
Computational Optimization and Applications, 29, 13–48, 2004
c© 2004 Kluwer Academic Publishers. Manufactured in The Netherlands.

Increasing Internet Capacity Using Local Search∗

BERNARD FORTZ fortz@poms.ucl.ac.be
Institut d’Administration et de Gestion, Université Catholique de Louvain,
Louvain-la-Neuve, Belgium

MIKKEL THORUP mthorup@research.att.com
AT&T Labs-Research, Shannon Laboratory, Florham Park, NJ 07932, USA

Received April 22, 2002; Revised May 29, 2003

Abstract. Open Shortest Path First (OSPF) is one of the most commonly used intra-domain internet rout-
ing protocol. Traffic flow is routed along shortest paths, splitting flow evenly at nodes where several outgoing
links are on shortest paths to the destination. The weights of the links, and thereby the shortest path routes,
can be changed by the network operator. The weights could be set proportional to the physical lengths of
the links, but often the main goal is to avoid congestion, i.e. overloading of links, and the standard heuristic
recommended by Cisco (a major router vendor) is to make the weight of a link inversely proportional to its
capacity.

We study the problem of optimizing OSPF weights for a given a set of projected demands so as to avoid
congestion. We show this problem is NP-hard, even for approximation, and propose a local search heuristic
to solve it. We also provide worst-case results about the performance of OSPF routing vs. an optimal multi-
commodity flow routing. Our numerical experiments compare the results obtained with our local search heuristic
to the optimal multi-commodity flow routing, as well as simple and commonly used heuristics for setting the
weights. Experiments were done with a proposed next-generation AT&T WorldNet backbone as well as synthetic
internetworks.

Keywords: traffic engineering, shortest path routing, local search

1. Introduction

Provisioning an Internet Service Provider (ISP) backbone network for intra-domain IP
traffic is a big challenge, particularly due to rapid growth of the network and user demands.
At times, the network topology and capacity may seem insufficient to meet the current
demands. At the same time, there is mounting pressure for ISPs to provide Quality of
Service (QoS) in terms of Service Level Agreements (SLAs) with customers, with loose
guarantees on delay, loss, and throughput. All of these issues point to the importance of
traffic engineering, making more efficient use of existing network resources by tailoring
routes to the prevailing traffic.

∗A preliminary short version of this paper appeared under the title “Internet Traffic Engineering by Optimizing
OSPF Weights,” in Proc. IEEE INFOCOM 2000—The Conference on Computer Communications, pp. 519–
528.

14 FORTZ AND THORUP

1.1. The general routing problem

Optimizing the use of existing network resources can be seen as a general routing problem
defined as follows. We are given a directed network G = (N , A) with a capacity ca for
each a ∈ A, and a demand matrix D that, for each pair (s, t) ∈ N × N , tells the demand
D(s, t) in traffic flow between s and t . We sometimes refer to the non-zero entries of D as
the demands. The set of arcs leaving a node u is denoted by δ+(u) := {(u, v) : (u, v) ∈ A}
while the set of arcs entering a node u is denoted by δ−(u) := {(v, u) : (v, u) ∈ A}.

With each arc a ∈ A, we associate a cost function �a(la) of the load la , depending on
how close the load is to the capacity ca . We assume in the following that �a is an strictly
increasing and convex function. Our formal objective is to distribute the demanded flow so
as to minimize the sum

� =
∑
a∈A

�a(la)

of the resulting costs over all arcs. Usually, �a increases rapidly as loads exceeds capacities,
and our objective typically implies that we keep the max-utilization maxa∈A la/ca below 1,
or at least below 1.1, if at all possible.

In this general routing problem, there are no limitations to how we can distribute the
flow between the paths. With each pair (s, t) ∈ N × N and each arc a ∈ A, we associate a
variable f (s,t)

a telling how much of the traffic flow from s to t goes over a. Moreover, for each
arc a ∈ A, variable la represents the total load on arc a, i.e. the sum of the flows going over
a. With these notation, the problem can be formulated as the following multi-commodity
flow problem.

min � =
∑
a∈A

�a(la)

subject to

∑
a∈δ+(u)

f (s,t)
a −

∑
a∈δ−(u)

f (s,t)
a =

D(s, t) if u = s,

−D(s, t) if u = t,

0 otherwise,

u, s, t ∈ N , (1)

la =
∑

(s,t)∈N×N

f (s,t)
a a ∈ A, (2)

f (s,t)
a ≥ 0 a ∈ A; s, t ∈ N . (3)

Constraints (1) are flow conservation constraints that ensure the desired traffic flow is
routed from s to t , and constraints (2) define the load on each arc.

As � is a convex objective function and all constraints are linear, this problem can be
solved optimally in polynomial time. We denote by �OPT the optimal solution of this general
routing problem.

INCREASING INTERNET CAPACITY USING LOCAL SEARCH 15

Figure 1. Arc cost �a(la) as a function of load la for arc capacity ca = 1.

In our experiments, �a are piecewise linear functions, with �a(0) = 0 and derivative

�′
a(l) =

1 for 0 ≤ l/ca < 1/3,

3 for 1/3 ≤ l/ca < 2/3,

10 for 2/3 ≤ l/ca < 9/10,

70 for 9/10 ≤ l/ca < 1,

500 for 1 ≤ l/ca < 11/10,

5000 for 11/10 ≤ l/ca < ∞.

(4)

The function �a is illustrated in figure 1, and can be viewed as modeling retransmission
delays caused by packet losses. Generally it is cheap to send flow over an arc with a small
utilization la/ca . The cost increases progressively as the utilization approaches 100%, and
explodes when we go above 110%. With this cost function, the general routing problem
becomes a linear program.

The objective function was chosen on the basis of discussions on costs with people
close to the AT&T IP backbone. Motivations on our choice for the objective function and
the different model assumptions are discussed in detail in [17], and, for a closely related
application, in [18]. A description of the general infrastructure behind this kind of traffic
engineering is given in [15].

1.2. The OSPF weight setting problem

The most commonly used intra-domain internet routing protocols today are shortest path
protocols such as Open Shortest Path First (OSPF) [28]. OSPF does not support a free
distribution of flow between source and destination as defined above in the general routing

16 FORTZ AND THORUP

problem. In OSPF, the network operator assigns a weight wa to each link a ∈ A, and
shortest paths from each router to each destination are computed using these weights as
lengths of the links. In practice, link weights are integer encoded on 16 bits, therefore they
can take any value between 1 and 65,535. In each router, represented by a node of the
graph, the next link on all shortest paths to all possible destinations is stored in a table.
A flow arriving at the router is sent to its destination by splitting the flow between the
links that are on the shortest paths to the destination. The splitting is done using pseudo-
random methods leading to an approximately even splitting. For simplicity, we assume that
the splitting is exactly even (for AT&T’s WorldNet this simplification leads to reasonable
estimates).

More precisely, given a set of weights (wa)a∈A, the length of a path is then the sum of
its arc weights, and we have the extra condition that all flow leaving a node aimed at a
given destination is evenly spread over the first arcs on shortest paths to that destination.
Therefore, for each source-destination pair (s, t) ∈ N × N and for each arc a ∈ δ+(u) for
some node u ∈ N , we have that f (s,t)

a = 0 if a is not on a shortest path from s to t , and that
f (s,t)
a = f (s,t)

a′ if both a ∈ δ+(u) and a′ ∈ δ+(u) are on shortest paths from s to t . Note that
the routing of the demands is completely determined by the shortest paths which in turn are
determined by the weights we assign to the arcs.

The quality of OSPF routing depends highly on the choice of weights. Nevertheless,
as recommended by Cisco (a major router vendor) [11], these are often just set inversely
proportional to the capacities of the links, without taking any knowledge of the demand
into account.

The OSPF weight setting problem is to set the weights so as to minimize the cost of the
resulting routing. In the remainder of the paper, we denote by �OptOSPF the optimal cost
with OSPF routing.

1.2.1. The MPLS alternative. We note that the emerging Multi-Protocol Label Switching
(MPLS) [31] allows the network operator to specify arbitrary paths for each source desti-
nation pair, plus the splitting of packets between these paths. MPLS can thus implement
the optimal solution of the general routing problem [2, 27]. Before going bankrupt, Global
Crossing [37] attempted such use of MPLS though using a simple non-optimal greedy
heuristic to select paths between sources and destinations so as to satisfy a conservative
estimate of the demands.

It is, however, not clear how much traffic MPLS will take over from traditional shortest
path protocols like OSPF. For example, shortest path weights do form a nice compact de-
scription of the routing between any source and destination. Also, OSPF is well-defined for
any set of link-failures, routing along shortest paths in the remaining graph.

Choosing which routing protocol to use for what traffic is, of course, a much more
complex discussion than indicated above. However, from the perspective of congestion,
as defined in Section 1.1, we do provide feedback on the potential gains in switching
from a tried and true shortest path protocols such as OSPF to the new MPLS
protocol.

Indeed, in a recent white paper, [33, p. 7] refers to the announcement in [17] of the work
of the current paper as one of the reasons for not deploying MPLS in their IP backbone.

INCREASING INTERNET CAPACITY USING LOCAL SEARCH 17

1.3. Our results

The general question studied in this paper is: Can a sufficiently clever weight setting make
OSPF routing perform nearly as well as optimal general/MPLS routing?

Our first answer is negative: for any positive integer n, we construct an instance of
the routing problem on ≈n3 nodes where any OSPF routing has its average flow on arcs
with utilization �(n) times higher than the max-utilization in an optimal general solution.
With our concrete objective function, this demonstrates a gap of a factor approaching 5000
between the cost of the optimal general routing and the cost of the optimal OSPF routing.

The next natural question is: how well does OSPF routing perform on real networks. In
particular we wanted to answer this question for a proposed next-generation AT&T World-
Net backbone with projected demands. In addition, we studied synthetic internetworks,
generated as suggested by Calvert et al. [8] and Zegura et al. [39]. Finding a perfect answer
is hard in the sense that it is NP-hard to find even an approximately optimal setting of
the OSPF weights for an arbitrary network. More precisely, in our experimental setting,
we show that it is NP-hard to optimize the OSPF weight setting with respect to our cost
function within a factor 3.1 from optimality.

Therefore, instead of exactly solving the optimization problem, we resorted to a local
search heuristic, not guaranteed to find optimal solutions. Very surprisingly, it turned out
that for the proposed AT&T WorldNet backbone, as well as for the synthetic networks,
the heuristic found weight settings making OSPF routing perform within a few percent of
the optimal general routing. Thus for the proposed AT&T WorldNet backbone with our
projected demands, and with our concrete objective function, there would be no substantial
traffic engineering gain in switching from the existing well-tested and understood robust
OSPF technology to the new MPLS alternative.

