world, many people suffer 
from hyper- or hypotension, and as it is known that these diseases can lead to serious complications, it is of 
great interest to determine the blood pressure with high accuracy. Nowadays, such information requires the 
use of specifi c materials; the present method for the measurement of the arterial pressure, by applying pressure 
using an armband (with a control device called sphygmomanometer), is known to introduce signifi cant errors 
due to the inadequacy of the band dimensions (both the length and the circumference). The objective of the 
present research is to study and simulate the discharge of the blood in an artery subjected to external strains 
using theoretical developments and a numerical approach. Based on these modelling results, the response of 
the fl uid to the external pressure of the band can be studied, and fi nally appropriate corrective factors for the 
true pressure and the measured pressure could be assessed. This research has been carried out with the aim of 
sharing medical and engineering views on the subject. The artery can be modelled as a deformable pipe, where 
the blood fl owing in it is a fl uid with specifi c properties. Thus, two complementary and interconnected domains 
are covered, solid mechanics (to obtain analytic relations between the strains and the deformations, using either 
linear or non-linear theories) and fl uid mechanics (to study the discharge of blood in a deformable pipe, using 
fi nite volume methods), therefore considering the problem as a loose fl uid–structure interaction (FSI). These 
two domains, which are well studied for common materials in civil engineering applications, are applied here 
not only to specifi c materials but especially to uncommon structures that, besides the somehow common FSI 
developments, lead to the investigation and research of very specifi c boundary conditions, giving them a physi-
cally based behaviour. At present, the research has reached the penultimate step, with the two main mentioned 
axes being fully developed and tested on their own. In particular, the boundary conditions developed for the 
models have been investigated and modelled in depth.
Keywords: 1D numerical fl ow modelling, capillary behaviour, (non)-linear material analysis, original outfl ow 
boundary conditions.

INTRODUCTION1 
Blood pressure is by far one of the most essential measures when it comes to assessing human health. 
Although it is well known that hyper- and hypotension diseases are widespread all over the world, one 
does not always know the impact of a physiologically abnormal measure. For instance, an increase of 
5 mmHg will double the risks of cardiovascular diseases; it is therefore essential not to underestimate 
the blood pressure. It is also important not to overestimate it because that would lead to unnecessary 
treatments which are costly and sometimes risky if the patient is in good health.

The principal method used to measure blood pressure at present is based on Korotkoff’s [1] and 
Riva-Rocci’s [2] discoveries and developments and it follows a well-established medical procedure [3]. 
Although very widespread all over the world, this technique is known to induce potentially signifi cant 
errors in the measurement, and modern medical approaches are currently being developed in order to 
avoid the use of this technique [4–6]. At our unit, the objective has been to simulate this operating 
mode, postulating that a numerical approach to the phenomenon would enhance the accuracy of the 
common surgical appliance.
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For many years, fl uid–structure interaction (FSI) has been widely used in order to simulate blood 
propagation in vessels, and, more generally, to study biomechanics as well as haemodynamic prob-
lems [7–9]. The interaction between the fl uid and the surrounding structure can vary from loose to 
strong, and so the coupling between the two models follows the same scheme; interactions with 
materials of high deformability should be modelled using strong coupling [10, 11], whereas interac-
tions with rigid materials can be modelled using loose coupling [12–14]. The method chosen in our 
unit is based on a strong interaction that is required here due to the strong deformability of the ves-
sels. The mechanical behaviour is taken into account in a direct way in the fl ow modelling, using an 
ingenious modelling device called the Preismann slot for this purpose.

This coupled approach is somehow classical in this fi eld [7–9, 15, 16], but the way the boundary 
conditions are represented still remains a challenge. Indeed, most of the time, the downstream 
boundary condition is linked to a pressure signal. But, since this signal is, in a way, the unknown 
that our research focuses on, it is rather awkward to consider it fi xed and known downstream. 
Therefore, physically based boundary conditions have been identifi ed, thus avoiding the imposition 
of a downstream signal.

