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Abstract

Protein–protein interactions (PPIs) offer great opportunities to expand the
druggable proteome and therapeutically tackle various diseases, but
remain challenging targets for drug discovery. Here, we provide a com-
prehensive pipeline that combines experimental and computational tools
to identify and validate PPI targets and perform early-stage drug dis-
covery. We have developed a machine learning approach that prioritizes
interactions by analyzing quantitative data from binary PPI assays or
AlphaFold-Multimer predictions. Using the quantitative assay LuTHy
together with our machine learning algorithm, we identified high-
confidence interactions among SARS-CoV-2 proteins for which we pre-
dicted three-dimensional structures using AlphaFold-Multimer. We
employed VirtualFlow to target the contact interface of the NSP10-NSP16
SARS-CoV-2 methyltransferase complex by ultra-large virtual drug
screening. Thereby, we identified a compound that binds to NSP10 and
inhibits its interaction with NSP16, while also disrupting the methyl-
transferase activity of the complex, and SARS-CoV-2 replication. Overall,
this pipeline will help to prioritize PPI targets to accelerate the discovery
of early-stage drug candidates targeting protein complexes and pathways.
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Introduction

Enzymes, ion channels, and receptors are among the most favored
proteins for target-based drug discovery (Santos et al, 2017).
However, the number of newly approved drugs per billion dollars
invested per year has decreased in the last 60 years (Scannell et al,
2012; Ringel et al, 2020), and the currently approved small
molecules target less than 700 proteins altogether or ~3% of the
human protein-coding genome (Harding et al, 2018). Proteins are
part of signaling pathways and multisubunit complexes (Vidal et al,
2011), thus their macromolecular interactions such as
protein–DNA and protein–protein interactions (PPIs) are key
targets to expand the druggable proteome (Makley and Gestwicki,
2013; Lu et al, 2020). Consequently, characterizing molecular
complex interactions and defining contacts between constitutive
protein subunits is essential to identify new classes of targets for
drug discovery and development.

Affinity purification coupled to mass spectrometry (AP-MS)
techniques are highly efficient in identifying the composition of
protein complexes at proteome scale (Huttlin et al, 2021; Bludau
and Aebersold, 2020), while binary PPI assays such as yeast two-
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hybrid (Y2H) provide high-quality information about directly
interacting, or “contacting”, protein subunits (Luck et al, 2020).
Structural biology technologies, and in particular cryo-electron
microscopy (cryo-EM), capture near-atomic resolution pictures of
complexes purified from native sources (Costa et al, 2017; Callaway,
2020). Also, they provide information on the precise assembly of
subunits and the organization of their interaction interfaces.
However, out of the ~7000 protein complexes that have been
found in the human proteome (Drew et al, 2021), only ~4% of them
currently have an experimentally resolved structure in the
literature, which calls for complementary approaches to rapidly
model subunit–subunit interactions.

Computational predictions are on the rise to help address this
challenge. On the one hand, predictions of 3D protein structures
based on artificial intelligence (AI) strategies such as those available
in AlphaFold and RoseTTAFold (Jumper et al, 2021; Baek et al,
2021) can be exploited to model protein assemblies and interaction
interfaces with much improved accuracies than previous computa-
tional tools (Evans et al, 2022; Gao et al, 2022). On the other hand,
platforms like VirtualFlow can be used to screen billions of
molecules in silico against a predicted target in a time- and cost-
effective manner (Gorgulla et al, 2020).

Here, we combine experimental binary PPI mapping with in
silico structure prediction and virtual screening for PPI-based
drug discovery. We first used reference sets of PPIs and
quantitative interaction data from seven binary PPI assays to
establish an unbiased machine learning PPI scoring approach. We
then applied this strategy to map and prioritize interactions
between SARS-CoV-2 proteins and used AlphaFold to determine
the corresponding 3D protein complex structures. Finally, we
targeted the contact interface of the NSP10-NSP16 complex in an
ultra-large virtual drug screening with VirtualFlow and identified
a small-molecule PPI inhibitor that reduces the NSP16-linked
methyltransferase activity and SARS-CoV-2 replication. Our
findings show that combining high-quality quantitative binary
interaction data, AI-based scoring systems, and computational
modeling can help prioritize PPI targets for the development of
novel therapeutics.

Results

Scoring binary interaction assays using fixed cutoffs
results in variable recovery rates

We previously demonstrated that combining multiple complemen-
tary interaction assays and/or versions thereof significantly
increases PPI recovery while maintaining high specificity (Venka-
tesan et al, 2009; Choi et al, 2019; Trepte et al, 2018). LuTHy, a
bioluminescence-based technology (Trepte et al, 2018) combines
two readouts in one. First, a bioluminescence resonance energy
transfer (BRET)-based readout is used to quantify interactions in
living cells (LuTHy-BRET; Fig. EV1A); then, cells are lysed and the
luminescence is used to quantify interactions after protein co-
precipitation (LuTHy-LuC; Fig. EV1A). Since LuTHy plasmids
allow expression of each protein as N- or C-terminal fusions, and as
donor (NanoLuc tag or NL) or acceptor (mCitrine tag or mCit)
proteins, eight tagging configurations can be assessed for every
protein pair of interest (Fig. EV1B). Thus, when all eight

configurations are tested, LuTHy-BRET and LuTHy-LuC assays
generate a total of 16 data points for every tested X–Y pair.

To determine the accuracy of the LuTHy assay and compare it
to other binary interaction assays (Choi et al, 2019; Yao et al, 2020),
we tested an established positive reference set (PRS), hsPRS-v2,
which contains 60 well-characterized human PPIs (Venkatesan
et al, 2009; Choi et al, 2019). To control for specificity, a random
reference set (RRS), hsRRS-v2, made of 78 pairs of human proteins
not known to interact (Choi et al, 2019), was also tested (Source
Data Fig. 1). To coherently score quantitative PPI data among
different readouts and assays, we initially tried two different
approaches: (i) we applied a receiver operating characteristic (ROC)
analysis to determine cutoffs at maximal specificity (i.e., under
conditions where none of the random protein pairs from hsRRS-v2
are scored positive in any of the tested configurations (Fig. EV1C),
and (ii) we determined cutoffs based on the distribution of the data
at the mean (Fig. EV1D) or median (Fig. EV1E) plus one standard
deviation. For all assays, we observed highly variable recovery rates
depending on the scoring approach used. For example, for the
LuTHy-BRET readout, we recovered 20.0% of hsPRS-v2 interac-
tions and 0.0% of hsRRS-v2 protein pairs at maximal specificity
(Fig. EV1C), while we detected 36.7% and 1.3% at the mean plus
one standard deviation (Fig. EV1D) and 45.0% and 1.0% at the
median plus one standard deviation (Fig. EV1E), respectively. In
contrast, for the LuTHy-LuC readout and MAPPIT assay, we
obtained the highest recovery rates in the hsPRS-v2 set when
applying the maximal specificity cutoff (Fig. EV1C), but lower
recovery rates for the distribution-based scoring approaches (Fig.
EV1D,E). These findings clearly demonstrate that different scoring
approaches can result in highly variable recovery rates for different
assays, highlighting the need for more robust approaches to
coherently score quantitative PPI data and to obtain comparable
results from various binary interaction assays across different labs.

Establishing a machine learning algorithm to classify
binary interactions

To provide a universal and unbiased approach to score and classify
quantitative PPI data from various assays, we investigated the use
of machine learning-based classifier algorithms. Therefore, we first
evaluated a random forest (RF) and a support vector machine
(SVM) learning algorithm, which are commonly used for binary
classification tasks (Chang and Lin, 2011; Breiman, 2001). We
tested both algorithms on the LuTHy assay data obtained from
screening the hsPRS-v2 and hsRRS-v2 protein pairs. As training
features, we selected for the LuTHy-BRET readout the cBRET
ratios and acceptor fluorescence intensities (mCit), and for the
LuTHy-LuC readout the cLuC ratios. Instead of training a single
machine learning model on the complete reference sets, we trained
50 independent classifier models by assembling independent
training sets through randomly sampling a constant amount of
protein pairs, so that with a probability of 99.99% each protein pair
from the hsPRS-v2 and hsRRS-v2 reference sets was used at least
once for training. This strategy was used to prevent model
overfitting, as not only a single trained model is used to predict
the probability of an interaction to be true positive, but an
ensemble of multiple model instances is trained and thus an
average classification probability can be determined. Each of the
resulting models was then applied to predict the classification
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probabilities of the test protein pairs that were not used for training
of the respective model. To evaluate training efficiency and the
performance of the classifiers on unseen data, we plotted learning
curves that show the accuracy, hinge loss and binary cross-entropy-
loss when training with only 10% or up to 100% of the totally
available data per ensemble and applying each model to the
respective test data (Appendix Fig. S1A,B). For the RF algorithm,
we observed a much better performance of the models on the
training data compared to the test data (Appendix Fig. S1A,B),
indicating strong overfitting and suggesting that the models do not
generalize well and would perform poorly on unseen, new data.
Even though we observed reasonable recovery rates for LuTHy-
BRET and LuTHy-LuC protein pairs with >50%, >75%, and >95%
interaction probability (Appendix Fig. S1C,D), we excluded the RF
algorithm from further analysis due to its weak training
performance. For the SVM algorithm, in contrast, we observed
good training performance (Appendix Fig. S1A,B), but very low
recovery rates (Appendix Fig. S1C,D). We hypothesized that the
weak performance of the SVM classifier could be attributed to the
fact that many protein pairs from the hsPRS-v2 do not score
positive in all possible assays or tagging configurations
(Fig. EV1A,B), and are thus technically mislabeled for machine
learning training purposes. Notably, this is a common phenomenon
of binary interaction assays, in which distant- or precipitation-
based readouts might only be successful in certain configurations
between distinct protein pairs of interest. For datasets that contain
such a high degree of mislabeling, it has been previously shown that
a multi-adaptive sampling approach can be used to iteratively
update the labeling class of the training data and thereby improve
the performance of SVM-based classifiers (Yang et al, 2017). Thus,
we evaluated if such a multi-adaptive SVM (maSVM) learning
algorithm could indeed improve the classification of quantitative
PPI data (Fig. 1A). We first applied it to the LuTHy assay and used
as before for the LuTHy-BRET the cBRET ratios and acceptor
fluorescence (mCit) and for the LuTHy-LuC the cLuC ratio as
training features (see methods for details) and assembled multiple
independent training sets by random sampling. By applying multi-
adaptive sampling, the label of each reference interaction in the
training set was iteratively reclassified during training. Importantly,
we optimized selected hyperparameters of the maSVM, namely the
ensemble size ‘e’ (25, 50, or 100), the number of iterative
reclassifications ‘i’ (1, 5, or 10) and the regularization parameter
‘C’ (0.01, 0.1, 1, or 10; Datasets EV1 and EV2). The training
performance of the optimized hyperparameters was evaluated as
before using learning curves and for ‘e = 50’ (Dataset EV3), ‘i = 5’
and ‘C = 1’ we obtained good training behavior for both assays and
no signs of overfitting, i.e., continuous and steady reduction of the
loss functions as well as no large gaps between the training and
validation accuracies (Appendix Fig, S1E). Each of the resulting
maSVM models was then applied to predict the classification
probabilities of the protein pairs that were not used for training
(Fig. 1B,C). Finally, the mean probabilities from all model
predictions were calculated (Fig. 1D,E). We then performed ROC
analyses to compare the sensitivity and specificity when scoring
interactions using fixed cBRET or cLuC ratio cutoffs or when using
the maSVM model predicted probabilities. Importantly, the
maSVM-based scoring did not result in any loss of sensitivity or
specificity for both LuTHy readouts, respectively (Fig. 1F,G). We
also calculated the recovery rates for LuTHy-BRET and LuTHy-

LuC hsPRS-v2 and hsRRS-v2 protein pairs with >50%, >75%, and
>95% interaction probabilities allowing us to distinguish for each
assay, protein pairs to be “unlikely” (>50%), “likely” (>75%), or
“very likely” (>95%) detected as true-positive interactions. Conse-
quently, we observed that specificity increases with an increasing
probability threshold while sensitivity decreases (Fig. 1H,I; Dataset
EV4).