We also compared our local search heuristic with standard heuristics, such as weights
inversely proportional to the capacities or proportional to the physical distances, and found
that, for the same network and capacities, we could support a 50–115% increase in the
demands, both with respect to our concrete cost function and, simultaneously, with respect
to keeping the max-utilization below 100%.

1.4. Technical contributions

Our local search heuristic is original in its use of hash tables both to avoid cycling and
for search diversification. Using hash tables to avoid cycling in local search was already
proposed by Woodruff and Zemel [36], but our approach differs in the sense that we eliminate
completely all solutions already encountered, and we do not need the concept of solution
attributes. More precisely, our approach is closely related to strict tabu search [3], where
each solution is mapped to a hash value (that can be seen as the unique solution attribute),
and we do not allow the same value twice during the complete search. Using the same
mechanism to obtain diversification is, to our knowledge, a new idea that has not been
tested before.

Our local search heuristic is also original in its use of more advanced dynamic graph
algorithms like those of Ramalingam and Reps [29]. Computing the OSPF routing resulting

18 FORTZ AND THORUP

from a given set of weights turned out to be the computational bottleneck, as many different
solutions are evaluated during a neighborhood exploration. However, our neighborhood
structure allows only a few local changes in the weights. We therefore developed efficient
algorithms to update the routing and recompute the cost of a solution when a few weights
are changed. These speed-ups are critical for the local search to reach a good solution within
reasonable time bounds, as they typically reduce the computing time by a factor of 15.

1.5. Related work

To the best of our knowledge, there has not been any previous work dealing with the even
splitting in OSPF routing. In previous work on optimizing OSPF weights [6, 26, 30], they
have either chosen weights so as to avoid multiple shortest paths from source to destination,
or applied a protocol for breaking ties, thus selecting a unique shortest path for each source-
destination pair.

Unlike AT&T, some operators, e.g. France Telecom [4, 5], require the routing to follow
unique shortest paths in order to better understand what happens in the network. Therefore,
the set of weights must be such that the shortest path between any pair of nodes is unique,
which restrict the set of feasible solutions. Our problem with even splitting is therefore a
relaxation of this problem. It follows immediately that the worst case result of Section 2 also
holds when unique shortest paths are required. The NP-hardness of finding an approximate
solution to this problem was shown by Roughan and Thorup [32], with a proof similar to
the complexity proofs presented here. Even if our local search heuristic cannot be applied
directly to this problem, Roughan and Thorup reported some encouraging preliminary
results using our heuristic modified such as to penalize splitting.

Besides the difference in model, where we deal with even splitting, our approach is also
technically different. First of all, we deal with much larger networks. In more detail [30]
present a local search like ours, but using only a single descent. In contrast, we consider
non-improving moves and hence we have to deal with the problem of avoiding cycles. The
largest network considered in [30] has 16 nodes and 18 links. Also Bley et al. [6] use a
single descent local search. The largest network they consider has 45 links, but it should
be mentioned that they simultaneously deal with the problem of designing the network,
whereas we only try to optimize the weights for a given network. Finally, Lin and Wang
[26] present a completely different approach based on Lagrangian relaxation, and consider
networks with up to 26 nodes. In our experiments, the proposed AT&T WorldNet backbone
has 90 nodes and 274 links, and our synthetic networks have up to 100 nodes and 503
links. The scale of our experiments makes speed an issue, motivating our innovative use of
dynamic graph algorithms in local search.

1.6. Contents

In Section 2, a family of networks is constructed, demonstrating a large gap between OSPF
and multi-commodity flow routing, and in Section 3, we show that the problem of optimizing
OSPF weights is NP-hard. In Section 4 we present our local search algorithm, guiding the
search with hash tables. In Section 5 we show how to speed-up the calculations using

INCREASING INTERNET CAPACITY USING LOCAL SEARCH 19

dynamic graph algorithms. In Section 6, we report the numerical experiments, and we
conclude in Section 7 with some comments about the results obtained.

2. Gap between general routing and OSPF

In Lemma 1, we show that the gap between optimal general routing and optimal OSPF
routing can approach the ratio between the marginal cost of sending flow above capacity
of a link and the marginal cost of sending flow on an empty link. For the particular cost
function defined by (4), this gap can be close to 5000.

Our proof is based on a construction where OSPF leads to very bad congestion for any
natural definition of congestion. In fact, the construction provides a negative example for
any type of routing where if the flow from a node to a given destination splits, it splits evenly
between the outgoing links that it uses.

Lemma 1. For any positive integer n, there is a network Gn with O(n3) nodes so that
any OSPF routing has its average flow on arcs with utilization �(n) times higher than the
max-utilization in an optimal general solution.

Suppose our total routing cost is � = ∑
a∈A �a(la) where �a is increasing and convex,

and that there exist positive constants α, β, γ, δ, with δ < 1, such that

�a(l) ≤ αl if l ≤ δca,

�a(l) ≥ γ ca + β(l − ca) if l > ca .

Then the optimal general routing solution on Gn approaches being β

α
times better than

the optimal OSPF routing as n → ∞.

Proof: For n ≥ 1, let Gn = (Nn, An) be the graph defined by node set

Nn = {s, t} ∪ {vi : 1 ≤ i ≤ n} ∪ {
wi

j : 1 ≤ i ≤ n, i + 1 ≤ j ≤ n2 − 1
}

and arc set

An = {(s, v1)} ∪ {(vi , vi+1) : 1 ≤ i ≤ n − 1} ∪ {(
vi , w

i
i+1

)
: 1 ≤ i ≤ n − 1

}
∪ {(

wi
j , w

i
j+1

)
: 1 ≤ i ≤ n, i + 1 ≤ j ≤ n2 − 2

} ∪ {(
wi

n2−1, t
)

: 1 ≤ i ≤ n
}
.

The capacities of the arcs are

ca =
{

n/δ if a ∈ δ−(vi) for some i, 1 ≤ i ≤ n,

1/δ otherwise.

Finally, we have a single demand of size n with source s and destination t .
The graph Gn has O(n3) nodes and arcs, and is illustrated in figure 2 for n = 5 with high

capacity arcs represented by thick lines.

20 FORTZ AND THORUP

Figure 2. Gn for n = 5.

By our construction, there are exactly n paths from s to t , each with n2 links. These paths
are:

(s, v1), . . . , (vi−1, vi),
(
vi , w

i
i+1

)
,
(
wi

i+1, w
i
i+2

)
, . . . ,

(
wi

n2−1, t
)

1 ≤ i ≤ n.

The optimal solution of the general routing model is obviously given by sending one
unit of flow along each path, meaning that no arc gets more flow than δ times its capacity.
Therefore, as each unit of flow from s to t has to follow a path of length n2, the optimal
cost �n

OPT is less than or equal to n3α.
In the OSPF model, we can freely decide which paths we use, but because of the even

splitting, the first path used gets half the flow, i.e. n/2 units, the second gets n/4 units, and
so on. Asymptotically this means that almost all the flow goes along arcs with load a factor
�(δn) above their capacity, and since all paths use at least n2 − n arcs of small capacity,
the optimal OSPF cost �n

OptOSPF satisfies

�n
OptOSPF ≥ (1 − o(1))βn3.

INCREASING INTERNET CAPACITY USING LOCAL SEARCH 21

We conclude that the ratio of the OSPF cost over the optimal cost is such that
�n

OptOSPF

�n
OPT

≥
(1 − o(1)) β

α
→ β

α
as n → ∞.

Corollary 2. For the cost function defined by (4), there is a family of networks Gn so that
the optimal general routing approaches being 5000 times better than the optimal OSPF
routing as n → ∞.

Proof: In order to get into the hypothesis of Lemma 1, it is sufficient to see that an
equivalent problem is obtained by defining new capacities c(a) = 1.1ca , for all a ∈ A, and
by using the modified cost functions defined by �a(0) = 0 and

�′
a(x) =

1 for 0 ≤ l/c̄(a) < 10/33,

3 for 10/33 ≤ l/c̄(a) < 20/33,

10 for 20/33 ≤ l/c̄(a) < 9/11,

70 for 9/11 ≤ l/c̄(a) < 10/11,

500 for 10/11 ≤ l/c̄(a) < 1,

5000 for 1 ≤ l/c̄(a) < ∞.

This scaling arises from the fact that the highest marginal cost in our cost function is obtained
for a flow above 110% of the capacity.

The scaled cost function satisfies the hypothesis of Lemma 1 with α = 1, β = 5000, δ =
10/33 and

γ = 10

33
1 + 10

33
3 + 7

33
10 + 1

11
70 + 1

11
500 = 1820

33
.

3. Complexity

In this section, we will formally present our hardness results, stating that it is NP-hard to
find even an approximately optimal setting of OSPF weights. All proofs are deferred to
Appendix A. The hardness will be presented, not only for our concrete cost function �

as defined in Section 1, but also for much more general classes of cost functions. Also,
we will prove hardness of approximation with respect to max-utilization, which is another
natural measure for the quality of routing. In all cases, our inapproximability factors are
much worse than the results we will later obtain experimentally.

For our cost function from Section 1, we have

Theorem 3. It is NP-hard to optimize the OSPF weight setting with respect to the cost
function defined by (4) within a factor 3.1 from optimality.

Theorem 3 is derived from the following hardness result for a large class of cost functions:

22 FORTZ AND THORUP

Theorem 4. Let α and β be fixed constants. Suppose our total routing cost is � =∑
a∈A �a(la) where

�a(l) ≤ αl if l ≤ ca,

�a(l) ≥ αca + β(l − ca) if l > ca .

Then, if β ≥ 52α, it is NP-hard to optimize the OSPF weight setting with respect to
� = ∑

a∈A �a(la) within a factor 0.72 + β/38α > 2 from optimality.

The proof of Theorem 4 is deferred to Appendix A, but here we verify that Theorem 4 does
generalize Theorem 3, as claimed.

Proof that Theorem 4 implies Theorem 3: In order to get into the hypothesis of
Theorem 4, we can use the same construction as in the proof of Corollary 2, scaling the
capacities and the values of the breakpoints in the objective function by a factor 1.1.

The cost function in this construction satisfies the hypothesis of Theorem 4 with

α = 10

33
1 + 10

33
3 + 7

33
10 + 1

11
70 + 1

11
500 = 1820

33

and β = 5000, leading to an inapproximability factor greater than 3.1.

Finally, we state the hardness for max-utilization.

Theorem 5. It is NP-hard to optimize the max-utilization in OSPF routing within a factor
<3/2.

4. OSPF weight setting using local search

In OSPF routing, for each arc a ∈ A, we have to choose a weight wa . These weights
uniquely determine the shortest paths, the routing of traffic flow, the loads on the arcs, and
finally, the value of the cost function �. In the rest of this section, we present a local search
heuristic to determine weights wa, a ∈ A, in order to minimize �.