The solution method is explained briefl y in Section 2. Then the two independent models represent-
ing, respectively, the solid mechanics and the fl uid mechanics are presented and discussed in Sections 3 
and 4, before the boundary conditions are discussed at the end of the latest. Finally, the results obtained 
for the boundary condition developments are presented, analysed and discussed in Section 5. 

SOLUTION METHOD2 
The goal of this research is to simulate the discharge of the blood in the arteries, more specifi cally 
when the arteries are subjected to external strains, as is the case during blood pressure measurement.

The artery can be modelled as a deformable pipe, where the blood fl owing in it is a fl uid with 
specifi c properties which is pulsed into the artery. The cardiovascular system has a specifi c architec-
ture and structure that requires specifi c boundary conditions. Thus, the research involves two 
complementary and interconnected domains, namely solid mechanics and fl uid mechanics; there-
fore, the FSI problem of interest here is the simulation of the discharge of a specifi c fl uid into a 
network of deformable pipes. The analytic relations between the external strains (not only the arm-
band pressure but also the blood pressure) and the deformations can be obtained using either linear 
or non-linear theories. In this manner, the way the artery changes its shape may be determined. 
Given the mathematically known deformations for the artery, the discharge of the blood in this 
deformable pipe, comprising vessels with a very wide range of diameters, has been studied based on 
the WOLF modelling system, fully developed at the University of Liège.

MECHANICAL ANALYSIS OF THE ARTERY3 
The fi rst part of the research focuses on solid mechanics. As mentioned before, hydraulic model-
ling requires knowing the way in which the artery defl ates under specifi c strains (be it internal or 
external pressures). The analytic relations between the section and the pressures have been 
derived. First, the necessary hypothesis are presented, followed by a detailed description of the 
mathematical developments.

Specifi cities of the artery3.1 

The arm is a complex material composed of muscles, bones, vessels and tendons among others.
Although a complete study of the limb could be undertaken (by means of numerical modelling), 

analytic equations are sought here. Therefore, assumptions are needed, both about the geometry and 
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about the mechanical behaviour of the material. The arm is considered to be composed of two coaxial 
materials, namely the artery and the muscle, and the contacts between them have been neglected, thus 
assuming that the pressures are uniformly applied (cf. Fig. 1a). Besides, it is known that the materials 
are subject to long deformations and that they can be assumed to be elastic materials.

To obtain the analytic results, two additional hypotheses are necessary, one concerning the material 
properties and the other concerning the material’s behaviour under strain. The muscle and the artery 
are supposed to be transversely isotropic and to follow a plane state of strain. These two assumptions 
are supported by observations about the material’s structure, as discussed in previous papers [17–19]; 
the structures of both the artery and the muscle are assumed to be concentric (and so present a cylin-
drical symmetry), the stresses are perpendicular to the solids generatrix, and one can reasonably 
accept that the longitudinal extensions are insignifi cant (the vessels are confi ned axially).

Mathematical analysis3.2 

As the artery and the muscle are viewed as a two-material coaxial pipe, one can develop the problem 
using the cylindrical coordinate and following the law of the solid mechanics.

Following the previous assumptions, a non-linear analysis is obviously required. However, for 
now, only the theoretical developments of this analysis as well as the implementation of a numerical 
model based on the mathematical results have been done. The last step would be to calibrate this 
model in order to make it usable in the fi nal model.

The linear analysis, based on the more restrictive assumption that the displacement is relatively 
small, has been done in a similar manner and is already available since the parameters of the model 
are mostly available in literature [20–22].

(a)

(b)

(c)

Figure 1:  (a) Transverse section of the arm, idealized situation; (b) muscle with external and contact 
pressures; and (c) artery with contact and internal pressures.
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Linear analysis3.2.1 
The linear analysis gives the fi rst approach to the problem, and the different developments are rather 
obvious. Successively, the two cylinders are considered to be subjected to the concerned pressures (e.g. 
when the muscle has been considered, the internal and contact pressures have been taken into account), 
and the displacements are expressed as a function of the respective pressures (see Fig. 1b and c).