Next, we evaluated whether the maSVM algorithm would also
be broadly applicable to score quantitative interaction data from
various assays. Therefore, we applied it to published benchmarking
data (Choi et al, 2019) from six different quantitative binary PPI
assays: GPCA (Cassonnet et al, 2011), KISS (Lievens et al, 2014),
MAPPIT (Eyckerman et al, 2001), NanoBiT (Dixon et al, 2015),
N2H (Choi et al, 2019) and SIMPL (Yao et al, 2020) (Appendix Fig.
S2). For each assay, we optimized the selected hyperparameters
(‘e’, ‘i’, and ‘C’, Dataset EV1, Dataset EV2, Dataset EV3) to obtain
good training behavior and performance of the classifiers
(Appendix Fig. S1E), and predicted the interaction probabilities
for all screened tagging configurations of hsPRS-v2 interactions and
hsRRS-v2 protein pairs (Fig. 1J). Analyzing each screened
configuration individually among assays, generally showed that
recovered PRS PPIs showed high interaction probabilities not
necessarily in all, but often in multiple configurations (e.g.,
BAD+ BCL2L1, Appendix Fig. S3). However, certain hsPRS-v2
interactions only show high interaction probabilities for distinct
configurations (e.g., SKP1+ BTRC, Appendix Fig. S3), which is
most likely attributed to an increased distance between tags in
distance-dependent readouts such as LuTHy-BRET, N2H, GPCA,
or NanoBiT, or to tagging configuration-specific precipitation and
expression efficiencies for co-precipitation-based assays such as
LuTHy-LuC or SIMPL. Interestingly, the few interactions detected
within the RRS showed only high interaction probabilities in one or
two configurations. For example, the hsRRS-v2 interaction
SLC6A1+ TM4SF4 was detected multiple times by different assays,
but only in the N1-C2 and C1-C2 configurations, indicating that
SLC6A1 might physiologically indeed bind to the C-terminus of
TM4SF4 or that C-terminal tagging of TM4SF4 potentially
increases its biophysical interaction propensity with SLC6A1 in
overexpression systems (Appendix Fig. S4).

Next, we analyzed the recovery rates for each assay by classifying
PPIs with an interaction probability >50%, >75% or >95% as
positive (Fig. 1K; Dataset EV4). Comparing the maSVM scoring-
based recovery rates of the most stringent probability group (>95%)
to fixed cutoff-based approaches, we observed for almost all assays
an improved (SIMPL, N2H, LuTHy, KISS, GPCA) or similar
(NanoBiT) recovery rate of positive reference interactions without
any (SIMPL, NanoBiT, MAPPIT, LuTHy, KISS) or only a minor
(N2H, GPCA) increase in the recovery of random protein pairs
(Fig. 1K). In addition, considering interactions with a probability
>75% further increases recovery of positive reference interactions,
however, with a partially substantial decrease in specificity (e.g., for
LuTHy 55.0 vs. 66.7% hsPRS-v2 and 1.3 vs. 9.0% hsRRS-v2
recovery, respectively). Regarding the advantage of the maSVM-
based scoring system over previous approaches, the MAPPIT assay
represents an exception. Here, the maximal specificity cutoff leads
to the highest recovery of hsPRS-v2 interactions (35% hsPRS-v2),
indicating that considering the variance of the dataset in scoring
interactions is not favorable in this case. However, considering
interactions with a probability score >75% or even >50% for
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MAPPIT as positive, improves recovery (31.7 or 43.3% hsPRS-v2,
respectively) with no or only a minor loss in specificity (0.0 or 5.1%
hsRRS-v2, respectively). Overall, this analysis suggests that the
maSVM learning algorithm is universally applicable to reproduci-
bly and robustly classify quantitative PPI results with improved
sensitivity and specificity to traditional approaches, while adding
additional information on interaction probabilities and improving
comparability between assays.

Benchmarking AlphaFold against established reference
sets of protein pairs

With the emergence of highly accurate protein structure prediction
algorithms, we asked how an AlphaFold-Multimer (AFM)-based
PPI mapping together with the maSVM-based scoring approach
would perform compared to binary PPI assays, when benchmarked
against the hsPRS-v2 and hsRRS-v2 protein pairs (Fig. 2A). To this
end, we used Google Colaboratory hosted ColabFold that provides
accelerated protein complex prediction with the limitation that
only protein complexes with less than 1400 amino acids could be
predicted (Mirdita et al, 2022). This resulted in the downsizing of
the reference sets to 51 positive (hsPRS-AF) and 67 random
(hsRRS-AF) reference pairs for which we predicted five AFM
complex models for each interaction (Source Data Fig. 2; Figs. EV2
and EV3).

To extract relevant features for training from the predicted
complex structures, we used PDBePISA (Krissinel and Henrick,
2007) to obtain the interaction interface areas (iA) and the
solvation-free energies (ΔG) for each AFM model that contained a
measurable interface (521 out of 590, see methods for detail,
Fig. 2B). Since it had been shown that the inter-chain predicted
alignment error (inter-PAE) can be used to rank and assess the
confidence of a predicted PPI (Mirdita et al, 2022), we also
extracted the inter-PAEs from the AFM structures and filtered for
amino acids with a predicted local distance difference test
(pLDDT) >50 to exclude disordered regions (Tunyasuvunakool
et al, 2021). Because PPIs are often driven by hot spot residues that
are structurally conserved (Halperin et al, 2004), we used k-means
clustering to group the respective interface regions into eight inter-
PAE clusters. Thereby we identified the residues that are closest to
each other and are thus most likely to mediate an interaction

(Fig. 2C,D). If a minimum of 10 amino acids at the inter-chain
region had a pLDDT >50 and k-means clustering succeeded, we
obtained the average PAE value from the inter-subunit amino acid
cluster with the lowest average inter-PAEs from all eight clusters.
We assumed that this cluster would best represent the dominant
region forming the interaction interface. In case k-means clustering
failed, we used the average inter-PAE of all amino acids with a
pLLDT >50. However, if fewer than 10 amino acids at the inter-
chain region had a pLDDT score >50, the PAE values were
discarded and not used for scoring the respective complex structure
(Fig. 2E).

To evaluate which of the obtained measures (i.e., PAE, iA, ΔG)
would be the best training features to distinguish between positive
and random reference pairs, we performed ROC analyses for each
of the five AFM complex structures (Fig. EV2A). We found that all
three measures are suitable to identify true-positive interactions,
but that the average PAE of the inter-subunit clusters and the iA
better distinguish between true- and false-positive interactions
compared to the ΔG values (Fig. EV2A). Thus, we trained the
maSVM algorithm on the PAE and iA values of the AFM complex
structures obtained for the reference set interactions (Fig. 2F,G),
performed hyperparameter optimization (Datasets EV1–EV3) and
evaluated training performance as before (Appendix Fig. S1E).
Using this AFM PPI mapping approach, we were able to identify
62.7% of the hsPRS-AF interactions and 1.5% of the hsRRS-AF
pairs as true positives with an interaction probability >95%
(Fig. 2H; Dataset EV4). Since AlphaFold’s neural networks were
trained on PDB structures, it is expected that it shows especially
high recovery rates with 74.2% for hsPRS-v2 interactions with
experimentally solved structures, including homologous structures
(Dataset EV5; Fig. EV2B) (Meyer et al, 2018). Interactions without
an experimentally solved structure were recovered with 45.0% at
similar sensitivities to the results from the LuTHy assays on non-
PDB structures (46.4%), but at noticeably higher sensitivity to the
average recovery of not structurally resolved PPIs by the other
analyzed binary interaction assays (16.8%, Fig. EV2B). However, it
has to be noted that the LuTHy assay was the only assay that was
tested in all eight tagging configurations, which can significantly
improve recovery.

In summary, our analysis confirms that AFM is a powerful
computational tool capable of distinguishing between well-

Figure 1. Developing a maSVM algorithm to classify protein pairs from hsPRS-v2 and hsRRS-v2 using the LuTHy assay.

(A) Schematic overview of the maSVM learning algorithm. Step 1: assembly of reference set; Step 2: feature selection and data normalization for training and test set; Step
3: assembly of ‘e’ training sets (ensembles) by unweighted sampling ‘j’ protein pairs from the reference set to train ‘e’ maSVM models, where the training classifier labels
are reclassified in ‘i’ iterations; Step 4: prediction of test set protein pairs excluding training set pairs using the respective maSVM model. Scatter plot showing (B) log-
transformed and normalized in-cell mCitrine expression (x axis) against normalized cBRET ratios (y axis limited to ‘>-10’) or (C) the number of proteins pairs (x axis)
against log-transformed and normalized cLuC ratios (y axis) for all hsPRS-v2 (blue) and hsRRS-v2 (magenta) protein pairs from all eight tagging configurations. Average
classifier probabilities from the 50 maSVM models are displayed as the size of the data points and as a colored grid in the background. Scatter plot showing (D)
normalized cBRET ratios (x axis) or (E) normalized cLuC ratios (x axis) against classifier probability (y axis) for all hsPRS-v2 (blue) and hsRRS-v2 (magenta) protein pairs
from all eight tagging configurations. Receiver characteristic analysis comparing sensitivity and specificity between (F) cBRET ratios or (G) cLuC ratios and classifier
probabilities. The calculated areas under the curve are displayed. Bar plots showing the fraction of hsPRS-v2 and hsRRS-v2 protein pairs that scored above classifier
probabilities of 50%, 75%, or 95% with (H) LuTHy-BRET or (I) LuTHy-LuC. Only the highest classifier probability per tested tagging configuration is considered. (J)
Heatmaps showing the highest classifier probabilities for the hsPRS-v2 (top) and hsRRS-v2 (bottom) protein pairs per tested tagging configuration. Due to different
reference set interactions, heatmaps for SIMPL data from Yao et al (Yao et al, 2020) are shown in Appendix Fig. S3 and Appendix Fig. S4. (K) Bar plots showing the
fraction of hsPRS-v2 and hsRRS-v2 protein pairs that scored above classifier probabilities of 50%, 75%, or 95% or above-fixed cutoffs at maximum specificity, mean or
median plus one standard deviation for seven binary PPI assays. Only the highest classifier probability per tested tagging configuration is considered. All LuTHy
experiments from this study were repeated twice with n= 2, biological replicates, each containing n= 3 technical replicates; all other from Choi et al (Choi et al, 2019) and
Yao et al (Yao et al, 2020). Bars and error bars in this figure represent mean values and standard error of the proportion, respectively. Source data are available online for
this figure.
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established positive PPIs and random protein pairs with similar
accuracy to commonly used binary interaction assays. This also
suggests that complex structures of experimentally determined
interactions have a high chance to be successfully predicted
by AFM.

Classifying binary interactions within
multiprotein complexes

To further generalize the overall applicability of the maSVM
algorithm, we aimed to test its performance on different reference
sets of protein pairs from multiprotein complexes. Therefore, we
investigated proteins that are part of well-characterized complexes
and screened their pairwise interactions using two binary interac-
tion assays LuTHy and mN2H. To this end, we selected three
human complexes based on the following criteria: (1) they consist
of at least four subunits; (2) at least one 3D structure is available in
PDB (Berman et al, 2000); and (3) at least 80% of cloned open-
reading frames (ORFs) encoding the reported subunits are available
in the human ORFeome 8.1 collection (Yang et al, 2011). This
resulted in a list of 24 distinct protein complexes (Dataset EV6),
among which three structurally diverse candidates with well-
characterized biological functions were selected: (1) the LAMTOR
complex, also termed “Ragulator” complex (Araujo et al, 2017),
which regulates MAP kinases and mTOR activity and consists of
seven subunits (LAMTOR1, LAMTOR2, LAMTOR3, LAMTOR4,
LAMTOR5, RRAGA and RRAGC); (2) the BRISC complex, a large
deubiquitinating machinery (Rabl et al, 2019) consisting of five
proteins (ABRAXAS2, BABAM1, BABAM2, BRCC3 and SHMT2);
and (3) the MIS12 complex that connects the kinetochore to
microtubules (Petrovic et al, 2016), and is made of five subunits
(CENPC1, DSN1, MIS12, NSL1, and PMF1) (Fig. 3A).