Suppose that we want to minimize a function f over a set X of feasible solutions. Local
search techniques are iterative procedures that for each iteration define a neighborhood
N (x) ⊆ X for the current solution x ∈ X , and then choose the next solution x ′ from this
neighborhood. Often we want the neighbor x ′ ∈ N (x) to improve on f in the sense that
f (x ′) < f (x).

Differences between local search heuristics arise essentially from the definition of the
neighborhood, the way it is explored, and the choice of the next solution from the neigh-
borhood. Descent methods consider the entire neighborhood, select an improving neighbor
and stop when a local minimum is found. Meta-heuristics such as Tabu search or simulated
annealing allow non-improving moves while applying restrictions to the neighborhood
to avoid cycling. An extensive survey of local search and its applications can be found
in [1].

INCREASING INTERNET CAPACITY USING LOCAL SEARCH 23

In the remainder of this section, we first describe the neighborhood structure we apply
to solve the weight setting problem. Second, using hash tables, we address the problem of
avoiding cycling. These hash tables are also used to avoid repetitions in the neighborhood
exploration. While the neighborhood search aims at intensifying the search in a promising
region, it is often of great practical importance to search a new region when the neighborhood
search fails to improve the best solution for a while. These techniques are called search
diversification and are addressed at the end of the section.

As a very first step, we choose a maximal weight wmax = 20, and then restrict our
attention to weights in W := {1, . . . , wmax}. The idea behind using small weights is that
we increase the chance of even splitting due to multiple shortest paths from a node to some
destination.

4.1. Neighborhood structure

A solution of the weight setting problem is completely characterized by its vector w =
(wa)a∈A of weights. We define a neighbor w′ ∈ N (w) of w by one of the two following
operations applied to w.

Single weight change. This simple modification consists in changing a single weight in
w. We define a neighbor w′ of w for each arc a ∈ A and for each possible weight
t ∈ W\{wa} by setting w′(a) = t and w′(b) = wb for all b �= a.

Evenly balancing flows. Assuming that the cost function �a for an arc a ∈ A is increasing
and convex, meaning that we want to avoid highly congested arcs, we want to split the
flow as evenly as possible between different arcs.

More precisely, consider a demand node t such that
∑

s∈N D(s, t) > 0 and some
part of the demand going to t goes through a given node u. Intuitively, we would like
OSPF routing to split the flow to t going through u evenly along arcs leaving u. This
is the case if every arc in δ+(u) belongs to a shortest path from u to t . More precisely,
if δ+(u) = {ai : 1 ≤ i ≤ p}, and if Pi is one of the shortest paths from the head
of ai to t , for i = 1, . . . , p, as illustrated in figure 3, then we want to set w′ such
that

w′
ai

+ w′(Pi) = w′
a j

+ w′(Pj) 1 ≤ i, j ≤ p,

where w′(Pi) denotes the sum of the weights of the arcs belonging to Pi . A simple way
of achieving this goal is to set

w′(a) =
{

w∗ − w(Pi) if a = ai , for i = 1, . . . , p,

wa otherwise.

where w∗ = 1 + maxi=1,...,p{w(Pi)}.
A drawback of this approach is that an arc that does not belong to one of the shortest

paths from u to t may already be congested, and the modifications of weights we propose

24 FORTZ AND THORUP

Figure 3. The second type of move tries to make all paths form u to t of equal length.

will send more flow on this congested arc, an obviously undesirable feature. We therefore
decided to choose at random a threshold ratio θ between 0.25 and 1, and we only modify
weights for arcs in the maximal subset B of δ+(u) such that

wai + w(Pi) ≤ wa j + w(Pj) ∀ i : ai ∈ B, j : a j /∈ B,

lwa ≤ θ ca ∀ a ∈ B,

where lwa denotes the load on a resulting from weight vector w. The last relation implies
that the utilization of an arc a ∈ B resulting from the weight vector w is less than or
equal to θ , so that we can avoid sending flow on already congested arcs. In this way, flow
leaving u towards t can only change for arcs in B, and choosing θ at random allows to
diversify the search.

This choice of B does not ensure that weights remain below wmax. This can be done
by adding the condition maxi :ai ∈B w(Pi) − mini :ai ∈B w(Pi) ≤ wmax when choosing B.

The first neighborhood is made of wmax|A| elements while the second one is made of |N |2
elements. As detailed in the rest of this section, we will not explore the full neighborhoods.
Of all neighbors explored, our next solution will be the best according to our cost function.

4.2. Guiding the search with hash tables

The simplest local search heuristic is the descent method that, at each iteration, selects
the best element in the neighborhood and stops when this element does not improve the
objective function. This approach leads to a local minimum that is often far from the
optimal solution of the problem, and heuristics allowing non-improving moves have been
considered. Unfortunately, non-improving moves can lead to cycling, and one must provide
mechanisms to avoid it. Tabu search algorithms [20–23], for example, make use of a Tabu

INCREASING INTERNET CAPACITY USING LOCAL SEARCH 25

list that records some attributes of solutions encountered during the recent iterations and
forbids any solution having the same attributes.

As our neighborhood structure for the weight setting problem is quite complex, efficiently
designing Tabu attributes and search parameters such as the length of the Tabu list would
have required a lot of work. We instead developed a search strategy that completely avoids
cycling without the need to store complex solution attributes. This approach, called Strict
Tabu Search was studied by Battiti and Tecchiolli [3]. They tested different techniques for
implementing it, namely the Reverse Elimination Method [22], hashing [36] and digital
trees [25].

It turns out that the Reverse Elimination Method is much more expensive both in memory
and computing requirements. Furthermore, digital trees are best suited for binary variables,
and would be too expensive memory-wise for encoding our solutions as |A|-dimensional
16-bit integer vectors. We therefore resorted to hashing. Hash functions compress solutions
into single integer values, sending different solutions into the same integer with small
probability. To implement Strict Tabu Search, we use a boolean table T to record if a value
produced by the hash function h() has been encountered. At the beginning of the algorithm,
all entries in T are set to false. If w is the solution produced at a given iteration, we set
T (h(w)) to true, and, while searching the neighborhood, we reject any solution w′ such that
T (h(w′)) is true. Checking that a solution has been encountered is therefore performed in
constant time.

As pointed out by Carlton and Barnes [9], we risk collisions whenever w′ �= w but
h(w′) = h(w). They show that collisions arise with a high probability after just a few
iterations. In our case, roughly 10% of all solutions are eliminated because of collisions (we
select 5000 solutions out of 216). In classical tabu search implementations, an aspiration rule
is used that accepts a move that improves the best solution so far, even if it is tabu (or has a
forbidden hash value in our case). But computing the cost of a solution is the computational
bottleneck of our approach, so we decided not to use this rule. As the eliminated solutions
are essentially random, and since our approach is already highly randomized, this is not
critical. Moreover, for the weight setting problem, many different solutions (i.e. weight
vectors) lead to the same arc loads and total cost. Therefore, even if a good solution is
killed by a collision, there is a high chance that some other solution leading to the same
distribution of flows will survive.

The hash functions we use are based on developments from [10, 13, 34], and have the
property that the probability that any two different weight settings get the same hash value
is the same as if the functions were truly random, which is not the case for functions
used by Woodruff and Zemel [36]. Suppose the weights are represented as m-bit integers,
where m ≥ log2 wmax, and we want to map them to n-bit integers. In our case, we had
m = 5 and n = 16. This value of n was chosen because storing hash values as 16-
bit integers is a natural choice and leads to an array T of 216 booleans, a manageable
size.

With each arc a ∈ A, we associate a random (m + n − 1)-bit integer pa . We then define the
hash function ha(wa) of a single weight wa by considering pawa , which is a (2m + n − 1)-
bit integer, and taking the n-bit integer obtained by dropping the m highest bits and the
m − 1 lowest bits of pawa , as illustrated in figure 4.

26 FORTZ AND THORUP

Figure 4. Example of hash function for a single weight with wa = 9, pa = 309101, ha(wa) = 42797.

The hash value of w is then defined by

h(w) =
⊕
a∈A

ha(wa),

where ⊕ denotes the bitwise XOR operation. A big advantage of using the XOR operation
is that it allows a fast update of the hash value when a single weight is changed. More
precisely, if w′ is equal to w except for a given a for which w′

a �= wa , then h(w′) can be
computed as

h(w′) = h(w) ⊕ ha(wa) ⊕ ha(w′
a).

We note that the basic idea of hash vectors coordinate-wise so that one can locally update the
overall hash value when a single coordinate changes goes back to chess playing computers
[40]. The hash function that we use was, however, not known at the time.

In our local search we performed 5000 iterations. The corresponding 5001 solutions
occupied at most a fraction 5001/216 < 1/10 of the potential hash values. The number
of iterations performed was chosen after observing that a very good solution was usually
obtained in the first 3000 iterations. Allowing for 5000 iterations is sufficient to get a robust
behavior of the algorithm, in the sense that the deviation in the quality of the solutions
obtained over several runs is negligible.

4.3. Speeding up neighborhood evaluation

Due to our complex neighborhood structure for evenly balancing flows, it turned out that
several moves (of the second type) often lead to the same weight setting. A simple example
is if we have a node w with a single incoming arc (v, w). Then from any node u �= v, w,
we will do exactly the same balancing with destination v as with destination w.

For efficiency, we would like to avoid evaluation of these equivalent moves. Again, hash
tables are a useful tool to achieve this goal: inside a neighborhood exploration, we define
a secondary hash table used to store the encountered weight settings as above, and we do
not evaluate moves leading to a hash value already met. Note that looking for a hash value
in the table takes a single operation compared to an evaluation of the cost of a solution that
takes O(|N |2) operations.

INCREASING INTERNET CAPACITY USING LOCAL SEARCH 27

The hash table is generally reset at the end of each iteration, since we want to avoid
repetitions inside a single iteration only. An exception to this rule is when the move does
not improve the solution, as detailed in the next section. As we explain in this next section,
the size of the secondary hash table must be small compared to the primary one. In our
experiments, its size S is 20 times the number of arcs in the network. Instead of computing a
secondary hash value from scratch, we take the 16-bit hash value h(w) already computed for
the primary hash table, and compute the hash value for the secondary table as h(w) mod S.
For AT&T WorldNet’s proposed backbone with 274 links, this gives a secondary size of
5, 480 whereas the primary size is 216 = 65, 536.

The neighborhood structure we use has also the drawback that the number of neighbors of
a given solution is very large, and exploring the neighborhood completely may be too time
consuming. To avoid this drawback, we only evaluate a randomly selected set of neighbors.

We start by evaluating 20% of the neighborhood. For the single weight change, this is
done by selecting 20% of the set of possible weights for each arc, while for the second
neighborhood, we reject any move with probability 80% before evaluating it. Each time the
current solution is improved, we divide the size of the sampling by 3, while we multiply
it by 2 each time the current solution is not improved. Moreover, we enforce sampling at
least 1% of the neighborhood.