Finally, by setting the displacements at the contact zone as equal, an analytic relation is obtained 
for the section of the artery, function of the different materials (Hooke’s parameters for the artery and 
the muscle), the dimensions and the pressures [17, 18]. The results are shown below and represent 
the radial displacement for the artery (eqn (1)), the equilibrium contact pressure (eqn (2)) and the 
section (eqn (3)).
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where ur [m] is the axial distortion; r [m] is the radial position; re, ri and rc [m] are, respectively, the 
external, internal and contact radii; G1 and G2 [Pa] are, respectively, the artery and muscle bulk 
modulus; ν1 and ν2 [–] are, respectively, the artery and muscle Poisson coeffi cients; pe, pi and pc [Pa] 
are, respectively, the external, internal and contact pressures; Ω [m²] is the section. This set of equations 
is valid only under the assumptions detailed in Section 3.1.

Non-linear analysis3.2.2 
A Mooney–Rivlin function, which is one of the most simple and comprehensive strain energy den-
sity functions, has been chosen to represent the hyperelastic material. It takes the form of W = 
C1(I1 – 3) + C2(I1 – 3), where I1 [m] and I2 [m] are the fi rst and second invariant of the deviatoric 
component of the Finger tensor and C1 [Pa] and C2 [Pa] are parameters inherent to the materials.

The equations obtained [17] are presented below:
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where ur [m] is the axial displacement, r [m] is the radius position after distortion, R [m] is the 
radius position before distortion, RA and RB [m] are, respectively, the internal and external radii, C 
[Pa] and Ax [Pa] are integrative constants (determined from the boundary behaviour), Ω [m²] is the 
section, qA and qB [Pa] are, respectively, the internal and external pressures, C1 [Pa] and C2 [Pa] are 
parameters  inherent to the materials, k [–] is a factor of longitudinal distortion and sr [Pa] is the 
radial constraint.

These equations need some explanations about their signifi cation and use. Equations (4), (5) and 
(8) are obvious and, when combined, give the section function of C and k, k being zero in plane state 
of strain. The two integrative constants are given considering the boundary behaviour through eqns 
(6) and (7).

The presented equations apply to one material considered individually, and the complete 
resolution must thus be iterative in order to give a stable solution (the contact zone is then taken 
as the equilibrium zone, and the goal of the iterative method is to balance the relative displace-
ments of this zone). This set of equations is also only valid under the assumptions introduced in 
Section 3.1.

Results and discussion3.3 

The established equations give the response of both the artery and the muscle to the external 
strains, but the material parameters have not yet been calibrated from the comprehensive set of 
experiments. The geometrical and mechanical parameters of the materials make up the data of the 
model. The pressures are the input parameters, and the output data are the radial displacement, 
from which the section can be obtained. The initial condition consists of a situation without any 
external constraint. The model evaluates the displacements at the contact zone for both materials, 
and iterates until they are independent of the considered material, with an error of 0.05% on the 
relative displacement.

The results presented here (Figs 2 and 3) involve a comparison of both models for parameters 
representing the same materials, thus enabling the assessment of the sensitivity of the model.

The presented results correspond to the following data [17]: ri = 1,950 µm, rc = 2,950 µm, re = 
1,950 µm, EMat1 = 1.7 MPa, νMat1 = 0.5, EMat2 = 0.003 MPa, νMat2 = 0.5, C1, Mat1 = 0.159 MPa, 
C2, Mat1 = 0.116 MPa, C1, Mat2 = 0.015 MPa, C2, Mat2 = 0.007 MPa.

The analytic developments presented in this section are based on realistic assumptions (Section 
3.1), and the models may already be used in a number of applications. The next step will be to cali-
brate the models and to further analyse their sensitivity and assumed validity to simulate the physical 
behaviour of the arm during blood pressure measurement.
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HYDRAULIC ANALYSIS OF THE FLOW IN THE ARTERY4 
This part of the research is dedicated to the study of the blood discharge in the artery, modelled as 
the particular deformable pipe described above.

First, the characteristics of blood have to be investigated. Then, the mathematical and numerical 
developments are outlined based on these assumptions.