To map interactions between the subunits of the LAMTOR,
BRISC and MIS12 complexes, out of 17 ORFs encoding the selected
target proteins, 16 were sequence-verified and cloned into both
LuTHy and N2H expression plasmids, whereas the ORF for
LAMTOR5 was not available in the human ORFeome 8.1
collection. The resulting search space of 136 unique pairwise

combinations, corresponding to a total of 16 subunits for the three
complexes, was systematically assessed with LuTHy and mN2H
(Fig. 3B; Source Data Fig. 3). Since the different complexes are
involved in distinct biological functions, we rationalized that true
binary PPIs are mainly to be found between the respective subunits
of a given complex (i.e., intra-complex pairs), but not between
subunits belonging to different complexes (i.e., inter-complex
pairs). Therefore, we considered all inter-complex pairs as random
pairs, similar to protein pairs from a RRS (e.g., hsRRS-v2). In the
data analysis, we observed that each individual LuTHy and mN2H
fusion construct showed a broad distribution of interaction scores
for intra- and inter-complex pairs, with a high variability between
individual constructs (Appendix Fig. S5A–F). To compensate for
different background signals between constructs in the downstream
analysis, we therefore median-normalized outputs from all
constructs and performed a robust scaler normalization (Pedregosa
et al, 2011) for constructs with a higher interquartile range (IQR)
than the IQR of the entire dataset (see “Methods” for details;
Appendix Fig. S5A–F).

To classify interactions, we used the maSVM models trained on
the hsPRS-v2 and hsRRS-v2 (Fig. 3C–E) to predict the interaction
probabilities of the intra-complex interactions and inter-complex
protein pairs (Fig. 3F–H). As previously, we calculated recovery
rates for LuTHy-BRET, LuTHy-LuC, and mN2H for protein pairs
with >50%, >75%, and >95% interaction probabilities. At >95%
interaction probability, we recovered between 19 and 38% of the
interactions within the BRISC, LAMTOR and MIS12 complexes by
the three different assay versions, and between 0 and 2.4% of the
inter-complex protein pairs (Fig. 3I–L). When also considering
PPIs with an interaction probability >75% as positive, we recovered
up to 61.9% of the multiprotein complex interactions; however,
with a slightly increased detection of random inter-complex pairs
for LuTHy-BRET (0.0 vs. 3.5%) and LuTHy-LuC (1.2 vs. 4.8%), and
a more pronounced increase for the mN2H assay (2.4 vs. 12.9%).
However, overall, the fraction of detected intra-complex interac-
tions in the multiprotein complex set is similar to the fraction of
recovered hsPRS-v2 interactions for the LuTHy and mN2H assays
while maintaining a similar specificity.

Figure 2. Benchmarking AFM using well-established positive and random reference sets.

(A) Schematic overview of AlphaFold-multimer (AFM) benchmarking. First, the hsPRS-v2 and hsRRS-v2 were filtered for protein pairs with less than 1400 amino acids
combined, resulting in 51 positive (hsPRS-AF) and 67 random reference set pairs (hsRRS-AF). For these 118 protein pairs, five structural models were predicted each using
ColabFold through the AFM algorithm (590 total structures). Following, PAE and pLDDT values were extracted from the AFM-predicted structures, and inter-subunit
amino acids were filtered for pLDDT >50. If >10 inter-subunit amino acids remained, PAE values were k-means clustered. If clustering failed, the mean PAE of the
unclustered amino acids was calculated, else the average PAE for each of the eight clusters were calculated and the cluster with the lowest average PAE was selected as
the amino acid region with the minimal distance between the two proteins. In addition, PDBePISA was used to determine the solvation-free energy (ΔG) and the area (iA)
of the interface region for 521 of the 590 structures. For the remaining 69 structures PDBePISA could not identify an interface. Finally, a multi-adaptive maSVM learning
algorithm was trained on the PAE and iA features of the hsPRS-AF and hsRRS-AF as outlined in Fig. 1A. (B) Heatmap of the PAEs, ΔGs, iAs, and predicted probabilities for
protein pairs of the hsPRS-AF and hsRRS-AF. Shown are the minimum PAE values after k-means clustering. If <10 amino acids had a pLDDT >50, the PAE values were not
used and are shown in black. Protein pairs where no interaction interface was detected by PDBePISA are shown in gray. (C) Representative example for the k-means
clustering strategy of AFM reported PAE values. Heatmap shows the PAEs for the protein pair BAD+ BCL2L1 (hsPRS-AF) rank 1 model. The intra-molecular PAEs are
shown with 50% opacity. The predicted local distance difference test (pLDDT) for all five predicted models (rank 1–5) are shown as line graphs on top and on the right of
the heatmap. Inter-molecular PAE regions with pLDDT >50 that were used for k-means clustering are highlighted with arrows. (D) Clustering results of regions highlighted
in (C). Cluster numbers are indicated. (E) Average PAE values for the eight clusters from (C,D). The arrow indicates the cluster with the lowest average PAE value. (F)
Scatter plot showing inter-PAE (x axis) against interface area (y axis) for all models of the hsPRS-AF (blue) and hsRRS-AF (magenta) protein pairs. Average classifier
probability from the 100 maSVM models are displayed as the size of the data points and as a colored grid in the background. (G) Scatter plots showing PAE (x axis, left
panel) or interface area (x axis, right panel) against classifier probability (y axis) for all hsPRS-AF (blue) and hsRRS-AF (magenta) protein pairs. (H) Bar plots showing the
fraction of hsPRS-AF and hsRRS-AF protein pairs that scored above classifier probabilities of 50%, 75% and 95%. Bars and error bars represent mean values and standard
error of the proportion, respectively, with n= 5 structural models predicted. Note that this analysis includes interactions in the hsPRS-AF that have experimentally solved
structures. A comparison between interactions with and without structural information can be found in Fig. EV2B. Source data are available online for this figure.
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Importantly, these results demonstrate that the maSVM PPI
classifiers for LuTHy and mN2H, which were trained and
benchmarked on the hsPRS-v2 and hsRRS-v2 reference sets, can
also be applied to score and identify interactions within a
completely independent dataset consisting of large multiprotein
assemblies. This indicates that the maSVM-based models generated
and provided here, including the ones for other binary PPI assays,
are transferable and can be used to score and classify PPIs in
diverse datasets. It is important to note, however, that to obtain
reliable results, it is key to apply outlier-insensitive normalization,
such as robust scaler normalization, prior to using the classifiers on
new PPI data.

Identifying high-confidence PPI targets for SARS-CoV-2

We next applied the maSVM-based scoring approach to identify
and prioritize PPIs for drug discovery. Therefore, we experimen-
tally assessed all possible pairwise combinations between SARS-
CoV-2 proteins using the LuTHy assay (Fig. 4A). As described
above, before classification, we median-normalized interaction
scores for all constructs of the SARS-CoV-2 test set and performed
a robust scaler normalization for constructs with an IQR higher
than the IQR of the entire dataset (see “Methods”; Appendix Fig.
S6A–D). We then used the LuTHy maSVM models trained on the
hsPRS-v2 and hsRRS-v2 to predict the classification probabilities of
the 350 SARS-CoV-2 protein pairs in the test set (2548
configurations, Fig. 4B-G). In total, 29, 68 and 168 protein pairs
were classified by the algorithm to interact with >95%, >75% or
>50% probability in the LuTHy-BRET assay (Fig. 4B–D; Dataset
EV7), and 9, 34, and 76 in the LuTHy-LuC assay, respectively
(Fig. 4E–G; Dataset EV7). Among the high-confidence PPIs (>95%
interaction probability), we found the structurally resolved inter-
actions between NSP8 and NSP12 (PDB: 6YYT, 7EIZ), NSP10 and
NSP16 (PDB: 6WVN, 6W4H) (Rosas-Lemus et al, 2020), NSP10
and NSP14 (PDB: 7DIY, 7EIZ) (Lin et al, 2021; Yan et al, 2021),
NSP3 and the nucleocapsid protein N (PDB: 7PKU) (Bessa et al,
2022; Jiang et al, 2021) and the homodimerization of NSP8 (PDB:
7EIZ) (Yan et al, 2021), ORF3a (PDB: 6XDC) (Kern et al, 2021), N
(PDB: 6VYO), the membrane glycoprotein M (Savitt et al, 2021;
Yuan et al, 2022), and the well-established homodimerization of the
spike protein (S) (PDB: 6VYB, for example) (Walls et al, 2020). We
also detected the NSP7 homodimerization, which was previously

described by two independent studies (Yin et al, 2020; Wilamowski
et al, 2021). In addition, we confirmed the known interactions of
NSP3 and N (Jiang et al, 2021), the homodimerization of the
envelope protein E (Mandala et al, 2020; Li et al, 2021), and its
interaction with the membrane glycoprotein M (Savitt et al, 2021;
Yuan et al, 2022). Overall, 91 previously reported interactions
obtained from the IMEx database (Orchard et al, 2014), of which 21
were recently found to interact by Y2H (Kim et al, 2022), were not
among the high-confidence (>95% probability) interactions (Data-
set EV8). High-confidence interactions detected with LuTHy that
were not previously reported (Orchard et al, 2014; Kim et al, 2022;
Perfetto et al, 2020; Toro et al, 2021) include the heterodimerization
of the envelope protein E with NSP6 and ORF7a, as well as between
M and ORF3a, NSP12 and NSP16, NSP15 and NSP16, NSP2 and
NSP3, NSP4 and NSP14, NSP4 and ORF7b, NSP6 and ORF7a,
ORF3b and ORF8, ORF3a and ORF7a, ORF3a and NSP9, ORF3b
and NSP14, ORF6 and NSP12, and the NSP4 homodimer
(Fig. EV3A; Dataset EV9). For validation, we selected 8 of the
newly identified SARS-CoV-2 interacting pairs and performed
mN2H assays to confirm their interactions. Similar to the LuTHy
SARS-CoV-2 data, the obtained mN2H interaction data was
classified using the maSVM models trained on the hsPRS-v2 and
hsRRS-v2 (Fig. EV3B,C). Thereby, we were able to validate 5 out of
the 8 interactions with >95% probability, strengthening the
confidence in our results (Fig. EV3D,E).

Predicting the structure of SARS-CoV-2 PPI complexes
using AlphaFold-Multimer

We next aimed to predict the complex structures of the LuTHy-
identified interactions and to systematically validate their interac-
tion probabilities using our AFM-based PPI classifier. We first used
AFM to obtain structures for 23 out of the 34 LuTHy-positive,
high-confidence interactions (Dataset EV9) and then employed
PDBePISA to determine the iA and ΔG values for each of the
complexes (Fig. EV3F). Similar to before, we used k-means
clustering to identify the region with the lowest average inter-
subunit PAE, which we suggest is most likely participating in the
interaction (Fig. EV3F). We then used the AFM classifier models
that were trained on the hsPRS-AF and hsRRS-AF pairs, to predict
the classification probabilities of the 23 AFM SARS-CoV-2 complex
structures (Figs. 4H and EV3G). Thereby, we validated 15 of the 23

Figure 3. Validating the maSVM algorithm by mapping interactions within multiprotein complexes using the LuTHy and mN2H assays.

(A) Structures of the protein complexes analyzed in this study: LAMTOR (PDB: 6EHR), BRISC (PDB: 6H3C) and MIS12 (PDB: 5LSK). (B) Binary interaction approach to
systematically map PPIs within distinct complexes. Every protein subunit from each complex was screened against every other one (all-by-all, 16 × 16 matrix). (C–E) Scatter
plot showing (C) log-transformed and normalized in-cell mCitrine expression (x axis) against normalized cBRET ratios (y axis), (D) number of protein pairs (x axis) against
log-transformed and normalized cLuC ratios (y axis) or (E) the number of protein pairs (x axis) against the log-transformed and normalized mN2H ratios (y axis) for all
protein pairs of the LAMTOR (yellow), BRISC (blue) and MIS12 (green) complexes and inter-complex (magenta) protein pairs from all eight tagging configurations.
Average classifier probabilities from the 50 maSVM models for LuTHy-BRET (C) and LuTHy-LuC (D) or 100 maSVM models for mN2H (E) are displayed as the size of the
data points and as a colored grid in the background. (F–H) Scatter plot showing on the x axis the normalized (F) cBRET ratios, (G) cLuC ratios, or (H) mN2H ratios against
classifier probabilities (y axis) for protein pairs of the BRISC (blue), LAMTOR (yellow) and MIS12 (green) complexes and inter-complex (magenta) protein pairs from all
eight tagging configurations. (I–K) Bar plots showing the fraction of protein pairs of the LAMTOR (yellow), BRISC (blue) and MIS12 (green) complexes and inter-complex
protein pairs that scored above the classifier probabilities of 50%, 75% or 95% by (I) LuTHy-BRET, (J) LuTHy-LuC, and (K) mN2H. Only the highest classifier probability
per tested tagging configuration is considered. (L) Tile plots showing the classifier probabilities for the Donor/F1 protein pairs (x axis) against the Acceptor/F2 protein
pairs (y axis) for LuTHy-BRET (orange, left), LuTHy-LuC (purple, middle) and mN2H (green, right) for protein pairs above 75% or 95%. Only the highest classifier
probability per tested tagging configuration is shown. LuTHy experiments were performed in HEK293 cells two times with n= 2 biological replicates, each containing n= 3
technical replicates. mN2H experiments were performed in HEK293T cells four times with n= 4 biological replicates and n= 1 technical replicate. Tiles of not expressed
constructs are filled black and respective protein names are colored in red. Bars and error bars in this figure represent mean values and standard error of the proportion,
respectively. Source data are available online for this figure.
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Figure 4. Mapping binary interactions between SARS-CoV-2 proteins.