4.4. Diversification

Another important ingredient for local search efficiency is diversification. The aim of di-
versification is to escape from regions that have been explored for a while without any
improvement, and to search regions as yet unexplored.

In our particular case, many weight settings can lead to the same distribution of flows.
Therefore, we observed that when a local minimum is reached, it has many neighbors having
the same cost, leading to long series of iterations with the same cost value. To escape from
these “long valleys” of the search space, the secondary hash table is again used.

This table should be reset at the end of each iteration to avoid repetitions inside a single
iteration only. However, if the neighborhood exploration does not lead to a solution better
than the current one, we do not reset the table. If this happens for several iterations, more
and more collisions occur and more potentially good solutions are excluded, forcing the
algorithm to escape from the region currently explored. Our aim here is to diversify the search
by eventually rejecting good solutions and accepting bad moves, to reach other regions of
the search space (as opposed to an intensification of the search when the objective solution
decreases strictly).

For these collisions to appear at a reasonable rate, the size of the secondary hash table
must be small compared to the primary one. This approach for diversification is useful to
avoid regions with a lot of local minima with the same cost, but is not sufficient to completely
escape from one region and go to a possibly more attractive one. Therefore, each time the
best solution found is not improved for 300 iterations, we randomly perturb the current
solution in order to explore a new region from the search space. The perturbation consists
of adding a randomly selected perturbation, uniformly chosen between −2 and +2, to 10%
of the weights.

28 FORTZ AND THORUP

Figure 5. Evolution of the local search over iterations, AT&T WorldNet backbone,

We present in figure 5 the evolution of the cost at each iteration of the search for one
run of an instance for AT&T WorldNet backbone. The dotted line represents the cost of the
best solution found so far. The impact of our diversification scheme is the high variation in
cost that can be observed in the figure, but as the algorithm only allows a few diversifying
moves, we can observe a quick descent to a good region after a “bad move”.

As we see in figure 5, it is quite random how good a region we get to after a diver-
sifying bad move. Hence it is not particularly surprising that best region and solution is
found half way through the 5000 iterations. As mentioned in Section 4.2, it was com-
mon in our experiments that a very good, if not best, solution was found within the first
3000 moves.

The impact of hash tables on rejected moves is also illustrated in Table 1, in which we
measured, for different network sizes, the total number of moves, and the number of moves
rejected with each one of the two hash tables. The number of moves rejected because of
collisions in the primary table remains quite small, while the proportion of collisions in the
secondary table is quite important, because diversification plays an important role in our
heuristic.

5. Cost evaluation

In this section, we first show how to evaluate our cost function for the static case of a network
with a specified weight setting. Computing this cost function from scratch is unfortunately

INCREASING INTERNET CAPACITY USING LOCAL SEARCH 29

Table 1. Impact of the hash tables.

Network size Rejected moves

Nodes Arcs
Total number

of moves Primary Secondary

90 274 14,941,588 1,788,103 (12.0%) 11,070,388 (74.1%)

50 148 5,504,970 363,821 (6.6%) 3,739,470 (67.9%)

50 212 9,200,783 713,887 (7.8%) 6,552,817 (71.2%)

100 280 17,531,422 1,392,694 (7.9%) 13,412,086 (76.5%)

100 360 10,670,683 637,434 (6.0%) 6,375,143 (59.7%)

100 403 10,165,707 595,688 (5.9%) 5,572,911 (54.8%)

100 391 9,869,432 558,478 (5.7%) 5,023,112 (50.9%)

too time consuming for our local search, so afterwards, we show how to reuse computations,
exploiting the fact that there are only few weight changes between a current solution and
any solution in its neighborhood.

5.1. The static case

We are given a directed graph G = (N , A) with arc capacities {ca}a∈A, a demand matrix D,
and weights {wa}a∈A. For the instances considered, the graph is sparse with |A| = O(|N |).
Moreover, in the weighted graph the maximal distance between any two nodes is O(|N |).

We want to compute our cost function �. The basic problem is to compute the loads
resulting from the weight setting. We consider one destination t at a time, and compute the
total flow from all sources s ∈ N to t . This gives rise to a certain partial load l t

a = ∑
s∈N f (s,t)

a
for each arc. Having done the above computation for each destination t , we can compute
the load la on arc a as

∑
t∈N lt

a .
To compute the flow to t , our first step is to use Dijkstra’s algorithm to compute all

distances to t (normally Dijkstra’s algorithm computes the distances away from some source,
but we can just apply such an implementation of Dijkstra’s algorithm to the graph obtained
by reversing the orientation of all arcs in G). Having computed the distance dt

u to t for each
node u, we compute the set At of arcs on shortest paths to t , that is,

At = {
(u, v) ∈ A : dt

u − dt
v = w(u,v)

}
For each node u, let δ+

t (u) = {v ∈ N : (u, v) ∈ At } denote the set of arcs leaving u. The
out degree of u in At is therefore |δ+

t (u)|.

Observation 6. For all (v, w) ∈ At ,

l t
(v,w) = 1

|δ+
t (v)|

(
D(v, t) +

∑
(u,v)∈At

lt
(u,v)

)
.

30 FORTZ AND THORUP

Using Observation 6, we can now compute all the loads l t
(v,w) as follows. The nodes v ∈ N

are visited in order of decreasing distance dt
v to t . When visiting a node v, we first set

l = 1
|δ+

t (v)| (D(v, t) + ∑
(u,v)∈At lt

(u,v)). Second we set l t
(v,w) = l for each (v, w) ∈ At .

To see that the above algorithm works correctly, we assume, inductively, that we have
dealt correctly with all nodes visited before v. Since every arc (u, v) entering v in At stems
from a node u strictly further from t , we know u has been visited previously. Hence, by
induction, the load l t

(u,v) is correct. Since all the incoming arc loads are correct when v is
visited, the outgoing arc loads are computed correctly by Observation 6.

Using bucketing for the priority queue in Dijkstra’s algorithm, the computation for each
destination takes O(|A|) = O(|N |) time, and hence our total time bound is O(|N |2).

5.2. The dynamic case

In our local search we want to evaluate the cost of many different weight settings, and these
evaluations are a bottleneck for our computation. To save time, we try to exploit the fact
that when we evaluate consecutive weight settings, typically only a few arc weights change.
Thus it makes sense to try to be lazy and not recompute everything from scratch, but to reuse
as much as possible. With respect to shortest paths, this idea is already well studied [29],
and we can apply their algorithm directly. Their basic result is that, for the recomputation,
we only spend time proportional to the number of arcs incident to nodes u whose distance
dt

u to t changes. In our experiments there were typically only very few changes, so the gain
was substantial—in the order of factor 15 for a 100 node graph. Similar positive experiences
with this laziness have been reported in [19].

The set of changed distances immediately gives us a set of “update” arcs to be added
to or deleted from At . We now present a lazy method for finding the changes of loads.
We operate with a set M of “critical” nodes. Initially, M consists of all nodes with an
incoming or outgoing update arc. We repeat the following until M is empty: First, we take
the node v ∈ M which maximizes the updated distance dt

v and remove v from M . Second,
set l = 1

|δ+
t (v)| (D(v, t) +∑

(u,v)∈At lt
(u,v)). Finally, for each (v, w) in the updated At , if (v, w)

is new or l �= lt
(v,w), set l t

(v,w) = l and add w to M .
To see that the above suffices, first note that the nodes visited are considered in order of

decreasing distances. This follows because we always take the node at the maximal distance
and because when we add a new node w to M , it is closer to t than the currently visited node
v. Consequently, our dynamic algorithm behaves exactly as our static algorithm except that
it does not treat nodes not in M . However, all nodes whose incoming or outgoing arc set
changes, or whose incoming arc loads change are put in M , so if a node is skipped, we
know that the loads around it would be exactly the same as in the previous evaluation.

In order to measure the impact of the dynamic update of the cost on the performance of
our algorithm, we performed 1000 iterations on various networks with different demand
sets. Our experiments showed that dynamic updates make the algorithm from 5 up to 25
times faster, with an average of 15 times faster. This improvement was critical to us, as we
typically ran the local search for a bit more than 1 hour in order to get good solutions.

In Table 2, we report some of these results. Both for static computations and dynamic
updates, we measured the fraction of the computing time that was spend to compute shortest

INCREASING INTERNET CAPACITY USING LOCAL SEARCH 31

Table 2. Impact of the dynamic update on computing times.

CPU time (seconds)

Network size Static computations Dynamic computations

Nodes Arcs Total Sh. paths Flows Total Sh. paths Flows Gain (%)

90 274 411 243 (59%) 146 (36%) 29 11 (38%) 12 (41%) 93

50 148 570 263 (46%) 289 (51%) 66 21 (32%) 38 (58%) 88

50 212 912 408 (45%) 476 (52%) 87 26 (30%) 53 (61%) 90

100 280 5787 2628 (45%) 2960 (51%) 393 139 (35%) 228 (58%) 93

100 360 8440 3806 (45%) 4326 (51%) 679 188 (28%) 447 (66%) 92

100 403 7717 3496 (45%) 3898 (51%) 660 158 (24%) 447 (68%) 91

100 391 7931 3633 (46%) 3986 (50%) 775 180 (23%) 533 (69%) 90

paths and the resulting flows. The table clearly shows that these computations take more than
90% of the computing times in all cases. Our proposed techniques for dynamically updating
the flows are as important for the efficiency of our code as the already known shortest paths
updating techniques, even if the improvement is slightly better for shortest paths.

6. Numerical experiments

We present here our results obtained with a proposed AT&T WorldNet backbone as well as
synthetic internetworks.

The cost function used in the experiments is defined by (4). As discussed in [18], a
problem in the current formulation of � is that it does not provide a universal measure
of congestion. Independently of the network topology and demand matrix, it is natural to
require that the maximum utilization remains below 1. Similarly, we would like a universal
cut-off value for our cost function (4), independent of the network topology and demand
matrix. To achieve this, we use the normalized cost function

�∗ = �/�

where � is the cost we would have had if all flow was sent along hop-count shortest paths
and the capacities matched the loads. When capacity matches load on a link a, we pay
�a(ca)/ca per unit of flow on a. With our cost function, for any arc a,

�a(ca)/ca = 1/3 + 3 · 1/3 + 10 · 7/30 + 70 · 1/10 = 10
2

3
.

This cost per unit of flow when load matches capacity is thus constant over all arcs and is
equal to 10 2

3 . It follows that if 	(s, t) is the hop-count distance between s and t ,

� =
∑

(s,t)∈N×N

(
10

2

3
· D[s, t] · 	(s, t)

)
.

32 FORTZ AND THORUP

Note that for a given network and demand matrix, the division by a constant � doesn’t affect
which routings are considered good. With this scaling, if �∗ ≥ 1, then the routing is as bad
as if all flows were along hop-count shortest paths with loads matching the capacities. The
same cost can, of course, also stem from some loads going above capacity and others going
below, or by flows following longer detours via less utilized arcs. Nevertheless, it is natural
to say that a routing congests a network if �∗ > 1.