While all these developments are common for hydraulic phenomena, Section 4.4, concerning the 
boundary conditions, will present an original method, as well as its results, developed in order to 
model the downstream boundary conditions of the artery as a result of the behaviour of the fl uid in 
the capillary network.
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Figure 2: Evolution of the radial displacements [m] due to external strain [Pa], as a function of time.

0.0E+00

5.0E-06

1.0E-05

1.5E-05

2.0E-05

u [m]

t [ms]

Linear

Non-linear

-2.0E-05

-1.5E-05

-1.0E-05

-5.0E-06

0.
00

0

4.
00

0

8.
00

0

12
.0

00

16
.0

00

20
.0

00

24
.0

00

28
.0

00

32
.0

00

36
.0

00

40
.0

00

10000

12000

14000

16000

18000

20000
P [Pa]

External Strains
Arterial Pressure

Armband Pressure



 R. Paulus et al., Int. J. of Design & Nature and Ecodynamics. Vol. 5, No. 4 (2010) 7

Characteristics of blood4.1 

Blood can be distinguished from other fl uids based on its viscosity, determined by the haematocrit, 
and it is obviously a non-Newtonian fl uid, but can acceptably be assumed as incompressible [23]. 
Blood behaves like a Bingham fl uid, with its viscosity being a function of the velocity gradient. The 
latter is thus often expressed as a relative viscosity, being the ratio of the blood viscosity to the 
plasma viscosity, which is Newtonian. However, in large vessels, the fl uid can be considered as 
Newtonian and homogeneous [24, 25], as the boundary layer is very small compared to the vessel 
radius. In the capillaries, this assumption is no longer acceptable, the fl ow being determined mainly 
by viscous stresses. Besides, it can reasonably be assumed that blood is incompressible, the Mach 
number being globally quite small. Finally, the turbulent effects have been neglected. It is well 
known that some sources of instabilities create local turbulence, but analysis of both Reynolds and 
Womersley numbers shows that this last hypothesis is acceptable [23]. For the smaller vessels, how-
ever, these assumptions have to be reconsidered, but for now they have not been updated, and it has 
been considered that the properties of the fl uid remains constant in the whole domain, independent 
of the vessel dimensions.

Mathematical model4.2 

The equations governing the fl uid mechanics problem are the Navier–Stokes equations:
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They represent, respectively, the conservation of the mass and the momentum. The two variables are 
the density (r) [kg/m³] and the velocity (U) [m/s], with respect to the time (t) [s] and the coordinates 
x, y and z [m]. The other parameters in this system are the pressure (p) [Pa] and the kinematic viscosity 
(n) [m²/s].

In the specifi c framework of blood fl ow, the fl ow is mostly one-dimensional (1D) and the cross-
sectional velocities are small. In addition, despite the fact that the streamline curvature cannot 
actually be considered as small, no serious mistakes are made if these are neglected. With these three 
acceptable assumptions in mind, the Navier–Stokes equations can be area-integrated [26] into the 
following form:
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where x [m] is the axial position, Ω [m²] is the section, Q [m³/s] is the discharge, ql [m²/s] is the 
lateral in- or outfl ow, g* [m/s²] is the projected gravity acceleration, Fx [kg/s²] is the global effect of 
roughness, hb [m] is the bottom height, hs [m] is the slot height.

The Preismann slot model [27] allows the modelling of pressurized fl ow using equations similar 
to those for free surface fl ows. It consists of a narrow slot on the top of a closed pipe [28, 29].

The width of the slot (Tf [m]) is chosen in order to represent the behaviour of the conceptual free 
surface fl ow, with a gravity wave speed (c) [m/s] represented by
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where c [m/s] is the wave speed. The section Ω and its derivative with respect to the pressure p refer 
to the law of solid mechanics developed above.

Numerical resolution4.3 

The set of non-linear equations introduced above (cf. Section 4.2) requires the use of a numerical 
resolution. As for many of the hydraulic applications, a fi nite volume method is an appropriate way 
to solve the problem.