(A) Search space between SARS-CoV-2 proteins tested by LuTHy. (B,E) Scatter plots showing (B) log-transformed and normalized in-cell mCitrine expression (x axis)
against normalized cBRET ratios (y axis) or (E) number of protein pairs (x axis) against log-transformed and normalized cLuC ratios (y axis) for SARS-CoV-2 (orange)
protein pairs from all eight tagging configurations. Average classifier probability from the 50 maSVM models is displayed as the size of the data points and as a colored
grid in the background. (C, F) Bar plots showing the fraction of hsPRS-v2 and hsRRS-v2 protein pairs that scored above classifier probabilities of 50%, 75%, or 95% by (C)
LuTHy-BRET or (F) LuTHy-LuC. Only the highest classifier probability per tested tagging configuration is considered. (D, G) Tile plots showing SARS-CoV-2 protein pairs
with >95% and >75% classifier probability detected with (D) LuTHy-BRET and (G) LuTHy-LuC. Only the highest classifier probability per tested tagging configuration is
shown. All LuTHy experiments were performed in HEK293 cells two times, with n= 2 biological replicates, each containing n= 3 technical replicates. (H) Scatter plot
showing PAE (x axis) against interface area (y axis) for 23 SARS-CoV-2 protein pair structures predicted with AlphaFold-Multimer, with n= 5 models each. Average
classifier probability from the 100 maSVM models trained on the hsPRS-AF and hsRRS-AF (Fig. 2F) is displayed as the size of the data points and as a colored grid in the
background. (I) Bar plots showing the number of AlphaFold-Multimer predicted SARS-CoV-2 protein pair structures that scored above classifier probabilities of 50%, 75%,
and 95%. (J) Heatmaps showing the classifier probabilities for the AFM-predicted SARS-CoV-2 protein pair structures. Source data are available online for this figure.
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LuTHy-positive SARS-CoV-2 PPIs with a classification probability
>75% and nine with a probability >95%. (Fig. 4I,J). We further
wanted to investigate whether the binding free energy difference of
the predicted complex structures correlated with the in-cell binding
strength of the detected PPIs. Therefore, we performed LuTHy-
BRET donor saturation experiments for 16 of the AFM-predicted
SARS-CoV-2 structures and determined the BRET50 value for the
interacting proteins (Appendix Fig. S7). Interestingly, we observed
a significant correlation between the BRET50 and the ΔG values
(Fig. EV3H), which is in line with our previously published results
showing that the BRET50 value is directly correlated to the
dissociation constant (KD) of the respective PPI resembling their
binding affinity (Trepte et al, 2018). Furthermore, seven of the nine
AFM-predicted complex structures with a probability >95% were
also experimentally resolved (Fig. EV3I), such as for example, the
heterodimerization between NSP10 and NSP16, which supports our
classification approach for AFM-predicted structural models.

Targeting the NSP10-NSP16 interaction interface by
virtual screening

To directly apply our results to a relevant application, we next
wanted to target one interaction interface by virtual screening. To
maximize success rate and prioritize between the predicted
structures we applied the following criteria: (i) inhibition of one
complex member was previously shown to affect viral replication or
function, and (ii) the 3D complex structure was both experimen-
tally solved and AFM-predicted. Based on this rationale, we
selected the interaction between NSP10 and the NSP16 RNA
methyltransferase (MTase). Importantly, it was reported that
inhibiting this interaction is able to completely abrogate the MTase
activity of NSP16 (Chen et al, 2011), which is required to ensure
normal viral replication (Daffis et al, 2010).

Overall, the five AFM-predicted complex structures showed very
low predicted aligned errors (Fig. 5A) and a high overlap to the
published 3D structure (Rosas-Lemus et al, 2020) (Fig. 5B). We
used PDBePISA to determine the interaction hot spots (Clackson
and Wells, 1995), i.e., the interface residues that contribute most to
the binding, and identified lysine 93 of NSP10 and aspartate 106 of
NSP16 having the lowest ΔG (Fig. 5C,D). We then performed site-
directed mutagenesis and introduced charged changes at lysine 93
of NSP10 by substituting it with glutamic acid (Lys93Glu), and at
aspartate 106 of NSP16 by substituting it with lysine (Asp106Lys).
Both charged residue changes resulted in a strong reduction of the
interaction between NSP10 and NSP16 as measured by LuTHy-
BRET donor saturation assays (Fig. 5E). Importantly, we did not
observe an effect of the point mutations on expression levels of
NSP10-NL or mCit-NSP16, suggesting that the overall stabilities of
the proteins were not affected (Fig. EV3J,K). This confirmed that
Lys93 and Asp106 are critical hot spot residues in the NSP10-
NSP16 interface, which is consistent with published results (Hamre
and Jafri, 2022; Lugari et al, 2010) and make this contact site a
promising target for the identification of PPI modulators.

Based on these results, we decided to target this specific region at
the NSP10-NSP16 interface with small molecules using Virtual-
Flow, a highly versatile open-source platform for ultra-high-
throughput virtual compound screening (Gorgulla et al, 2020).
We chose the NSP10 interface as the primary target site since the
geometry at the critical hot spot residue site appeared to be a better

candidate for small-molecule binding after visual inspection. We
placed the virtual screening target area, i.e., the docking box, on
NSP10 at the interaction interface with NSP16 comprising lysine 93
(Fig. 5F) and screened ~350 million compounds from the Enamine
REAL library (Fig. 5G) using VirtualFlow and the docking program
Quick Vina 2 (Alhossary et al, 2015). Among the top 100 virtual
screening hits, we obtained comparable docking scores as
previously described for similar groove-shaped target regions
(Gorgulla et al, 2021), which suggested high-quality results
(Fig. 5H). The top ~10 million (0.03%) hits were re-docked using
VirtualFlow with AutoDock Vina (Trott and Olson, 2010) and
Smina Vinardo (Quiroga and Villarreal, 2016), allowing 12 amino
acid residues at the binding interface to be flexible. Finally, we
selected compounds among the top 10,000 virtual hits that were re-
docked with the two different approaches and subjected ~2000
molecules to chemical clustering and filtering (see “Methods” for
details). A total of 20 representative molecules were selected,
among which 15 were successfully synthesized and used for follow-
up studies.

Inhibiting the NSP10-NSP16 interaction reduces SARS-
CoV-2 replication

To prioritize between the 15 selected compounds, we tested their
abilities to inhibit the MTase activity of the NSP10-NSP16 complex
in vitro (Bouvet et al, 2010; Decroly et al, 2011). We therefore
incubated the purified NSP10-NSP16 complex with a Cap-0 RNA
(m7G, N7-methyl guanosine) and monitored the methylation on
the initiating nucleotide, which would generate a Cap-1 structure
(Fig. 6A). Among the 15 selected compounds, three showed a
significant reduction in the NSP10-NSP16 MTase activity com-
pared to the DMSO control (P < 0.05), of which compound 459 had
the strongest effect (Fig. 6B) with about 50% enzyme inhibition and
was thus selected for further investigation.

To confirm the binding of the virtually docked compound 459 to
the NSP10 protein (Fig. 6C,D), we next applied a microscale
thermophoresis (MST) assay, which monitors the temperature-
induced movement of fluorescently labeled molecules (Seidel et al,
2012) (Fig. 6E). To that end, we fluorescently labeled purified NSP10
protein and monitored its movement upon non-fluorescent com-
pound addition. From the MST traces (Fig. 6F), we calculated the
fraction of bound compound 459, which allowed us to determine a
binding affinity of ~12.97 µM (Fig. 6G). To confirm that compound
459 could disrupt the NSP10-NSP16 interaction, we tested its effect in
cells using the LuTHy-BRET assay. When incubating cells that
express NL-NSP10 and mCit-NSP16 with compound 459, we
observed a modest but significant concentration-dependent reduction
in the BRET ratio with a half-maximal inhibitory concentration
(IC50) of 9.2 μM (Fig. 6H). This result indicated that the compound
inhibits the binding of the two proteins in live cells. Since it was
previously shown that normal MTase activity is required to ensure
proper viral proliferation (Daffis et al, 2010), we evaluated the effect
of compound 459 on SARS-CoV-2 replication using an infectious
cDNA clone-derived reporter assay (Hou et al, 2020; Kim et al, 2022).
We observed a concentration-dependent decrease of the lumines-
cence signal in the SARS-CoV-2 replication assay, indicating an
inhibition of viral replication with an IC50 of 39.5 µM (Fig. 6I).
Importantly, cell viability was not affected by treatment with
compound 459 (Appendix Fig. S8).
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Figure 5. Predicting the NSP10-NSP16 PPI complex with AFM to target the interaction interface by ultra-large virtual drug screening.

(A) Heatmap showing the predicted alignment error (PAE) of the AlphaFold-Multimer predicted NSP10-NSP16 complex for the rank 1 model. The intra-molecular PAEs are
shown with 50% opacity. The predicted local distance difference test (pLDDT) for all five predicted models (rank 1–5) are shown as line graphs on top and on the right of
the heatmap. (B) The five models of the AlphaFold-Multimer predicted NSP10-NSP16 complex and the published crystal structure (PDB: 6W4H) are shown. Structures
were overlaid using the “matchmaker” tool of ChimeraX. (C) Scatter plot showing for each amino acid (x axis) the solvation-free energy (ΔG, y axis, fill color) upon
formation of the interface, in kcal/mol, as determined by PDBePISA. Dots represent the mean ΔG for the five predicted models and error bars correspond to the standard
deviation from n= 5 AFM-predicted structural models. The x axis indicates the amino acid positions of the whole complex structure starting from NSP10’s N-terminus and
ending with NSP16’s C-terminus. Lysine 93 (Lys93) of NSP10 and aspartate 106 (Asp106) of NSP16, which showed the strongest solvation-free energy gain upon complex
formation, are indicated, respectively. (D) Zoom-in into the NSP10-NSP16 complex showing the contacts of NSP10’s Lys93 and NSP16’s Asp106 as determined using
ChimeraX, using the Contacts tool with the parameters, “VDW overlap ≥ -0.40 Å”, “Limited by selection: with at least one selected” of NSP10 Lys93 and NSP16 Asp106;
“Include intramodel”; “Display as pseudobonds”. (E) LuTHy-BRET donor saturation assay, where constant amounts of NSP10-NL WT or Lys93Glu are co-expressed with
increasing amounts of mCitrine-NSP16 WT or mCitrine-NSP16 Asp106Lys. Nonlinear regression was fitted through the data using the “One-Site – Total” equation of
GraphPad Prism. Data points represent mean values from two n= 2 (NSP10+NSP16, NSP10 Lys93Glu+NSP16) or n= 4 (NSP10+NSP16 Asp106Lys) biological
replicates each containing n= 2 technical duplicates. (F) Docking box on the NSP10 structure (PDB: 6W4H) used for the ultra-large virtual screen. (G) Schematic overview
of the workflow of the virtual docking screen using VirtualFlow. (H) Docking scores of the top 100 molecules identified by virtual screening. The horizontal line indicates
mean docking score and error bars the standard deviation, with the virtual screen performed once (n= 1). Source data are available online for this figure.
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Finally, we investigated if NSP10-NSP16 inhibition by compound
459 would confer additive effects upon combination with AZ1, an
enzymatic inhibitor of the human ubiquitin-specific peptidase 25
(USP25) (Wrigley et al, 2017). AZ1 was reported to impair SARS-
CoV-2 replication, and USP25 was identified as an interactor of NSP16
(Kim et al, 2022). We assessed SARS-CoV-2 viral replication upon
treatment with 2.5 µM AZ1 and increasing concentrations of
compound 459, and observed an additive, concentration-dependent
effect of the two molecules (Fig. 6J). While both molecules target
NSP16-related functions, it is unknown whether compound 459 and
AZ1 act in identical or distinct ways to block the viral replication. Our
results indicate that 459 and AZ1 affect viral replication additively and
that such combinatorial therapies could potentially improve the
efficacy of treatments using small-molecule drugs.