Besides comparing our local search heuristic (HeurOSPF) with the general optimum
(OPT), we compared it with OSPF routing with “oblivious” weight settings based on prop-
erties of the arc alone but ignoring the rest of the network. The oblivious heuristics are

• InvCapOSPF, setting the weight of an arc inversely proportional to its capacity as rec-
ommended by Cisco [11]. In each of our experiments, we set the weight of each link by
dividing the maximal capacity over all links by the capacity of the link, and rounding so
to get integer weights,

• UnitOSPF, setting all arc weights to 1,
• L2OSPF, setting the weight proportional to its physical Euclidean distance (L2 norm),

and
• RandomOSPF, just choosing the weights randomly.

We also applied a simple descent method (DescentOSPF) to our neighborhood, i.e. we did
not use hash tables and diversification, and stopped at the first local minimum encountered.

Our local search heuristic starts with randomly generated weights and performs 5000
iterations. The average CPU time of HeurOSPF over all experiments was 1370 seconds, for
a maximum of 6221 seconds for the largest network. In comparison, DescentOSPF took
on average 882 CPU seconds for a maximum of 4378 seconds. The gain in quality and
robustness obtained with HeurOSPF completely justifies the increased CPU time.

The initial solution for HeurOSPF and DescentOSPF was weights chosen for RandomO-
SPF, so the initial cost of our local search is that of RandomOSPF. We also performed some
experiments taking UnitOSPF as initial setting, without any improvement in the quality of
the solutions (convergence was even slower).

All tests were performed on an Intel Pentium 3 processor cadenced at 1.13 Ghz, running
under RedHat Linux 7.3. The linear programs for OPT were solved by calling CPLEX
version 7.1 via AMPL.

The results for the AT&T WorldNet backbone with different scalings of the projected
demand matrix are presented in Table 3. Here, by scaling a demand matrix, we mean that we
multiply all entries with a common number. Each algorithm was run once independently for
each scaling. Hence OPT, RandomOSPF, and HeurOSPF use different routings for different
scalings whereas UnitOSPF and InvCapOSPF always use the same routing. In each entry
we have the normalized cost �∗. The normalized cost is followed by the max-utilization
in parenthesis. The bold line in the table corresponds to the original non-scaled demand.
In order to show the robustness of our method, we also performed 10 runs starting with
different random weight settings. The results of these experiments are reported in Table 4.

For all the OSPF schemes, the normalized cost and max-utilization are calculated for
the same weight setting and routing. However, for OPT, the optimal normalized cost and
the optimal max-utilization are computed independently with different routing. We do not

INCREASING INTERNET CAPACITY USING LOCAL SEARCH 33

Table 3. Results for proposed AT&T WorldNet backbone with 90 nodes and 274 arcs.

OPT Unit InvCap L2 Random Descent Heur

Total Max- Max- Max- Max- Max- Max- Max-
demand Cost util Cost util Cost util Cost util Cost util Cost util Cost util

3919 0.09 0.10 0.09 0.16 0.09 0.16 0.11 0.25 0.11 0.20 0.10 0.14 0.10 0.16

7837 0.09 0.20 0.09 0.33 0.09 0.32 0.11 0.49 0.12 0.79 0.10 0.35 0.10 0.32

11756 0.09 0.31 0.10 0.49 0.10 0.48 0.12 0.74 0.14 0.78 0.10 0.38 0.10 0.41

15675 0.10 0.41 0.11 0.65 0.11 0.64 0.14 0.98 14.94 1.54 0.10 0.56 0.10 0.50

19593 0.11 0.51 0.13 0.81 0.13 0.80 1.40 1.23 1.73 1.28 0.12 0.62 0.12 0.62

23512 0.13 0.61 0.17 0.98 0.17 0.95 5.49 1.47 3.70 1.24 0.13 0.71 0.13 0.71

27430 0.14 0.72 0.69 1.14 0.48 1.11 8.96 1.72 37.22 2.34 0.16 0.87 0.15 0.83

31349 0.16 0.82 3.19 1.30 2.95 1.27 11.95 1.96 18.64 1.64 0.18 0.94 0.17 0.94

35268 0.20 0.92 6.55 1.46 7.40 1.43 17.52 2.21 22.74 3.13 0.23 1.01 0.20 0.95

39186 0.27 1.02 11.88 1.63 13.64 1.59 24.69 2.45 46.87 2.72 0.42 1.18 0.29 1.06

43105 0.72 1.12 18.89 1.79 20.48 1.75 31.87 2.70 64.76 2.97 3.03 1.30 0.84 1.15

47024 2.29 1.23 26.87 1.95 28.15 1.91 40.79 2.94 76.75 3.56 3.90 1.49 2.54 1.41

Table 4. Mean (µ) and standard deviation (σ) for 10 runs on proposed AT&T WorldNet backbone.

Cost Max-utilization

Total Random Descent Heur Random Descent Heur
demand µ (σ) µ (σ) µ (σ) µ (σ) µ (σ) µ (σ)

3919 0.110 (0.000) 0.091 (0.003) 0.091 (0.003) 0.255 (0.052) 0.186 (0.047) 0.167 (0.011)

7837 0.270 (0.391) 0.091 (0.003) 0.091 (0.003) 0.662 (0.304) 0.322 (0.013) 0.315 (0.007)

11756 0.745 (1.363) 0.100 (0.000) 0.091 (0.003) 0.985 (0.403) 0.381 (0.043) 0.359 (0.019)

15675 3.800 (5.172) 0.100 (0.000) 0.100 (0.000) 1.332 (0.512) 0.521 (0.021) 0.526 (0.018)

19593 5.519 (5.049) 0.113 (0.005) 0.111 (0.003) 1.478 (0.481) 0.658 (0.019) 0.625 (0.016)

23512 13.206 (8.384) 0.130 (0.000) 0.130 (0.000) 1.754 (0.533) 0.718 (0.017) 0.710 (0.000)

27430 21.626 (11.068) 0.152 (0.004) 0.150 (0.000) 1.875 (0.269) 0.856 (0.023) 0.821 (0.003)

31349 37.286 (17.154) 0.179 (0.003) 0.170 (0.000) 2.988 (1.939) 0.933 (0.016) 0.940 (0.000)

35268 47.034 (16.721) 0.228 (0.013) 0.203 (0.005) 2.573 (0.555) 1.011 (0.055) 0.950 (0.000)

39186 68.977 (26.803) 0.401 (0.073) 0.291 (0.003) 2.964 (0.656) 1.118 (0.066) 1.057 (0.007)

43105 83.035 (28.215) 2.440 (2.442) 0.871 (0.059) 2.925 (0.433) 1.346 (0.212) 1.170 (0.046)

47024 96.216 (31.983) 4.225 (0.640) 2.539 (0.048) 4.936 (3.126) 1.543 (0.171) 1.403 (0.022)

expect any general routing to be able to get the optimal normalized cost and max-utilization
simultaneously. The results are also depicted graphically in figure 6. The first graph shows
the normalized cost and the horizontal line shows our threshold of 1 for regarding the network
as congested. The second graph shows the max-utilization. As L2OSPF and RandomOSPF

34 FORTZ AND THORUP

Figure 6. AT&T’s proposed backbone with 90 nodes and 274 arcs.

clearly perform very badly (as could be expected), we do not depict the associated results
in the graphs.

We also generated three flavors of synthetic graphs.

2-level hierarchical graphs: these graphs were produced using the generator GT-ITM [38],
based on a model of [8, 39]. Arcs are divided in two classes: local access arcs and long
distance arcs. Arc capacities are equal to 200 for local access arcs and to 1000 for long
distance arcs.

Purely random graphs: the probability of having an arc between two nodes is given by a
constant parameter used to control the density of the graph. All arc capacities are set to
1000.

Waxman graphs: nodes are uniformly distributed points in a unit square and the probability
of having an arc between two nodes u and v is given by

p(i, j) = αe
−L2(u,v)

β	

where α and β are parameters used to control the density of the graph, L2(u, v) is the
Euclidean distance between u and v and 	 is the maximum distance between two nodes
[35]. All arc capacities are set to 1000.

Note that in random and Waxman graphs, all capacities are equal, so InvCapOSPF and
UnitOSPF will run identically. While random and Waxman graphs are the cleaner from
a mathematical perspective, the 2-level hierarchical graphs are the most realistic known
models for internetworks.

The demands are generated as follows. For each node u, we pick two random numbers
Ou, Du ∈ [0, 1] . Further, for each pair (u, v) of nodes we pick a random number C(u,v) ∈
[0, 1]. The demand between u and v is

αOu DvC(u,v)e
−L2(u,v)

2	

Here α is a parameter and 	 is again the largest Euclidean distance between any pair of
nodes. Above, the Ou and Dv reflect the fact that different nodes can be more or less active

INCREASING INTERNET CAPACITY USING LOCAL SEARCH 35

senders and receivers, thus modeling hot spots on the net. Because we are multiplying three
random variables, we have a quite large variation in the demands. The factor e−L2(u,v)/2	

implies that we have relatively more demand between close pairs of nodes.
Five instances were generated and tested for each class of graphs. However, for space

reasons, we present here only results for four hierarchical, one random, and one Waxman
graphs. These results are presented in figures 7–12.

Figure 7. 2-level graph with 50 nodes and 148 arcs.

Figure 8. 2-level graph with 50 nodes and 212 arcs.

Figure 9. 2-level graph with 100 nodes and 280 arcs.

36 FORTZ AND THORUP

Figure 10. 2-level graph with 100 nodes and 360 arcs.

Figure 11. Random graph with 100 nodes and 403 arcs.

Figure 12. Waxman graph with 100 nodes and 391 arcs.

7. Discussion

We presented in this paper a local search heuristic for optimizing OSPF weights used
for intra-domain internet routing. This heuristic was tested on a substantial set of in-
stances, including a proposed AT&T WorldNet backbone with projected demands. It would
have been nice to run on more real world data, but such data are typically company
secrets.

INCREASING INTERNET CAPACITY USING LOCAL SEARCH 37

If we consider the results for the AT&T WorldNet backbone with projected (non-scaled)
demands, i.e. the bold line in Table 6, we observe that our heuristic, HeurOSPF, is within
1.8% from optimality. In contrast, the oblivious methods are all off by at least 15%.