The set of equations can be written as follows:

 
( ) ( ),

x x

∂ ∂
+ =

∂ ∂
U F U S U  (13)

where the vectors of conservative variables and sources are, respectively,

 

( ) ( ) 2

2 1

, , .
l

x
l

q Q

F Qg I UqQ g I
r

∗ ∗

⎛ ⎞ ⎛ ⎞Ω⎛ ⎞ ⎜ ⎟ ⎜ ⎟= = =⎜ ⎟ ⎜ ⎟+ + ⎜ ⎟⎝ ⎠ +⎝ ⎠⎝ ⎠ Ω

U S U F U  (14)

The fl ux is computed using a fl ux-vector splitting [30], involving fractioning the fl ux into two 
distinct components

 ( ) ( ) ( ),+ −= +l rF U F U F U  (15)

where Ul and Ur are the reconstructed value of the conservative variables at the edge of the mesh, 
respectively, built at the left and right edges. This division takes the following form:
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where Q is the characteristic value of the speed at the interface between two meshes, and (Fup, Fdown) 
are the relative fl uxes for variables taken, respectively, up- and downstream:
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Finally, the integration of eqn (13) leads to the following conservative formulation:
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The numerical resolution uses a three-step Runge–Kutta time-integration scheme, with the three 
following substep evaluations (k = 1, 2, 3, with k = 0 corresponding to the value of the vectors of 
conservative variables at step n):
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And the fi nal solution is given by
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with ii RK 1=∑ .
This numerical model has been fully developed within the HACH unit. Its robustness and ability 

to handle a very wide range of problems has been shown, tested and successfully validated in many 
steady as well as unsteady cases [31].

Boundary conditions4.4 

The numerical resolution requires the prescription of boundary conditions. The hydraulic conditions 
observed in this specifi c case require the forcing of the upstream discharge and the downstream pres-
sure. While it is acceptable to assume that the upstream discharge can be estimated with some 
accuracy at the upstream of the brachial artery, for instance around the shoulder [22, 32, 33], this is 
not the case for the downstream quantity. Indeed, the downstream boundary condition is linked to a 
pressure signal. But, since this signal is the unknown that our research focus on, it may not be con-
sidered as fi xed and known downstream.

By contrast, we exploit the fact that the behaviour of both velocities and pressures is known in the 
capillaries. The pressure decays and stabilizes in the capillary network of blood fl owing to the veins 
[18, 19], whereas the velocity tends to zero. Moreover, the capillary network presents a somewhat 
fractal structure with very dense ramifi cations.

The idea therefore is to impose downstream boundary conditions as capillary conditions so that 
the imposition of a constant low pressure, at the end of a certain ramifi ed structure, can be done using 
branches following the architecture of vessels in the arm.

Along the artery, punctual pumping is considered, in order to represent the local branches bring-
ing the blood to the veins through the capillary network, schematized as in Fig. 4a. In this network, 
the equations of fl ow are the same as those presented before (4.2.1), but, since only one way is 

Figure 4:  Schematization of the capillary network as modelled in the capillary fl ow: (a) global 
scheme and (b) one way considered.

(a) (b)
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considered (dashed line in Fig. 4b), the fl uxes are re-evaluated at each junction, in order to obtain 
the true discharge to the capillaries.

For this approach to remain valid, the assumptions concerning blood rheology should still hold, 
which is questionable for the non-Newtonian effects. Nevertheless, since the purpose of modelling 
the capillary network is to obtain boundary conditions for the artery fl ow, using a pumping law that 
will be calibrated, it is reasonable to assume the behaviour as Newtonian, as a preliminary step to a 
physically based boundary condition.

RESULTS AND DISCUSSION5 
For now, the fi nal model coupling both the structure and the fl uid model is yet to be built. Neverthe-
less, the innovative developments in the boundary conditions can be tested and discussed. The 
remaining developments required before reaching the last step are well known in the current researches 
on FSI. Therefore, we focus here on the specifi c results concerning the  so-called boundary model.

First, the boundary conditions are modelled on their own, with the aim of assessing their effective-
ness. Next, their effect as a downstream boundary condition is compared with more classical outfl ow 
conditions, in order to judge the reliability of the original method that is presented in this paper.