Discussion

Support vector machine learning for PPI classifications

Targeting PPIs offers great opportunities to tackle various diseases,
but it remains a great challenge to reliably identify and modulate
protein complexes. To improve comparisons between binary PPI
datasets generated in different experiments and laboratories and
confidently prioritize potential targets for PPI drug discovery, we
have utilized a maSVM learning algorithm (Chang and Lin, 2011;
Yang et al, 2017) to coherently score interactions of quantitative
PPI datasets. Traditional approaches involve (i) selecting a cutoff of
maximal specificity, i.e., at which none of the random pairs used as
negative controls are scored positive (Choi et al, 2019), (ii) ROC
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analyses with cutoffs at selected false-positive rates of ~5% (Yao
et al, 2020), ~3% (Trepte et al, 2015), or ~1–2% (Trepte et al, 2018;
Cassonnet et al, 2011), and (iii) distribution-based cutoffs (Taipale
et al, 2012). With the maSVM approach, we show for the first time
that a uniform and unbiased approach can be used for the
automatic classification of large quantitative interaction datasets
with high-confidence. Notably, such a classification strategy has
been successfully used to predict kinase substrates from phospho-
proteomics data (Yang et al, 2019; Kim et al, 2021), or to classify
cell types from single-cell RNA-sequencing (Abdelaal et al, 2019).
We show that the maSVM algorithm can provide probabilities for
being a true interaction for every protein pair tested in a given
assay. For example, we observed that in the LuTHy-BRET, mN2H
and yN2H assays, one pair from the RRS hsRRS-v2 (SLC6A1+
TM4SF4) was classified as a true-positive interaction with >99%
probability and in the LuTHy-LuC and KISS assays with 91.9% and
94.7% probability, respectively (Fig. 1J, black arrow). Due to its
definition as a negative or random interaction, a traditional scoring
approach might have classified this pair as strictly negative and thus
classified similar or lower-scoring pairs also as negative. However,
it is very likely that in these assays, the two proteins interact
biophysically when overexpressed in HEK293 cells, making the pair
a potential pseudo-interaction, i.e., a true biophysical interaction
without in vivo biological relevance (Braun et al, 2009). The
maSVM algorithm is able to deal with such exceptions and thus
increases robustness in scoring PPIs even when inconsistencies
among assays or in reference sets are present. We also show that the
maSVM algorithm is universally applicable to classify binary PPIs
from different quantitative datasets, including the interface analysis
of AFM-predicted complex structures. However, it is required to
fine-tune hyperparameters for each assay. Overall, the maSVM
provides a framework to directly compare the results of various
binary interaction assays and in silico predictions, which will lead
to increased reproducibility and interpretability of results between
experiments and methods.

Considerations and limitations of the maSVM algorithm

A universal scoring approach should also be able to deal with the fact
that not all positive interactions will score positive in each of the

tested configurations. In binary interaction assays, such as LuTHy,
N2H and others, the protein pairs of interest are usually tested in
different tagging configurations since e.g., distance-sensitive readouts
such as LuTHy-BRET, or precipitation-based readouts such as
LuTHy-LuC can be highly dependent on the configuration of the
tags. Using multi-adaptive sampling, the negative results obtained in
certain configurations from interactions in the PRS are automatically
relabeled and thus do not negatively affect the overall performance of
the classifier. Similarly, potential false-positive scores from single
configurations are relabeled in the training process. However, it is
obvious that the maSVM-based scoring approach is also influenced
by assay artifacts and will hence “learn” those. If e.g., certain
configurations always tend to produce larger scores than others,
training of a configuration-specific classifier could be considered,
which is then only used for the analysis of results for the selected
assay configuration. Alternatively, datasets of different configurations
could be normalized similarly to the construct normalization before
training to obtain a similar dynamic range in the training and test
datasets, respectively.

Importantly, the maSVM scoring approach is not limited in its
application to PPI datasets from binary interaction assays. As
mentioned above, it is a general approach for classification tasks and
thus can be applied basically to any systems biology approach when
classification is warranted. However, since SVMs are supervised
learning algorithms that are trained with labeled training data to create
a decision boundary (Cortes and Vapnik, 1995), a prerequisite is that
labeled data of true positives and true negatives is available or can be
generated (e.g., from tested positive and negative reference sets). One
other PPI mapping technique, to which the maSVM algorithm
presented here could also be applied, is e.g., cross-linking mass
spectrometry (XL-MS) (Lenz et al, 2021; Giese et al, 2021), in which a
SVM algorithm could be trained with known positive and negative
interactors and then could be used for the classification of newly
obtained data. Obviously, this is not limited to PPI XL-MS datasets,
but can be also applied for protein-nucleic acids interactions from
DNA/RNA XL-MS datasets (Sarnowski et al, 2022). In addition, to
generate a robust classifier, the training set data should ideally reflect a
similar variability as it is expected in the test dataset. This could e.g., be
achieved by including a set of true-positive and true-negative reference
interactions in every PPI screen. Alternatively, thorough data

Figure 6. Compound 459 inhibits the NSP10-NSP16 interaction and reduces SARS-CoV-2 replication.

(A) Schematic overview of the NSP10-NSP16 methyltransferase (MTase) assay. (B) Heatmap showing the result of the MTase activity of the NSP10-NSP16 complex in the
absence or presence of 100 µM of the top 15 compounds. Statistical significance was calculated with a kruskal-wallis test (P value= 9.7e-5, chi-squared = 47.656, df = 17,
the experiment was performed once with n= 3, technical replicates), followed by a post hoc Dunn test and adjusted p-values are shown. (C) Compound 459 docked onto
the NSP10 structure (PDB: 6W4H). (D) Chemical structure of compound 459. (E) Assay principle of the microscale thermophoresis (MST) assay. The fluorescence
intensity change of the labeled molecule (purple) after temperature change induced by an infrared laser (red) is measured. The binding of a non-fluorescent molecule
(blue) can influence the movement of the labeled molecule. (F) Representative MST traces of labeled NSP10 and different concentrations of unlabeled compound 459. The
bound fraction is calculated from the ratio between the fluorescence after heating (F1) and before heating (F0). (G) Scatter plot showing the 459 concentration (x axis)
against the fraction of 459 bound to NSP10 (y axis). Nonlinear regression was fitted through the data using the “One-Site – Total” equation of GraphPad Prism (the
experiment was repeated three times with n= 3, biological replicates). (H) Scatter plot showing the 459 concentration (x axis) against the normalized BRET ratio (nBRET
ratio) for the interaction between NSP10-NL and mCit-NSP16 measured in HEK293 cells. Nonlinear regression was fitted through the data using the “log(inhibitor) vs.
response–Variable slope (four parameters)” equation of GraphPad Prism (the experiment was repeated four times with n= 4, biological replicates, each containing n= 3
technical replicates). (I) Scatter plot showing the 459 concentration (x axis) against the relative luminescence measured from icSARS-CoV-2-nanoluciferase in HEK293-
ACE2 cells. Nonlinear regression was fitted through the data using the “log(inhibitor) vs. normalized response” equation of GraphPad Prism (the experiment was repeated
three times, with n= 3 for 0.1, 100, 200 µM; n= 6 for 0.2, 0.4 µM; all other n= 9; all biological replicates; error bars represent the standard deviation). (J) Barplot showing
the relative luminescence measured from icSARS-CoV-2-nanoluciferase in HEK293-ACE2 cells upon incubation with 0, 25, 50, or 100 µM of compound 459 together with
2.5 µM AZ1 or without AZ1 (0.0 µM). Statistical significance was calculated in GraphPad Prism by a “two-way ANOVA”, where each cell mean was compared to the other
cell mean in that row using “Bonferroni’s multiple comparisons test” (the experiment was repeated three times, with n= 3, biological replicates; error pars represent the
standard deviation; source of variation: 57.91% 459 concentration, P < 0.0001; 28.33% AZ1 concentration, P < 0.0001; 11.40% 459/AZ1 interaction, P < 0.0001).
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normalization can be performed on the interaction scores before
training the classifier.

Generally, the better the labeled training data resembles the test
dataset, the better the prediction of true positives by the classifier. For
PPI datasets this could mean e.g., that for screening a set of membrane
proteins for interactions, ideally also a reference set of positive and
negative interactions among membrane proteins is used for training.
Similarly, if it is known that a certain assay yields e.g., lower or higher
scores for interactions in a specific compartment, then it is favorable
for the performance of the SVM classifier that the reference set also
contains such subcompartment interactions.

Identification and targeting of SARS-CoV-2 PPIs

In this study, we have applied the novel scoring approach to map
and score binary PPIs in three established multiprotein complexes,
and to identify PPI targets for drug discovery among SARS-CoV-2
proteins. Interestingly, due to lower mutation frequency and the
high amino acid conservation of interaction interfaces (Guharoy
and Chakrabarti, 2010; Gupta et al, 2020), PPI-targeting drugs
could provide unique advantages over other types of drugs such as
vaccines or antivirals circumventing mutations in the pathogens’
genomes that can result in immune evasive properties. Of the 34
detected high-confidence (≥95% probability) SARS-CoV-2 PPIs we
detected here, 19 are known interactions according to the IMEx
database (Orchard et al, 2014), while 15 were not reported before
(Dataset EV9). Further characterizing these previously undescribed
interactions and understanding their biological functions could
result in the identification of novel drug targets for SARS-CoV-2. In
particular, our approach helped in prioritizing the NSP10-NSP16
interaction, where NSP10 serves as a cofactor for NSP16’s MTase
activity (Decroly et al, 2011), an enzyme crucial to single-stranded
RNA viruses (Ramdhan and Li, 2022). This enzymatic complex has
been a target of previous drug screening campaigns (Nencka et al,
2022) and peptides inhibiting the interaction could be successfully
identified (Wang et al, 2015; Ke et al, 2012). Even though the
experimental structure of the SARS-CoV-2 methyltransferase
complex became available during the course of this study (Rosas-
Lemus et al, 2020) and was already described for SARS-CoV-1
(Chen et al, 2011), we demonstrate that our pipeline of AI-guided
experimental PPI mapping, structure prediction and experimental
validation is able to define such protein complexes with high-
confidence and to identify hot spots on their interaction interfaces.
Furthermore, we demonstrate the use of this information in a
subsequent virtual PPI inhibitor screening strategy with Virtual-
Flow, an in silico method which allows to virtually screen billions of
compounds and assess their different binding poses on the targeted
surface area. VirtualFlow was already used to target 17 SARS-CoV-
2 proteins, including the NSP10-NSP16 interface (Gorgulla et al,
2021). Here, we targeted the same interaction interface by virtual
screening but further experimentally validated hit compounds for
enzymatic inhibition of the NSP10-NSP16 protein complex and
binding of hit compound 459 to the NSP10 target site. Interestingly,
the predicted target binding site of compound 459 is similar to the
target binding site of one of the top hits identified by Gorgulla et al
(Gorgulla et al, 2021; https://vf4covid19.hms.harvard.edu/, screen
ID: 25). It is also predicted to bind closely to lysine 93 of NSP10,
however, the identified molecular scaffold is different from

compound 459 identified in this study. We also show that this
compound inhibits the NSP10-NSP16 interaction and prevents
SARS-CoV-2 replication with additive effects when combined with
AZ1, a human USP25 inhibitor disrupting SARS-CoV-2 replication
(Kim et al, 2022). Interestingly, the predicted target binding site of
compound 459 on the NSP10 protein (Fig. 6C) is highly conserved
among coronavirus groups (Lugari et al, 2010) and thus could
potentially also inhibit the replication of other viruses belonging to
the Coronaviridae family. However, despite its effects, compound
459 is an experimental compound with micromolar affinity that
will require extensive optimization to improve its chemical scaffold
and associated affinity and efficacy for further investigations.