Considering the general picture for the normalized costs in figures 6–12, we see that
L2OSPF and RandomOSPF typically do worst. Then comes InvCapOSPF and UnitOSPF
closely together, with InvCapOSPF being generally slightly better (for the random and
Waxman graphs in figures 11 and 12, InvCapOSPF coincides with UnitOSPF since all
links have the same capacity). Recall that InvCapOSPF is Cisco’s recommendation, so it
is comforting to see that it is the best of the oblivious heuristics. The clear winner of the
OSPF schemes is our HeurOSPF, which is, in fact, much closer to the general optimum
than to the oblivious OSPF schemes. The descent method also performs well compared to
oblivious schemes, but our heuristic still produces better results. Moreover, Table 4 shows
that HeurOSPF is far less sensitive to the initial solution than the DescentOSPF.

Consider the different schemes with respect to our scaled cost function �∗. Note that
all curves but those for RandomOSPF, start off pretty flat, and then, quite suddenly, start
exploding. This pattern is somewhat similar to that in figure 1. This is not surprising since
figure 1 shows the curve for a network consisting of a single arc. The reason why Rando-
mOSPF does not follow this pattern is that the weight settings are generated randomly for
each entry. The jumps of the curve for RandomOSPF in figure 9 nicely illustrate the luck
impact in the weight setting. One could, of course, have run RandomOSPF several times,
and used the best solution, but from the figures it is clear that even if it is erratic how badly
RandomOSPF performs, it is never the best. The purpose of including RandomOSPF is to
be able to compare the other weight settings with random choices. Interestingly, for any
particular demand, the value of RandomOSPF is the value of the initial solution for our local
search heuristic. However, the jumps of RandomOSPF are not transferred to HeurOSPF
which hence seems oblivious to the quality of the initial solution.

When comparing different schemes on a given network, one can typically demonstrate
huge gaps if considering a level of demand for which one but not the other has started
exploding. For example, consider the AT&T graph in figure 6 and compare HeurOSPF with
InvCapOSPF with demands around 3300. At that point, InvCapOSPF has left the plot, but
in Table 3 we see that with demand 33378, HeurOSPF has a cost of 0.19 while InvCapOSPF
has a cost of 5.18. These gaps are, however, not very informative as they are an artifact of
the explosive nature of our cost function.

The most interesting comparison between the different schemes is the amount of demand
they can cope with before the network gets too congested, i.e. when �∗ gets bigger than 1.
Considering the proposed AT&T WorldNet backbone in figure 6 and for the 2-level graphs
in figures 7–10, we see that HeurOSPF allows us to cope with 50–115% more demand
than Cisco’s recommended InvCapOSPF, with an average around 70%. The maximum of
115% is achieved in figure 8. In this particular figure, L2OSPF actually does quite well,
but generally InvCapOSPF is the better of the oblivious heuristics, and hence the most
challenging one to compete with. Moreover, in all but figure 8, HeurOSPF is less than
2% from being able to cope with the same demands as the optimal general routing OPT.
In figure 8, HeurOSPF is about 20% from OPT. Recall from Theorem 3 that it is NP-
hard to approximate the optimal cost of an OSPF solution within a factor 3, and we have

38 FORTZ AND THORUP

no idea whether there exist OSPF solutions closer to OPT than the ones found by our
heuristic.

The above picture is repeated for the random graph in figure 11, except that our Heur-
OSPF tends to be a little further away from OPT, though still by less than 10%. For the
Waxman graph in figure 12, the most significant difference relative to the other models is
that Unit/InvCapOSPF tends to get closer to OPT, with OPT only allowing for in average
30% increase in demands, thus leaving less scope for improvement. On the other hand,
for the Waxman graphs, HeurOSPF nearly coincides with OPT. The random and Waxman
graphs are considered much less realistic than the 2-level graphs, but we see them as sup-
porting evidence for conjecturing that for typical internetworks, HeurOSPF will be able to
supply large parts of the gain that OPT may have over InvCapOSPF, or any other of the
oblivious heuristics.

If we now turn our attention to max-utilization, we get the same ordering of the schemes,
with InvCapOSPF the winner among the oblivious schemes and HeurOSPF the overall best
OSPF scheme. The advantage of using HeurOSPF for max-utilization is interesting in that
our local search did not use max-utilization as its objective.

The step-like pattern of HeurOSPF shows the impact of the changes in �′
a . For example,

in figure 6, we see how HeurOSPF fights to keep the max utilization below 1, in order to
avoid the high penalty for getting load above capacity. Following the pattern in our analysis
for the normalized cost, we can ask how much more demand we can deal with before getting
max-utilization above 1, and we see that HeurOSPF again beats the oblivious schemes by
at least 50% for the proposed AT&T WorldNet backbone and the 2-level graphs.

The fact that our HeurOSPF provides weight settings and routings that are simultaneously
good both for our best effort type average cost function, and for the performance guarantee
type measure of max-utilization indicates that the weights obtained are “universally good”
and not just tuned for our particular cost function. Recall that the values for OPT are not
for the same routings, and there may be no general routing getting simultaneously closer to
the optimal cost and the optimal max-utilization than HeurOSPF. Anyhow, our HeurOSPF
is generally so close to OPT that there is little scope for improvement.

Finally, it may be interesting to see to which extent splitting was achieved. Looking at
the best solutions found by HeurOSPF, we noticed that flows for a given destination split
on average 5 times.

8. Conclusion

We have presented worst-case examples showing that there are cases where even the best
OSPF weight setting leads to very bad routing as compared with the best general routing.
Also, we have shown that it is NP-hard to find even an approximately optimal OSPF weight
setting. These negative findings are contrasted by the positive findings in our experimental
work, where our weight setting heuristic produces OSPF routings that are quite close in
performance to that of the best possible general routings. This indicates that the negative
examples for OSPF routing are too contrived to dominate in practice.

For the proposed AT&T WorldNet backbone and for the 2-level graphs suggested in
[8, 39], our OSPF weight setting heuristic further distinguished itself by producing weight

INCREASING INTERNET CAPACITY USING LOCAL SEARCH 39

settings allowing for a 50–115% increase in demands over what is achieved with standard
weight setting heuristics, such as using inverse capacity as recommended by Cisco [11].
Thus we have shown that in the context of known demands, a clever weight setting al-
gorithm for OSPF routing is a powerful tool for increasing a network’s ability to honor
increasing demands, and that OSPF with clever weight setting can provide large parts of the
potential gains of traffic engineering for supporting demands, even when compared with
the possibilities of the much more flexible MPLS schemes.

9. Subsequent and future work

Building upon the techniques from this paper, we have developed a network management
system dealing with more complex issues such as link-failures, hot spots, and predicted
periodic changes in the demand matrix, say between day and night traffic [18].

Also, the work reported in this paper, which has circulated as a technical report [16], has
inspired other researchers to work on the OSPF weight setting problem. Ericsson et al. [14]
have applied a genetic algorithm Buriol et al. [7] have applied a memetic algorithm. Both
of these papers reuse the experimental framework from this paper, which is now becoming
a standard test bed for the OSPF weight setting problem. Also, Buriol et al. reused the idea
of using dynamic graph algorithms to speed up their memetic algorithm. We note that none
of these later approaches have reported substantially better solutions for the test instances,
though the convergence is often faster.

We leave open the problem of developing exact methods for the OSPF weight setting
problem.

Appendix A: NP-hardness proofs

In this appendix, we prove the NP-hardness results claimed in Section 3. The proofs are
done partly in collaboration with David Johnson and Christos Papadimitriou. First we prove
the hardness of minimizing the max-utilization, and second we prove hardness with respect
to summation-based cost functions like �. The proof for max-utilization is much easier, and
helps presenting some of the basic ideas needed for the summation-based cost functions.

Recall from Section 3:

Theorem 5. It is NP-hard to optimize the max-utilization in OSPF routing within a factor
<3/2.

Proof of Theorem 5: We prove this result by reducing 3SAT to the problem of optimizing
OSPF weight setting with respect to max-utilization. More precisely, let S = (X, C) be an
instance of 3SAT with variable set X and clause set C where each clause has 3 literals [12].
We construct an instance of the OSPF weight setting problem such that

• there exists a satisfiable assignment for the 3SAT instance if and only if the max-utilization
in the OSPF instance is equal to 1;

40 FORTZ AND THORUP

Figure 13. Reduction from 3SAT to OSPF max-utilization.

• if there is no satisfiable assignment for the 3SAT instance, the max-utilization for any
weight setting is at least 3/2.

The construction of the graph GS = (NS, AS) corresponding to the 3SAT instance is
illustrated in figure 13, where arcs are annotated by their capacities. With each clause
c ∈ C , we associate a node c ∈ NS . All these nodes are connected by an arc of capacity 2
to a global node w.

For each variable x ∈ X , let |x | denote the least power of 2 bounding both the number of
negative and the number of positive occurrences of x in S. With each x ∈ X , we associate a
source sx and a destination tx , with demand 2|x | between them. Furthermore, for each x , we
have three nodes vx , Fx , and Tx , and arcs (sx , vx), (vx , tx), (vx , Fx), and (sx , Tx). The arcs
(vx , tx), (vx , Fx), and (sx , Tx) have capacity |x | while (sx , vx) has capacity 2|x |. Balanced
binary trees with |x | leaves are rooted at Fx and Tx . For each positive (negative) occurrence
of x in a clause c, we have an arc from a leaf under Fx (Tx) to the node c. Each leaf can
only be used for one occurrence of x in the clauses. Each leaf which is not connected to a
clause is connected to a global node u, which in turn is connected to w. The arcs inside the
binary trees have capacity |x | while the arcs from the leaves to the clauses or to u all have
capacity 1. Arc (u, w) has capacity

∑
x∈X |x |, and for all x , there is an arc from w to tx with

capacity |x |.
A canonical flow in this network is defined as a flow corresponding to an assignment of

values to the variables in X . More precisely, in a canonical flow, we have |x | units of flow
going down (vx , tx) and |x | units going to either Tx or Fx depending on whether x is true
or false. If x is true, then the flow comes to Tx and it spreads evenly so that we get 1 unit
leaving each leaf going either to a clause node c or to u, and then these |x | units of flow

INCREASING INTERNET CAPACITY USING LOCAL SEARCH 41

are sent to tx through w. If x is false, the flow goes to Fx , then is spread in the same way
as above. With this assignment of flows, for each clause c, there is 1 unit of flow through
(c, w) for each literal in c not satisfied by the assignment. Thus, if the clause c is satisfied,
it has at most 2 literals that are not satisfied by the assignment and the load stays within the
capacity of (c, w). Otherwise, the load on (c, w) is 3 and the utilization of (c, w) goes to
3/2. All other loads in a canonical flow stay within the capacities.

Now suppose we are given a non-canonical flow satisfying the OSPF routing condition
that if the flow to a destination splits, it splits evenly. We will show that max-utilization for
this non-canonical flow is at least 3/2. It is easy to see that a non-canonical flow satisfies at
least one of the following conditions for some x :

(i) (vx , tx) is not used;
(ii) (vx , tx), (sx , Tx) and (vx , Fx) are all used;

(iii) (vx , tx) and exactly one of (sx , Tx) and (vx , Fx) are used; however, there is at least one
internal node in one of the binary trees where the flow does not split down to both
children;

(iv) (vx , tx) is used, (sx , Tx) and (vx , Fx) are not used.