The behaviour of the fl ow is infl uenced by two main parameters: the slot width and the friction 
coeffi cient. The slot represents, through its relation with the wave speed, the deformability of the 
pipe (see eqn (12)). For instance, a small wave speed (obtained with a relatively high slot width) 
leads to the representation of a deformable material for the pipe.

If these two parameters are appropriately chosen, the required dampening and the known drop 
can be well represented. Examples of this process have already been discussed in Ref. [19], and 
 appropriate parameter values have been discussed in the same paper.

The results shown in Figs 5–7 illustrate the evolution of both the dimensional discharge and the 
dimensional head along the axial position of a single capillary and the evolution of the head as a 

Figure 5: Evolution of the dimensional discharge [–] as a function of the axial position [–].
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function of time. In Fig. 5, the evolution of the dimensional discharge as a function of the axial 
 position is depicted, for three different times corresponding, respectively, to the maximum, the 
 minimum and the mean value of the sinusoidal signal. In Fig. 6, the same technique is used to 
 represent the evolution of the head as a function of the axial position.

In Fig. 7, the evolution of the dimensional head as a function of time is depicted at different loca-
tions: successively at the upstream location of the network and at fi ve different branches, from the 
fi rst to the fi fth branch.

The presented results correspond to the following numerical data: RK1 = 0.15, RK2 = 0.45, RK3 = 
0.4. The fl uid characteristics are the following: r = 1,025 kg/m³, µ = 3.2 cP for a haematocrit of 
40–45%. The boundary conditions used for these simulations are indeed a constant pressure at the 
downstream position of the capillary network, combined with a sinusoidal upstream discharge sig-
nal, which enables, even if it is a long way from the read signal, interpreting the infl uence of the 
parameters and visualizing the required effects.

It is effectively clear that the consideration of a wide capillary subdivision combined with appro-
priate parameters representing the dissipative behaviour of the materials lead to the observation of 
the required dampening pretty quickly.

With these observations in mind, it remains now to assess the reliability of the proposed method 
as a boundary condition. For this purpose, a simple case of a prismatic pipe is simulated using two 
different types of outfl ow boundary conditions, namely our original proposition and the more basic 
concept of peripheral resistance, as proposed among others by Anliker et al. [34]. Both concepts rely 
on the fact that the terminal pressure is assumed to be constant, after vanishing in the capillaries. 
More comparisons are possible, but due to the lack of validation and the uncompleted integration of 
the whole model at the present time, it has been decided that the validation compared to the most 
basic and common downstream boundary condition was a fi rst signifi cant step available for an objec-
tive comparison. Once our model is fi nally integrated and calibrated, it will be time to compare it 
with existing more advanced models.

Figure 6: Evolution of the dimensional head [–] as a function of the axial position [–].
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The upstream boundary condition consists of a discharge signal, as presented in Fig. 8.
Besides, the initial condition is the situation corresponding to a uniform fl ow of 0.5 m³/s. The 

results are presented in Fig. 9 as: (a) model with a peripheral resistance as the downstream boundary 
condition; (b) model with a capillary network as the downstream boundary condition.

Figure 7:  Evolution of the dimensional head [–] as a function of the time [s] at the very upstream of 
different branches.
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The pipe is a 10 m long pipe, with a radius varying from 0.35 to 0.15 cm. The fl uid characteristics 
are r = 1,025 kg/m³ and µ = 3.2 cP for a haematocrit of 40–45%. The other parameters are the 
 following: RK1 = 0.15, RK2 = 0.45, RK3 = 0.4, dx = 0.025 m.

In both sets of fi gures, it is clear that the proposed boundary conditions are suitable to represent 
the phenomenon, the behaviour of the fl ow being, from a global point of view, similar no matter what 
the boundary conditions are.

More specifi cally, at the very downstream position, as can be seen in Fig. 10 (x = LMax), signifi cant 
differences can be observed. In fact, the numerical value of the terminal pressure infl uences the 
behaviour in the case of the peripheral resistance, and not in the case of the capillary network case, 
which is another advantage of the method.