Targeting viral–viral PPIs instead of virus–host PPIs can be
advantageous. First, determining viral–viral compared to viral–host
interactions is much simpler both experimentally and computa-
tionally. To map the SARS-CoV-2 interactome, 650 pairwise
combinations of viral protein pairs were searched. In comparison,
to identify virus–host PPIs, Kim et al searched 26 viral proteins
against 17,472 human ORFs, which constituted the search space of
454,272 pairwise combinations. Second, Kim et al targeted one
human-virus interaction, by inhibiting human USP25 with a small
molecule. As USP25 is a human protein involved in protein
degradation and cellular homeostasis, blocking its enzymatic
activity could cause unintended effects in addition to its intended
therapeutic benefits for blocking the viral replication. Therefore,
inhibiting viral–viral PPIs could offer a safer and more specific
strategy to selectively intervene with viral replication. Finally,
viral–viral PPIs are often evolutionarily conserved, so that
therapeutics targeting viral–viral interactions could potentially
remain effective despite viral evolution.

A prerequisite to enable virtual drug and PPI inhibitor
screenings as presented here is the availability of high-resolution
protein and protein complex structures. Protein and protein
complex structure predictions have exploded in the last few years
with the development of AlphaFold and RoseTTAFold that allow
structure predictions of entire proteomes (Jumper et al, 2021; Baek
et al, 2021), as well as the prediction of protein complexes and PPIs
(Humphreys et al, 2021; Burke et al, 2021; Evans et al, 2022; Gao
et al, 2022; Bryant et al, 2022). Through ColabFold, which
combines such algorithms with the fast homology search MMseqs2,
the immense computing power needed was reduced and is now
available within the Google Colaboratory, which makes protein
structure prediction accessible to all (Mirdita et al, 2022). As
current approaches have already predicted tens of thousands of
interactions (Burke et al, 2021; Humphreys et al, 2021), it seems
feasible to predict complex structures of the entire theoretical
SARS-CoV-2 binary interactome, i.e., all 26 proteins against each
other for a total of 650 pairwise combinations. While we were
limited to structure prediction-based PPI mapping for complexes
with up to 1400 amino acids, further improvements in the structure
prediction algorithms regarding speed, memory usage and the
maximal size of proteins and protein complexes are already
available (Ahdritz et al, 2022). This will also enable virtual PPI
mapping, including the approach presented here, for large protein
complexes. Additional improvements in structure prediction of low
complexity domains of proteins, membrane protein complexes,
protein–DNA and –RNA complexes and the consideration of
environmental factors will further improve and expand the scope of
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such structure prediction-based PPI mappings. Overall, combining
in silico and wet lab techniques for both the identification and
validation of PPIs as well as for drug screening and validation of
drug effects, should help to speed up the process of developing PPI-
modulating therapeutics.

Methods

Reagents and tools

See Table 1 for a complete list of all reagents and resources.

Table 1. Reagents and tools.

Reagent/resource Reference or source Identifier or catalog number

Experimental models

HEK293 cells (H. sapiens) ATCC CRL-1573

HEK293T cells (H. sapiens) ATCC CRL-3216

Recombinant DNA

pDONR221 ThermoFisher 12536017

pDONR223 Rual et al, 2004 –

pcDNA3.1(+) ThermoFisher V79020

pDEST Choi et al, 2019 –

pcDNA3.1 LuTHy destination and
control vectors

Addgene (Trepte et al, 2018) 113442–113449

pDEST-N2H destination and control
vectors

Addgene (Choi et al, 2019) 125547–125549; 125551–125552; 125559

The CCSB Human ORFeome Collection
(pDONR223)

Dana-Farber Cancer Institute 8.1

SARS-CoV-2 entry plasmids
(pDONR223)

Addgene (Kim et al, 2020) 149304–149312; 149314–149315; 149317;
149320–149321; 149323–149327; 152987–152988;
149322

pDONR221 NSP10 WT This study CS683

pDONR221 NSP10 Lys93Glu (K93E) This study CS916

pDONR221 NSP16 WT This study CS688

pDONR221 NSP16 Asp106Lys (D106K) This study CS1048

pDONR221 ORF3A This study CS682

Oligonucleotides and sequence-based reagents

Primer NSP16 Asp106Lys (D106K)
FWD

5’-CTTCGTGTCCaagGCCGACAGCA-3' CS567

Primer NSP16 Asp106Lys (D106K) REV 5’-TCGTTCAGGTCGCTGTCC-3' CS569

RNA cap-0 oligo (MTase substrate) 5’-(N7-MeGppp)ACAUUUGCUUCUGAC-3' –

Chemicals, enzymes, and other reagents

Gateway™ LR Clonase™ II Enzyme mix ThermoFisher 11791100

DMEM high glucose ThermoFisher 41965062

Fetal bovine serum (FBS) ThermoFisher 10270106

Linear polyethylenimine (PEI), MW
25000

Polysciences 23966

Linear polyethylenimine (PEI), MW
40000

Polysciences 24765

Cell culture microplate, 96-well white Greiner 655983

High binding microplate, 384-well
white, small volume

Greiner 784074

DPBS ThermoFisher 14190169

Coelenterazine-h pjk 102182

Nano-Glo Promega N1120

Benzonase Merck Millipore 70664-3
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Methods and protocols

ORF sequencing and plasmid generation
For hsPRS-v2 and hsRRS-v2 proteins, the corresponding sequence-
verified entry vectors published in Choi et al (Choi et al, 2019)
(Table 1) were Gateway cloned into the different LuTHy
destination plasmids. ORFs for subunits of the LAMTOR, BRISC
and MIS12 complexes were taken from the CCSB human ORFeome
8.1, which is a sequence-confirmed clonal collection of human
ORFs in a Gateway entry vector system (Yang et al, 2011). In total,
16 entry plasmids were picked from the collection, single clones
were isolated, and ORFs were PCR-amplified and confirmed by bi-
directional Sanger DNA sequencing. Entry clones were shuttled
into LuTHy (Addgene #113446, #113447, #113448, #113449) and
N2H (Addgene #125547, #125548, #125549, #125559) destination
vectors using the Gateway Cloning Technology. SARS-CoV-2 ORF
cDNA library was obtained from Kim et al (Kim et al, 2020) via
Addgene. NSP10, NSP14, NSP16 and NSP10 mutant cDNA entry
clones were generated by gene synthesis and subcloning into

pDONR221 (GeneArt, ThermoFisher Scientific). The NSP16
mutant entry plasmid was generated from the NSP16 wild-type
(WT) plasmid by site-directed mutagenesis using the following
primers: 5’-CTTCGTGTCCaagGCCGACAGCA and 5’-
TCGTTCAGGTCGCTGTCC. All cDNA clones were sequence-
verified and shuttled into LuTHy destination plasmids. All resulting
vectors were analyzed by PCR-amplification of cloned ORFs and
DNA gel electrophoresis (N2H plasmids), or restriction digestion
and sequence validation (LuTHy plasmids). For the LuTHy assay,
additional control plasmids (PA-NL, Addgene #113445; PA-mCit-
NL, Addgene #113444; PA-mCit, Addgene #113443; NL, Addgene
#113442) were used, as previously described (Trepte et al, 2018).
For the mN2H assay, additional control plasmids (pDEST-N2H-
F1-empty vector, Addgene #125551; pDEST-N2H-F2-empty vector,
Addgene #125552) were used, as previously described (Choi et al,
2019). For validation of previously undescribed SARS-CoV-2
interacting pairs identified by LuTHy in this study, the correspond-
ing ORFs of selected interactions were additionally cloned into
pDEST-N2H-N1 or pDEST-N2H-N2 using the Gateway Cloning

Table 1. (continued)

Reagent/resource Reference or source Identifier or catalog number

cOmplete protease inhibitor cocktail
(EDTA-free)

Roche/Sigma-Aldrich COEDTAF-RO

Sheep gamma globulin Jackson ImmunoResearch #013-000-002

Rabbit anti-sheep gamma globulin Jackson ImmunoResearch #313-005-003

Software

R www.r-project.org 4.2.1

R package ‘e1071’ CRAN.R-project.org/package=e1071 1.7-11

R package ‘binary PPI classifier’ This study (github.com/philipptrepte/binary-PPI-
classifier)

1.5.5.7

R package ‘AFM PISA classifier’ This study (github.com/philipptrepte/AFM-Pisa-classifier) 1.0.0.0

R studio 2022.07.0

GraphPad Prism graphpad.com 7, 8, 9

SerialCloner serialbasics.free.fr/Serial_Cloner.html 2-6-1

AlphaFold-Multimer github.com/google-deepmind/alphafold (Evans et al,
2022)

v2

ColabFold github.com/sokrypton/ColabFold (Mirdita et al, 2022) 1.2.0 or 1.3.0

PDBePISA www.ebi.ac.uk/pdbe/pisa/ 1.48

PisaPy github.com/hocinebib/PisaPy latest

VirtualFlow for Virtual Screening github.com/VirtualFlow/VFVS vfvs-1

Databases

IMEx www.ebi.ac.uk/intact/imex
(Orchard et al, 2014)

Last access: 2023-01-20

PDB/RCSB rcsb.org

Interactome Insider interactomeinsider.yulab.org
(Meyer et al, 2018)

Last access: 2020-11-03

VirtualFlow Ligand Library
(Enamine REAL Database)

virtual-flow.org/real-library
enamine.net/compound-collections/real-compounds

–

Other

Infinite Multimode readers Tecan M200/M1000/M1000 PRO/Spark

Freedom EVO platform Tecan 150/200

Luminometers Berthold TriStar, Centro XS
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Technology (no successful expression vector clone could be
obtained for NSP3).

LuTHy assay procedure
The LuTHy assay was performed as previously described (Trepte
et al, 2018). In brief, HEK293 cells were reversely transfected in
white 96-well microtiter plates (Greiner, #655983) at a density of
4.0–4.5 × 104 cells per well with plasmids encoding donor and
acceptor proteins. After incubation for 48 h, mCitrine fluorescence
was measured in intact cells (mCitcell, Ex/Em: 500 nm/530 nm). For
LuTHy-BRET assays, coelenterazine-h (pjk, #102182) was added to
a final concentration of 5 μM (5 mM stock dissolved in methanol).
Next, cells were incubated for an additional 15 min, and total
luminescence as well as luminescences at short (370–480 nm) and
long (520–570 nm) wavelengths were measured using the Infinite®

microplate readers M200, M1000, or M1000 PRO (Tecan). After
luminescence measurements, the luminescence-based co-precipita-
tion (LuC) assay was performed. Cells were lysed in 50–100 μL
HEPES-phospho-lysis buffer (50 mM HEPES, 150 mM NaCl, 10%
glycerol, 1% NP-40, 0.5% deoxycholate, 20 mM NaF, 1.5 mM
MgCl2, 1 mM EDTA, 1 mM DTT, 1 U Benzonase, protease
inhibitor cocktail (Roche, EDTA-free), 1 mM PMSF, 25 mM
glycerol-2-phosphate, 1 mM sodium orthovanadate, 2 mM sodium
pyrophosphate) for 30 min at 4 °C. Lysates (7.5 µL) were trans-
ferred into small volume 384-well microtiter plates (Greiner,
#784074) and fluorescence (mCitIN) was measured as previously
described. To measure the total luminescence (NLIN), 7.5 µL of
20 µM coelenterazine-h in PBS was added to each well, and the
plates were incubated for 15 more minutes. For LuC, small volume
384-well microtiter plates (Greiner, #784074) were coated with
sheep gamma globulin (Jackson ImmunoResearch, #013-000-002)
in carbonate buffer (70 mM NaHCO3, 30 mM Na2CO3, pH 9.6) for
3 h at room temperature, and blocked with 1% BSA in carbonate
buffer before being incubated overnight at 4 °C with rabbit anti-
sheep IgGs in carbonate buffer (Jackson ImmunoResearch, #313-
005-003). In total, 15 µL of cell lysate was incubated for 3 h at 4 °C
in the IgG-coated 384-well plates. Then, all wells were washed three
times with lysis buffer and mCitrine fluorescence (mCitOUT) was
measured as described. Finally, 15 µL of PBS buffer containing
10 μM coelenterazine-h was added to each well and luminescence
(NLOUT) was measured after a 15 min incubation period. LuTHy
experiments to screen hsPRS-v2/hsRRS-v2, LAMTOR, BRISC,
MIS12, intra-complex, and SARS-CoV-2 protein pairs, were
replicated twice in the laboratory accounting for the two biological
replicates (different HEK293 freezings), with three technical
replicates each that were arranged next to each other on the plate.
HEK293 cells were regularly tested for mycoplasma contamination.