In case (i) where (vx , tx) is not used, we get all the flow from sx through (w, tx), leading
to max-utilization 2. In case (ii) where all of (vx , tx), (sx , Tx) and (vx , Fx) are used, even
splitting implies that 1/2 of the flow goes down (sx , Tx) while 1/4 goes down each of (vx , tx)
and (vx , Fx). As a result, we must get 3/4 · 2|x | = 3/2|x | flow down (w, tx), leading to a
max-utilization of 3/2. In case (iii) we have |x | units of flow arriving at Tx (or Fx). Consider
a node a of the binary tree below Tx (or Fx) where the flow does not split and which is
closest possible to Tx (or Fx). Then the flow splits evenly above a, so a receives exactly
one unit of flow for each leaf descending from a. However, all the flow to a is sent down
to one child with only half as many descending leaves, so one of these leaves must receive
2 units of flow, which is twice the capacity of its outgoing arc. In case (iv), (vx , tx) gets a
flow of 2|x |, leading to max-utilization 2.

We have now shown that an evenly splitting flow leads to a max-utilization equal to 1
if and only if the flow is canonical and corresponds to a satisfiable assignment; any other
evenly splitting flow leads to a max-utilization greater than or equal to 3/2.

It remains to show that any satisfiable canonical flow can be achieved by a suitable set
of weights for OSPF routing. This is done as follows. All paths from sx to tx going through
Tx use 4 + log2 |x | arcs, those going through Fx use 5 + log2 |x | arcs, and the direct path
sx , vx , tx uses 2 arcs. If the canonical flow leads to a true value for x , then flow splits equally
at sx and does not split at vx , which is achieved if the paths going through Tx and the direct
path have the same weight, while the paths going through Fx have a larger weight. Giving
a weight equal to 3 + log2 |x | to (vx , tx) and a weight equal to 1 to all the other arcs leads to
such a weight setting. Note that these weights are all integers as |x | was defined as a power
of 2. If the canonical flow leads to a false value for x , then flow does not split at sx and splits
equally at vx , which is achieved if the paths going through Fx and the direct path have the
same weight, while the paths going through Tx have a larger weight. Giving a weight equal
to 4 + log2 |x | to (vx , tx), a weight equal to 3 to (sx , Tx) and a weight equal to 1 to all the
other arcs leads to such a weight setting.

42 FORTZ AND THORUP

In conclusion, there exists a satisfiable assignment if and only if there exists an OSPF
weight setting leading to a max-utilization of 1. Conversely, we have shown that any evenly
splitting flow that does not correspond to a satisfying truth assignment has max-utilization
greater than or equal to 3/2. Hence, approximating the max-utilization within a factor
<3/2 implies a solution to 3SAT. Since the reduction is polynomial, the NP-hardness result
follows.

We will now prove the other result from Section 3, stating the inapproximability of the
OSPF weight setting problem with respect to a large class of cost functions, including our
cost function �.

Theorem 4. Let α and β be fixed constants. Suppose our total routing cost is � =∑
a∈A �a(la) where

�a(l) ≤ αl if l ≤ ca,

�a(l) ≥ αca + β(l − ca) if l > ca .

Then, if β ≥ 52α, it is NP-hard to optimize the OSPF weight setting with respect to � =∑
a∈A �a(la) within a factor 0.72 + β/38α > 2 from optimality.

Recall from Section 3 that Theorem 4 implies an inapproximability factor of 3.1 for our
cost function �. The proof follows the same pattern as we used for max-utilization,
but is more complex because we are dealing with a sum rather than a maximum. It is
based on the following deep inapproximability result implicit in [24] (Håstad, personal
communication):

Lemma 7 (Håstad). Given a satisfiable instance of Max-SAT where each clause has 3
literals and each variable has the same number of positive and negative occurrences, it is
NP-hard to satisfy a fraction 701/800 of the clauses.

Proof of Theorem 4: We prove this result by reducing a satisfiable instance of Max-SAT
where each clause has 3 literals and each variable has the same number of positive and
negative occurrences to the OSPF weight setting problem, such that we can use Lemma 7.
Our reduction is similar to that for max-utilization, and is illustrated in figure 14, where
arcs are annotated by their capacities. The main differences relative to construction for
max-utilization are that we have subdivided some arcs into paths so as to give them higher
weight in the cost function, and that we have contracted the binary trees rooted in Tx and
Fx .

Formally, let S = (X, C) be a satisfiable instance of Max-SAT with variable set X and
clause set C where each clause has 3 literals and each variable has the same number of
positive and negative occurrences. Let |x | denote this number of occurrences for a clause x
in C .

As for max-utilization, there is a node c associated to each clause c ∈ C , connected to
a node w through a path Pc—instead of a single arc—where Pc has |Pc| = 100 arcs of

INCREASING INTERNET CAPACITY USING LOCAL SEARCH 43

Figure 14. Reduction from Max-SAT to our OSPF cost function.

capacity 2. With each variable x ∈ X , we associate a source sx and a destination tx , and
a demand of 2|x | between them. From sx , there are outgoing arcs to two nodes vx and Tx

and there is an arc from vx to a node Fx . Instead of the arc (vx , tx), there is now a path Qx

from vx to tx . The arcs (sx , Tx), (sx , vx), and (vx , Fx) all have capacity |x |. Path Qx has
|Qx | = 103 arcs, each of capacity |x |.

¿From Tx , there is a path Pc
Tx

to c for each clause c in which x occurs negatively.
Similarly, from Fx there is a path Pc

Fx
to c for each clause c in which x occurs posi-

tively. Path Pc
Fx

has |Pc
Fx

| = 102 arcs and path Pc
Tx

has |Pc
Tx

| = 103 arcs, each of capac-
ity 1. Finally, for each x ∈ X , we have a path Rx from w to tx with 3 arcs, each with
capacity |x |.

As in Theorem 5, we define a canonical flow in this network as a flow corresponding to
an assignment of values to the variables in X . In a canonical flow, we have |x | units of flow
going down Qx and |x | units going to either Tx or Fx depending on whether x is true or
false. If the flow comes to Tx , it spreads evenly so that each Pc

Tx
gets 1 unit of flow going

to c. Similarly, if the flow is sent to Fx , each Pc
Fx

gets 1 unit of flow going to c. All flow
arriving a clause c is then sent to w via Pc, and finally to tx via Rx . With this assignment
of flows, for every clause c, there is 1 unit of flow through Pc for each negative literal in
c. Thus, if the clause c is satisfied, it has at most 2 negative literals and then the load stays
within the capacity on Pc. Otherwise, the load on Pc is one unit above capacity. All flows
outside the clause paths Pc stay within the capacities.

Our hardness result is based on showing that it is hard to get a flow of cost close to that of
the canonical flow corresponding to a satisfying truth assignment. Since, such a satisfying
flow has all loads within capacity, we only make the approximation easier if we reduce the

44 FORTZ AND THORUP

costs of loads above the capacity. Hence, for proving the hardness, we may assume

� ′
a(l) = β if l > ca .

The remainder of the proof is organized as follows: first we show that we can transform in
polynomial time a non-canonical even splitting flow to a canonical flow of lower cost. Next
we show that any canonical flow can be achieved with a suitable weight setting. Finally, we
apply Lemma 7 to show that a canonical flow of low cost is hard to find.

Lemma 8. A non-canonical even splitting flow can be transformed in polynomial time to
a canonical flow of lower cost.

Proof: Suppose we have a non-canonical flow. We show we can always find a flow of
lower cost. It is easy to see that a non-canonical flow satisfies at least one of the following
conditions for some x :

(i) Qx is used, (sx , Tx) and (vx , Fx) are not used;
(ii) Qx is not used and only one of (sx , Tx) and (vx , Fx) is used;

(iii) Qx is not used and both (sx , Tx) and (vx , Fx) are used;
(iv) Qx , (sx , Tx) and (vx , Fx) are all used;
(v) (a) if there is flow through Fx , not all Pc

Fx
paths are used;

(b) if there is flow through Tx , not all Pc
Tx

paths are used.

In case (i), Qx receives 2|x | units of flow, i.e. |x | units above capacity. If we move this
extra flow—by splitting equally in vx —to Fx and then send one unit through each Pc

Fx
, we

decrease the cost on Qx by β|Qx ||x |, while none of (vx , Fx), Pc
Fx

and Rx get above capacity.
As (vx , Fx), Pc

Fx
and Rx were not used before, each unit of flow transferred to these paths

costs at most α per arc. Only Pc could get an increase of |x | units above capacity, so the
total increase in cost due to the new routing is bounded by (α(1+|Pc

Fx
|+ |Rx |)+β|Pc|)|x |.

The net decrease in cost is thus(
β|Qx | − (

β|Pc| + α
(
1 + ∣∣Pc

Fx

∣∣ + |Rx |
)))|x | = (3β − 106α)|x | > 0,

as β ≥ 52α.
Similarly for case (ii), if only (sx , Tx) or only (vx , Fx) is used, moving half the flow to

Qx (which was empty) leads to a decrease in cost of at least(
β
(
1 + min

{∣∣Pc
Fx

∣∣, ∣∣Pc
Tx

∣∣} + |Rx |
) + α|Pc| − α|Qx |

)|x | = (106β − 3α)|x | > 0.

Above we did not count gain from moving flow from clause paths Pc. The point is that these
paths may have had load strictly below capacity, and then we have no lower bound on what
they cost.

In case (iii), Rx has |x | units of flow above capacity. Moving the |x | units of flow going
through Fx to the empty |Qx | leads to a decrease in cost of at least(

β|Rx | + α
(
1 + ∣∣Pc

Fx

∣∣ + |Pc|
) − α|Qx |

)|x | = (3β + 100α)|x | > 0.

INCREASING INTERNET CAPACITY USING LOCAL SEARCH 45

In case (iv), the even splitting implies that we get |x |/2 units of flow to Qx and Fx while
we get |x | units of flow to Tx . We then move the flow from Fx to Qx . By doing so, we reduce
the flow through Rx from 3|x |/2 to |x |. The only place where the flow and hence the cost
increases is in Qx , from |x |/2 to |x |. However, the flow in Qx remains within the capacity,
and the total cost on this path is bounded by α|Qx ||x |, leading to a decrease in cost of

(
β|Rx | + α

(
1 + ∣∣Pc

Fx

∣∣ + |Pc|
) − 2α|Qx |

) |x |
2

= (3β − 3α)
|x |
2

> 0.