Figure 9:  Evolution of the head [m] as a function of the time [s] and the axial position [m] for the 
whole pipe: (a) peripheral resistance case; (b) capillary network case.
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CONCLUSIONS6 
The presented research for now keeps to the development of the coupled hydraulic model, whereas 
the fi nal integration of this model with the boundary conditions still remains to be done.

The few results that have been developed and analysed within these researches clearly show inter-
esting tendencies, and also provides information on the physical behaviour of the method. Moreover, 

Figure 10:  Evolution of the head [m] as a function of the time [s] for severe axial positions: 
(a) peripheral resistance case; (b) capillary network case.
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the work that has already been done indicates clear ways of developments for the fi nal model, which 
is the last step of the research project.

First, the mechanical analysis of the artery has been done and a mathematical model has been devel-
oped such that the implementation of the equations through the fi nal integrated model should be 
almost direct. Moreover, the numerical model established highlights the sensitivity of the parameters.

Second, a standard 1D fl ow solver has been implemented using fi nite volume methods, and ena-
bles the modelling of the blood fl ow through the artery. Although this model does not especially 
concern blood fl ow, it is suitable because it handles reliably stiff variation in the fl ow fi les, using an 
original numerical scheme adapted to fl ows governed by convective effects. Moreover, it enables 
straightforward modelling at junctions and therefore the physically based simulation of boundary 
conditions. It has been demonstrated that phenomena such as the dampening of the signal in the 
capillary network can be reproduced without spurious numerical oscillations. Finally, it has been 
shown, in a simple case study, that the proposed boundary conditions lead to an accurate prediction 
of the fl ow by comparison with classical boundary conditions.

PERSPECTIVES: THE INTEGRATED MODEL7 
Now that the different independent parts of the model have all been introduced and developed, the 
general framework of integration of these models can be described.

It consists of a main model coupled with secondary models and with boundary conditions 
 following the capillary model.

The main model is simply the original hydraulic model presented in Section 4. In the framework 
depicted in Fig. 12, it is called ‘main fl ow’. The upstream condition requires the prescription of an 
upstream discharge. The downstream condition refers to the capillary model, as developed in Sec-
tion 4.4. Basically, depending on the hypothetical presence of capillaries, a certain amount of fl uid 
will be pumped out of the artery and propelled into the capillary following the capillary model.

The presence or lack of capillaries will depend on the geometry chosen at the beginning and obvi-
ously on the spatial discretization (see Fig. 11). As shown in Fig. 12, the capillary model uses the 
modifi ed original main fl ow model (as explained in Section 4.4 and schematized in Fig. 11), and 
iteratively evaluates the pressure gradient between the artery and the capillary until the so-called 
equilibrium capillary discharge is determined.

Two fi nal parameters have to be exploited: the external pressure and the way the fl uid is pumped 
out of the artery have to be considered.

As mentioned in eqns (1–8), the external pressure modifi es the cross section of the pipe. There-
fore, this parameter somehow infl uences the original shape of the pipe. The pipe section for an 
empty slot (noted hereafter in Fig. 12, Ω*) and the wave speed will both be modifi ed at each time 
step in order to represent the external strain.

Besides, the artery/capillary interface is modelled based on a pumping law such that the fl uid is 
taken out of the artery and propelled into the capillary as a function of the pressure difference 
between the two pipes.

Finally, the model is run as summarized in Fig. 12.
Considering at each time step the new external pressure and re-evaluating the nil-slot parameters, 

the main fl ow is evaluated and corrected (or not) due to the presence (or absence) of capillary, and 
so on, until the information has been propagated in the whole domain.

Finally, many elements, for example, the mechanical parameters of the living tissues (depending 
on the chosen material model), have to be investigated using experiments. Therefore, the authors 
plan to conduct a number of parallel researches about anatomical and physiological data, with the 
purpose of completing and calibrating the models and to fi nally validate their accuracy.
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Figure 11:  Schematization of the integrated model: (a) global model, (b) artery/capillary interface 
and (c) capillary model.
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