LuTHy data analysis
Data analysis was performed as previously described (Trepte et al,
2018). In brief, the LuTHy-BRET and LuTHy-LuC ratios from
BRET and co-precipitation measurements are calculated as follows:

BRET ratio ¼ LWL
SWL

� Cf with Cf ¼ LWLPA�NL

SWLPA�NL
(1)

with LWL and SWL being the detected luminescences at long
(520–570 nm) and short (370–480 nm) wavelengths, respectively.

The correction factor (Cf) represents the donor bleed-through value
from the PA-NL only construct. The corrected BRET (cBRET) ratio
is calculated by subtracting the maximum BRET ratios of control 1
(NL/PA-mCit-Y), or of control 2 (NL-X/PA-mCit) from the BRET
ratio of the studied interaction (NL-X/PA-mCit-Y).

For the LuC readout, the obtained luminescence precipitation
ratio (PIR) of the control protein PA-NL (PIRPA-NL) is used for
data normalization, and is calculated as follows:

PIRPA�NL ¼ NLOUT
2 � NLIN (2)

with NLOUT being the total luminescence measured after co-IP and
NLIN the luminescence measured in the cell extracts, directly after
lysis. Subsequently, LuC ratios are calculated for all interactions of
interest, and normalized to the PIRPA-NL ratio:

LuC ratio ¼ NLOUT=2 � NLIN
PIRPA�NL

(3)

Finally, a corrected LuC (cLuC) ratio is calculated by subtracting
either the LuC ratio of control 1 (NL/PA-mCit-Y), or of control 2
(NL-X/PA-mCit) from the LuC ratio of the studied interaction
(NL-X/PA-mCit-Y). The calculated LuC ratios obtained for
controls 1 and 2 are then compared to each other, and the highest
value is used to correct the LuC ratio of the respective interaction.
The described analysis was semi-automated, by using a Python
script that copied the raw data from the Excel files generated by the
Tecan plate readers into Excel templates that were manually
controlled for missing values and outliers. Following, all Excel files
were imported into R to calculate cBRET and cLuC ratios as
described above.

Mammalian cell-based version of the N2H assay (mN2H)
HEK293T cells were seeded at 6 × 104 cells per well in 96-well, flat-
bottom, cell culture microplates (Greiner Bio-One, #655083), and
cultured in Dulbeccoʼs modified Eagleʼs medium (DMEM)
supplemented with 10% fetal calf serum at 37 °C and 5% CO2.
Twenty-four hours later, cells were transfected with 100 ng of each
N2H plasmid (pDEST-N2H-N1, -N2, -C1, or -C2) using linear
polyethylenimine (PEI) to co-express proteins fused with com-
plementary NanoLuc fragments, F1 and F2. The stock solution of
PEI HCl (PEI MAX 40000; Polysciences Inc; Cat# 24765) was
prepared according to the manufacturer’s instructions. Briefly,
200 mg of PEI HCl powder were added to 170 mL of water, stirred
until complete dissolution, and pH was adjusted to 7 with 1 M
NaOH. Water was added to obtain a final concentration of 1 mg/
mL, and the stock solution was filtered through a 0.22-µm
membrane. The DNA/PEI ratio used for transfection was 1:3
(mass:mass). Twenty-four hours after transfection, the culture
medium was removed and 50 µL of 100x diluted NanoLuc substrate
(Furimazine, Promega Nano-Glo, N1120) was added to each well of
a 96-well microplate containing the transfected cells. Plates were
incubated for 3 min at room temperature. Luciferase enzymatic
activity was measured using a TriStar or Centro XS luminometer
(Berthold; 2 s integration time). Four technical replicates were
generated for each protein pair when MN2H was used to map
binary PPIs of the three protein complexes (Fig. 3).
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LuTHy-BRET donor saturation assays
LuTHy donor saturation assays were performed as previously
described (Trepte et al, 2018). In brief, increasing acceptor
expression plasmids were transfected to a constant amount of
donor plasmids as described above (see “LuTHy procedure”). After
48 h, coelenterazine-h (pjk, #102182) was added to a final
concentration of 5 μM. Cells were incubated for an additional
15 min and in-cell mCitrine and luminescence signals were
quantified. Infinite® microplate readers M1000 or M1000Pro
(Tecan) were used for the readouts with the following settings:
fluorescence of mCitrine recorded at Ex 500 nm/Em 530 nm,
luminescence measured using blue (370–480 nm) and green
(520–570 nm) bandpass filters with 1000 ms (LuTHy-BRET). For
data analysis, BRET ratios were calculated as described above.
Acceptor-to-donor ratios were estimated by calculating the ratio of
the fluorescence intensity of the acceptor to the total luminescence
of the donor and normalization to the acceptor to donor signal
intensities of the PA-mCit-NL tandem construct (Eq. (4)).

Acceptor : Donor ratio ¼ mCitPPI=NLPPI
mCitPA�mCit�NL=NLPA�mCit�NL

(4)

Processing publicly available data and selecting multiprotein
complexes
Reference PDB structures and homologous structures for interac-
tions in the hsPRS-v2 were obtained from interactome insider
http://interactomeinsider.yulab.org/ (Meyer et al, 2018). Publicly
available binary protein interaction datasets used in this study came
from the original Choi et al (Choi et al, 2019) and Yao et al (Yao
et al, 2020) publications.

Human protein complexes used in this study were selected based
on the following criteria. First, human protein complexes should
have at least one experimentally determined structure in PDB
(Berman et al, 2000). Second, the complex should have at least four
subunits. Third, at least 80% of entry clones for individual subunits
of a complex should be present in the human ORFeome 8.1
collection (Yang et al, 2011). A total of 24 distinct complexes
(Dataset EV5) with different PDB structures met those criteria, and
three protein complexes with well-documented biological functions
were selected from this list: LAMTOR, BRISC and MIS12.
Published SARS-CoV-2 interactions were extracted from the IMEx
database using the search term “coronavirus” (https://
www.ebi.ac.uk/intact/imex) as of 2023-01-20 (Orchard et al, 2014).

Multi-adaptive support vector machine learning algorithm
Construct normalization: The multi-adaptive supporting vector
machine learning algorithm was adapted from Yang et al (Yang
et al, 2019) and Kim et al (Kim et al, 2021). Standardization of
datasets is a common requirement for many machine learning
algorithms. We observed a strong construct-specific variance in the
multiprotein complex reference set (Appendix Fig. S5) and the
binary SARS-CoV-2 mapping (Appendix Fig. S6). We argued that
constructs with a high variance are unlikely to form significantly
more or less interactions than constructs with a low variance, but
rather assumed that the observed variance is probably a technical
artifact that could, for example, be explained by “sticky” proteins.
To be able to apply a machine learning algorithm that universally
applies to all constructs, we used a percentile-based scaling

approach (RobustScaler, https://scikit-learn.org/), that is not
influenced by a small number of very large marginal outliers, i.e.,
not influenced by high scoring, e.g., true-positive interactions.

1. Calculate the medianconstruct and IQRconstruct for constructs with
at least 20 tested interactions. For constructs tested against less
than 20 other constructs, we advise to not perform a construct
normalization.

2. Calculate the global median and interquartile range (IQR)
between the 25th to 75th quartile for the training and test sets
combined: medianglobal and IQRglobal.

3. Calculate a correction factor for all constructs Cfconstruct as the
medianconstruct−medianglobal.

4. Subtract from each interaction scores the construct-specific
correction factor Cfconstruct and if the IQRconstruct is larger than
the IQRglobal divide by the IQRconstruct/IQRglobal. This retains the
original scale of the scores.

5. Recalculate the IQRconstruct for all constructs and if the
IQRconstruct is larger than the IQRglobal for some constructs,
repeat steps 3 and 4.

Training feature normalization:

1. Perform robust scaler or standard scaler normalization or other
appropriate normalization steps for your training features. See
Dataset EV2 for information and normalization procedures
applied for the different assays.

Model training: Machine learning with adaptive sampling
(AdaSampling) is a framework developed for both positive-
unlabeled (PU) learning and learning with class label noise (LN)
(Yang et al, 2019). For binary interaction assays, class LN can refer
to protein pairs in the PRS that score negative or protein pairs in
the RRS that score positive. Through adaptive sampling, the class
mislabeling probability can be estimated, which progressively
reduces the risk to select mislabeled instances for model training
(Yang et al, 2019).

1. Assemble reference sets as described in the results section.
2. Ensure to perform construct normalization if appropriate as

described above.
3. Select normalized training features. For the LuTHy-BRET assay,

we selected the cBRET ratio and mCitcell and performed a robust
scaler normalization. Training features and normalization para-
meters for all described assays can be found in Dataset EV2.

4. Assemble the positive and negative training sets (ensemble ‘e’)
from the reference sets by unweighted sampling ‘j’ protein pairs
(minimum 30) using a “seed” for reproducibility. Calculate the
number of ‘j’ so that all interactions in the reference set will have
been used for training at least once, which depends on the
number of ensembles chosen (step 8) using the following formula:
log(1–0.9999)/log(1− j/total protein pairs).

5. Train a support vector machine learning algorithm using, for
example, the “svm” function of the “e1071” package for R and
perform hyperparameter optimization to find the optimal
regularization parameter ‘C’ (Dataset EV1).

6. Use the resulting SVM model to reclassify the training set.
Perform a hyperparameter optimization to find the optimal
number of iterations (Dataset EV1).

Molecular Systems Biology Philipp Trepte et al

446 Molecular Systems Biology Volume 20 | Issue 4 | April 2024 | 428 –457 © The Author(s)

http://interactomeinsider.yulab.org/
https://www.ebi.ac.uk/intact/imex
https://www.ebi.ac.uk/intact/imex
https://scikit-learn.org/


7. Use the reclassified model to predict the classification probability
of protein pairs in the test set.

8. Repeat the training and predictions (4–7) in a paired fashion.
Perform a hyperparameter optimization to find the optimal
number of ensembles how often to sample, train, reclassify, and
predict.

9. Calculate the average classifier probabilities from all models.

Evaluation of training performance:

1. For each training set ensemble (e), sample, for example, 10%,
20%, 30%, 40%, 50%, 60%, 70%, 80% 90%, and 100% of the
training set with size ‘j’ and train for each an maSVM algorithm
as described above.

2. Use each model to predict the classifier probability on the entire
test set (all hsPRS-v2 and hsRRS-v2 protein pairs without protein
pairs used in the training set).

3. Calculate for each paired training and test set, the accuracy, hinge
loss and binary cross-entropy loss for both using the following
formulas:
a. accuracy: actual labels / predicted labels
b. hinge loss: 1 - actual labels * predicted labels with hinge loss

set to 0 if calculation results in a negative value
c. binary cross-entropy loss: -median(actual labels * log(pre-

dicted probs) + (1 - actual labels) * log(1 - predicted probs))
4. Plot the fraction of training data against the calculated values for

the training and the test set and evaluate training performance
and over- and underfitting.

The maSVM algorithm for scoring interactions and calculating
recovery rates is available on GitHub: https://github.com/
philipptrepte/binary-PPI-classifier. The LuTHy reference set data
obtained in this work can also be accessed from the /data folder of
the GitHub repository.