Thus we can now assume that Qx and exactly one of Fx and Tx are used, as in (v). To
deal with case (v)(a), it remains to show that if Fx is included, then it is beneficial to include
all paths Pc

Fx
. Suppose q of them were not included, and now we include them. Afterwards,

each path Pc
Fx

has exactly 1 unit of flow corresponding to its capacity. This means that the q
units of flow that we moved to the empty paths were previously above capacity. However,
now q units of flow are sent differently through Pc, each at cost at most β|Pc|, leading to a
cost decrease of at least

(
β
∣∣Pc

Fx

∣∣ − (
α
∣∣Pc

Fx

∣∣ + β|Pc|
))

q = (2β − 102α)q > 0.

In case (v) (b) the cost decrease becomes

(
β
∣∣Pc

Tx

∣∣ − (
α
∣∣Pc

Tx

∣∣ + β|Pc|
))

q = (3β − 103α)q > 0.

Lemma 9. Any canonical flow can be achieved with a suitable OSPF weight setting.

Proof: All paths from sx to tx going through Tx or Fx use 207 arcs, while path sx , vx , Qx

uses 104 arcs. If the canonical flow leads to a true value for x , then flow splits equally in sx

and does not split in vx , which is achieved if the paths going through Tx and path sx , vx , Qx

have the same weight, while the paths going through Fx have a larger weight. Giving a
weight equal to 2 to arcs in Qx and to (vx , Fx) and a weight equal to 1 to all the other arcs
leads to such a weight setting. In the case a false value is assigned to x , similar arguments
lead to a weight equal to 2 for arcs in Qx and for (sx , Tx) and a weight equal to 1 for all the
other arcs.

We are now ready for finishing the proof of Theorem 4. By Lemma 8, we know that only
canonical flows are of interest, and Lemma 9 ensures these flows can be obtained using
OSPF routing.

A canonical flow corresponding to a satisfiable assignment of values to variables in X is
such that all loads remain within capacities. Moreover, for each variable x , |x | units of flow
are sent through Tx or Fx on paths using 207 arcs, and |x | units of flow are sent through Qx

on paths using 104 arcs, leading to a total cost of at most 311α
∑

x∈X |x |.
On the other hand, consider the canonical flow corresponding to an assignment satisfying

at most 701/800 of the clauses. The routing down Qx , the Pc
Tx

or Pc
Fx

, and Rx costs α per unit

46 FORTZ AND THORUP

of flow and per arc, since all the used paths are exactly loaded to their capacity. Moreover,
for each unsatisfied clause c, Pc has a load of 3 while the capacity is 2, thus contributing
(2α + β)|Pc| to the total cost. As the total number of clauses is

∑
x∈X 2|x |/3, the total cost

is at least

∑
x∈X

((|Qx | + ∣∣Pc
Tx

∣∣ + |Rx |
)
α|x |) + (2α + β)|Pc| 99

800

2

3

∑
x∈X

|x |

= (225.5α + 8.25β)
∑
x∈X

|x |,

where we ignore any load that may be below capacity for some Pc.
By Lemma 7, it is NP-hard to get an assignment satisfying more than a fraction 701/800

of the clauses, so we can conclude that it is NP-hard to approximate the optimal OSPF
weight setting within a factor of

225.5α + 8.25β

311α
> 0.72 + β

38α
,

which concludes the proof of Theorem 4.

Acknowledgment

We would like to thank David Johnson and Jennifer Rexford for some very useful comments.
The first author was sponsored by the AT&T Research Prize 1997.

References

1. E.H.L. Aarts and J.K. Lenstra, Local Search in Combinatorial Optimization. Discrete Mathematics and Op-
timization Wiley-Interscience: Chichester, England, 1997.

2. D. Applegate and M. Thorup, “Load optimal mpls routing with n + m labels,” in Proc. 22nd IEEE Conf. on
Computer Communications (INFOCOM), (to appear), 2003.

3. R. Battiti and G. Tecchiolli, “The reactive tabu search,” ORSA Journal on Computing, vol. 6, no. 2, pp. 126–
140, 1994.

4. W. Ben-Ameur and E. Gourdin, “Internet routing and related topology issues,” Technical report, France
Telecom R&D, 2001.

5. W. Ben-Ameur, N. Michel, E. Gourdin, and B. Liau, “Routing strategies for IP networks,” Telektronikk,
vols. 2/3, pp. 145–158, 2001.

6. A. Bley, M. Grötchel, and R. Wessäly, “Design of broadband virtual private networks: Model and heuristics
for the B-WiN,” in Proc. DIMACS Workshop on Robust Communication Networks and Survivability, AMS-
DIMACS Series, vol. 53, 1998, pp. 1–16.

7. L.S. Buriol, M.G.C. Resende, C.C. Ribeiro, and M. Thorup, “A memetic algorithms for OSPF routing,” in
Proceedings of the 6th INFORMS Telecom, 2002, pp. 187–188.

8. K. Calvert, M. Doar, and E.W. Zegura, “Modeling internet topology,” IEEE Communications Magazine,
vol. 35, no. 6, pp. 160–163, 1997.

9. W. Carlton and J. Barnes, “A note on hashing functions and tabu search algorithms,” European Journal of
Operational Research, vol. 95, pp. 237–239, 1996.

INCREASING INTERNET CAPACITY USING LOCAL SEARCH 47

10. J.L. Carter and M.N. Wegman, “Universal classes of hash functions,” Jounal of Computer and System Sciences,
vol. 18, pp. 143–154, 1979.

11. Cisco, “Configuring OSPF,” 1997, Documentation at http://www.cisco.com/[4]univercd/cc/td/doc/product/
software/ios113ed/113ed cr/np1 c/1cospf.htm.

12. S. Cook, “The complexity of theorem proving procedures,” in Proc. 3rd ACM Symp. on Theory of Computing
(STOC), 1971, pp. 151–158.

13. M. Dietzfelbinger, “Universal hashing and k-wise independent random variables via integer arithmetic without
primes,” in Proc. 13th Symp. on Theoretical Aspects of Computer Science (STACS), LNCS vol. 1046, Springer,
1996, pp. 569–580.

14. M. Ericsson, M. Resende, and P. Pardalos, “A genetic algorithm for the weight setting problem in OSPF
routing,” 2001, To appear in J. Combinatorial Optimization in 2002.

15. B. Fortz, J. Rexford, and M. Thorup, “Traffic engineering with traditional IP routing protocols,” IEEE Com-
munications Magazine, vol. 40, no. 10, pp. 118–124, 2002.

16. B. Fortz and M. Thorup, “Increasing internet capacity using local search,” Technical Report IS-MG 2000/21,
Université Libre de Bruxelles, 2000a. http://smg.ulb.ac.be/Preprints/Fortz00 21.html.

17. B. Fortz and M. Thorup, “Internet traffic engineering by optimizing OSPF weights,” in Proc. 19th IEEE Conf.
on Computer Communications (INFOCOM), 2000b, pp. 519–528.

18. B. Fortz and M. Thorup, “Optimizing OSPF/IS-IS weights in a changing world,” IEEE Journal on Selected
Areas in Communications, vol. 20, no. 4, pp. 756–767, 2002.

19. D. Frigioni, M. Ioffreda, U. Nanni, and G. Pasqualone, “Experimental analysis of dynamic algorithms for the
single-source shortest path problem,” ACM Jounal of Experimental Algorithmics, vol. 3, no. 5, 1998.

20. F. Glover, “Future paths for integer programming and links to artificial intelligence,” Computers & Operations
Research, vol. 13, pp. 533–549, 1986.

21. F. Glover, “Tabu search–Part I,” ORSA Journal on Computing, vol. 1, no. 3, pp. 190–206, 1989.
22. F. Glover, “Tabu search–Part II,” ORSA Journal on Computing, vol. 2, no. 1, pp. 4–32, 1990.
23. F. Glover and M. Laguna, Tabu Search, Kluwer Academic Publishers, 1997.
24. J. Håstad, “Some optimal inapproximability results,” Journal of the ACM, vol. 48, no. 4, pp. 798–859, 2001.
25. D.E. Knuth, “The Art of Computer Programming III: Sorting and Searching,” Addison–Wesley: Reading,

MA, 1973.
26. F. Lin and J. Wang, “Minimax open shortest path first routing algorithms in networks supporing the smds

services,” in Proc. IEEE International Conference on Communications (ICC), vol. 2, 1993, pp. 666–670.
27. D. Mitra and K. Ramakrishnan, “A case study of multiservice, multipriority traffic engineering design for data

networks,” in Proc. IEEE GLOBECOM, 1999, pp. 1077–1083.
28. J.T. Moy, OSPF: Anatomy of an Internet Routing Protocal, Addison-Wesley, 1999.
29. G. Ramalingam and T. Reps, “An incremental algorithm for a generalization of the shortest-path problem,”

Jounal of Algorithms, vol. 21, no. 2, pp. 267–305, 1996.
30. M. Rodrigues and K. Ramakrishnan, “Optimal routing in data networks,” Presentation at International

Telecommunications Symposium (ITS), Rio de Genero, Brazil, 1994.
31. E.C. Rosen, A. Viswanathan, and R. Callon, “Multiprotocol label switching architecture,” Network Work-

ing Group, Internet Draft (work in progress), 1999. http://search.ietf.org/internet-drafts/draft-ietf-mpls-arch-
05.txt.

32. M. Roughan and M. Thorup, “Avoiding ties in shortest path first routing,” Technical report, AT&T Labs-
Research, 2002.

33. Sprint, “Sprint IP backbone network and MPLS,” 2002, White Paper http://www.sprintbiz.com/resource
library/resources/SprintCiscoMPLS.pdf.

34. M. Thorup, “Even strongly universal hashing is pretty fast,” in Proc. 11th ACM-SIAM Symp. on Discrete
Algorithms (SODA), 2000, pp. 496–497.

35. B.M. Waxman, “Routing of multipoint connections,” IEEE Jour. Selected Areas in Communications (Special
Issue on Broadband Packet Communications), vol. 6, no. 9, pp. 1617–1622, 1988.

36. D.L. Woodruff and E. Zemel, “Hashing vectors for tabu search,” Annals of Operations Research, vol. 41,
pp. 123–137, 1993.

37. X. Xiao, A. Hannan, B. Bailey, and L. Ni, “Traffic engineering with MPLS in the Internet,” IEEE Network
Magazine, vol. 14, no. 2, pp. 28–33, 2000.

48 FORTZ AND THORUP

38. E.W. Zegura, “GT-ITM: Georgia tech internetwork topology models (software),” 1996. http://www.cc.gatech.
edu/fac/Ellen.Zegura/gt-itm/gt-itm.tar.gz.

39. E.W. Zegura, K.L. Calvert, and S. Bhattacharjee, “How to model an internetwork,” in Proc. 15th IEEE Conf.
on Computer Communications (INFOCOM), 1996, pp. 594–602.

40. A.L. Zobrist and F.R. Carlson, Jr., “Detection of combined occurrences,” Comm. ACM, vol. 20, no. 1, pp. 31–
35, 1977.