AlphaFold-Multimer protein complex prediction and classification
AlphaFold-Multimer:

1. Predict protein complex structures by AlphaFold-Multimer
(Evans et al, 2022) using, for example, ColabFold (Mirdita et al,
2022) with the following parameters: use_amber: ‘no’; templa-
te_mode: ‘none’ (no pdb template information is used);
msa_mode: ‘MMseq2 (UniRef+Environmental)’, pair_mode:
‘unpaired+paired’ (pair sequences from same species); model_-
type: ‘auto’ (AlphaFold2-multimer-v2); num_models: 5; num_re-
cycles: 3; rank_by: ‘auto’; stop_at_score: 100.

2. Predict for each protein complex 5 models.

Extract pLLDT and PAE values from AFM predictions:

1. Extract the resulting pLDDT and PAE scores extracted from .json
files using, for example, the “fromJSON” function of the “rjson”
library for R.

2. Filter the inter-subunit PAE values for each model on pLLDT
scores >50.

3. If there are at least 10 amino acid inter-subunit PAE values
remaining, perform k-means clustering row-wise and column-
wise, which results in a total of 4 cluster, using, for example, the
“k-means” function of the “stats” package for R. (Note that for 4

models of hsPRS-v2 PPIs and 6 models of hsRRS-v2 protein pairs
the PAE clustering failed).

4. Calculate the average PAE for all complexes with successful k-
means clustering in order to identify the interaction interface
region with the closest average distance. In case k-means
clustering fails, calculate the average PAE for all inter-chain
amino acids with pLLDT scores >50.

PDBePISA:

1. Use PDBePISA (https://www.ebi.ac.uk/pdbe/pisa/) to determine
the interaction interface and solvation-free energy of the
AlphaFold-Multimer predicted structures (Krissinel and Henrick,
2007). The Python script PisaPy (https://github.com/hocinebib/
PisaPy) can be used for batch analysis.

2. Process the “interfacetable.xml” files using, for example, the
“read_xml” function of the “xml2 package” in R (Note that
PDBePISA prediction failed for all five models of the hsRRS-v2
protein pair PSMD12+ CRIPT. For 13 hsPRS-v2 interactions
and 56 hsRRS-v2 proteins at least one, but not all five models
were predicted (see Fig. 2). Overall, 4.75±0.8 models were
successfully predicted for all hsPRS-v2 interactions and 4.23±1.4
models for hsRRS-v2 protein pairs.

Classification:

1. Use the maSVM algorithm as described above without construct
normalization. Standard scale the PAE and interface area values
and use them as training features.

2. Perform a hyperparameter optimization for the ensemble size,
number of reclassifications and the regularization parameter or
use parameters determined for this study: e = 100 ensembles; i = 5
reclassifications; regularization parameter ‘C’ = 0.01 (Datasets
EV1 and EV2).

For the structure predictions in this study, we have used AlphaFold2-
multimer-v2 with a PDB training cutoff of 2018-04-30 (https://
github.com/google-deepmind/alphafold/blob/main/docs/technical_note_
v2.3.0.md) on ColabFold (version 1.2.0 or 1.3.0). The analysis pipeline for
extracting PAE and pLLDT values from AFM predictions, k-means
clustering and maSVM prediction is available on GitHub: https://
github.com/philipptrepte/AFM-Pisa-classifier/. The PAE, pLLDT, inter-
faceArea and ΔG values for the AFM reference set data (hsPRS-AF,
hsRRS-AF) can be accessed from the /data folder of the GitHub
repository.

Ultra-large virtual screening with VirtualFlow
Ultra-large virtual screening was performed using the VirtualFlow
workflow engine (Gorgulla et al, 2020) on a Sun Grid Engine-
(MaxCluster, Max Delbrück Center) or a SLURM-managed
(JURECA supercomputer, Forschungszentrum Jülich) high-
performance computing cluster (Krause and Thörnig, 2018). A
subset (~350 M ligands) of the “ready-to-dock” Enamine REAL
library was docked onto the experimentally validated NSP10
interaction interface. For primary ultra-large docking, Quick Vina
2 (Alhossary et al, 2015) was used with exhaustiveness set to 1.
Ligands were ranked based on their predicted binding free energies
in kcal/mol. Then, the top 10M scoring ligands were re-docked
using Smina Vinardo (Apr 2, 2016, based on Autodock Vina
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version 1.1.2) and Autodock Vina (version 1.1.2) (Trott and Olson,
2010) with flexible residues at the target region (Val, Met, Phe, Ser,
Cys, Cys, Arg, His, Tyr, Lys, Lys, His). AutoDockTools was used to
generate the rigid and flexible structures in the PDBQT format.
Exhaustiveness in the re-docking was also set to 1 and two
iterations for each docking scenario were conducted. The size of the
cuboid docking box for all scenarios and docking runs was set to
75.647 × 16.822 × 17.631 Å. Ligands were ranked by the mean
scores of the replica of the Smina Vinardo and Autodock Vina
dockings, respectively. Finally, the ligands, which were present in
the top 10 K of both docking scenarios were selected (~2 K ligands).
The ligands were then chemically clustered to identify cluster
representatives. Clustering was performed using the Cluster
Molecules component embedded in the Pipeline Pilot Software
(BIOVIA Pipeline Pilot, Release 2018, San Diego, Dassault
Systèmes) using FCFP_4 Fingerprints and an average of 60
compounds per cluster in order to obtain 30 clusters. Molecules
were filtered based on reactivity, toxicity and drug-likeness using
Pipeline Pilot Software according to Horvath et al (Horvath et al,
2014) and solubility was predicted according to Cheng and Merz
(Cheng and Merz, 2003). From each cluster, a representative
molecule was selected based on reactivity, toxicity and drug-
likeness properties as well as their predicted solubility. In total, 20
molecules were selected and ordered for synthesis at Enamine Ltd.
(Kiev, Ukraine). Of the 20 compounds, 15 (#456 to #470) were
successfully synthesized and delivered. Compounds were diluted to
10 or 50 mM stock solutions in DMSO, and stored at −20 °C.

Recombinant protein production
The NSP10 expression construct comprising amino acids 23–145 was
cloned into a modified pET28a vector, resulting in the expression of an
N-terminal His6-tagged protein (MGSDKIHHHHHHNSTVLS…
GCSCDQ). The protein was produced at 17 °C using E. coli BL21-
AI cells (ThermoFisher Scientific), induced with 0.5 mM isopropyl β-
D-1-thiogalactopyranoside (IPTG) and 0.2% (v/v) L-arabinose. For
purification, cells were resuspended in lysis buffer (50 mM sodium
phosphate pH 7.8, 0.5M NaCl, 5% glycerol) supplemented with 0.25%
(w/v) 3-[(3-cholamidopropyl)-dimethylammonio]-1-propane- sulfo-
nate (CHAPS), 1 mM phenylmethyl-sulfonyl fluoride (PMSF),
3000 U/mL lysozyme (Serva) and 7.5 U/mL RNase-free DNase I
(AppliChem), lysed by multiple freeze-thaw cycles and the extract was
cleared by 1 h centrifugation at 34.000 × g. The His6-fusion protein was
captured from the supernatant using metal affinity chromatography
on a HisTrap™ FF Crude Column (Cytiva) equilibrated with 20mM
Tris-HCl pH 8.0 and 0.5M NaCl. After several wash steps, the protein
was eluted with 20mM Tris-HCl pH 8.0, 0.5M NaCl, and 250mM
imidazole, and further purified by a size-exclusion chromatography
step on a 26/600 Superdex 75 prep grade column (Cytiva) equilibrated
with 20mM HEPES pH 7.5 and 0.2M NaCl. The purified protein was
concentrated to 8 mg/mL, flash-frozen with liquid nitrogen, and stored
at −80 °C until further use.

The NSP10-NSP16 co-expression plasmid (cloned into pET-
Duet-1, Novagen) was transformed into E. coli BL21-AI cells
(ThermoFisher Scientific). The protein was produced at 17 °C upon
induction with 0.5 mM IPTG and 0.2% (v/v) L-arabinose. For
purification, cells were resuspended in lysis buffer (50 mM Tris-
HCl pH 7.6, 0.5 M NaCl, 5% glycerol) supplemented with 0.25%
(w/v) CHAPS, 1 mM PMSF, 3000 U/mL lysozyme (Serva), 7.5 U/
mL RNase-free DNase I (AppliChem), 1 mM MgCl2, lysed by

multiple freeze-thaw cycles, and the extract was cleared by
centrifugation. The His6-tagged NSP16, complexed with co-
expressed NSP10, was captured from the supernatant using metal
affinity chromatography on a HisTrap™ FF Crude Column (Cytiva)
equilibrated with 50 mM Tris-HCl pH 7.6, 0.5 M NaCl, and 5%
glycerol. After several wash steps, the protein was eluted with the
same buffer, including 250 mM imidazole, and further purified by a
size-exclusion chromatography step on a 16/600 Superdex 75 prep
grade column (Cytiva) equilibrated with PBS pH 7.4 and 0.3 M
NaCl. The purified protein was supplemented with 5% (v/v)
glycerol and 1 mM DTT.

The purified proteins were flash-frozen with liquid nitrogen and
stored at −80 °C until further use. The molecular mass of all
purified proteins was confirmed by intact mass analyses using an
Agilent 1290 Infinity II UHPLC system coupled to an Agilent
6230B time-of-flight (TOF) instrument.

Methyltransferase assay
Methyltransferase activity of the NSP10-NSP16 complex and
inhibitor screening was performed using the MTase-Glo assay
(Cat. No. V7601, Promega) (Hsiao et al, 2016) according to the
manufacturer’s instructions. In brief, 18.75 µM RNA cap-0 oligo
(5’-(N7-MeGppp)ACAUUUGCUUCUGAC-3’) or no RNA as
control was incubated in the presence of 740 nM co-purified
NSP10-NSP16 protein complexes or no protein as control in
reaction buffer (20 mM Tris-HCl pH 8.0, 50 mM NaCl, 1 mM
EDTA, 3 mM MgCl2, 0.1 mg/ml BSA, 1 mM DTT) supplemented
with 0.2 U/µL SUPERase RNAse inhibitor and 40 µM
S-adenosylmethionine (SAM). The NSP10-NSP16 complex was
incubated with 100 µM inhibitor compound or DMSO as a control
for 10 min before adding the remaining components. Next,
enzymatic reactions were kept for 2 h at 37 °C in 8 µl total volume
in 384-well plates (CLS3824, Corning). After incubation, 2 µl of 5×
MTase-Glo Reagent (Promega) was added to wells, plates were
shaken for 1 min at 1000 rpm and further incubated for 30 min at
RT. Then, 10 µl of MTase-Glo Detection Solution (Promega) was
added, plates were again shaken for 1 min at 1000 rpm and further
incubated for 30 min at RT. Finally, firefly luminescence intensity
(~565 nm) was quantified in a SpectraMax iD5 microplate reader
(Molecular Devices).

Microscale thermophoresis
For microscale thermophoresis (MST) assays, NSP10 protein was
fluorescently labeled using N-Hydroxysuccinimide (NHS)-ester
fluorophores according to the manufacturer’s instructions (Protein
Labeling Kit RED-NHS 2nd Generation, Nanotemper). Labeling
was performed in the NSP16 protein storage buffer (20 mM HEPES
pH 7.5 and 0.3 M NaCl). Prior to use in MST experiments, the
labeled protein solution (2 µM) was centrifuged at 15.000 × g for
10 min at 4 °C to remove potential aggregated protein species.
Compound/NSP10 experiments were performed in 20 mM HEPES,
0.3 M NaCl with 0.05% Tween. For the binding studies, 100 or
200 nM NSP10-RED (depending on labeling efficiency) were
incubated with increasing amounts of compound for 15 min at
RT. Measurements were performed in standard capillaries (Nano-
temper) using a Monolith MST device (Nanotemper) with 80%
LED and medium infrared (IR) laser power. Binding was analyzed
from MST signals after 5 or 20 s compared to relative fluorescence
before IR laser pulse.
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LuTHy-BRET compound assay
The LuTHy assay procedure was performed as described above
using the in-cell BRET readout. After transfection and expression
of the LuTHy constructs for 48 h, cells were treated with indicated
concentrations of compound dissolved in DMSO infused into the
cell culture media. Control wells were treated with DMSO only.
After 3 h of compound incubation, the fluorescence of mCitrine
was recorded at Ex 500 nm/Em 530 nm using the Infinite®

microplate reader M1000 PRO (Tecan), and cell morphology as
well as confluence (Appendix Fig. S8) were analyzed by automated
imaging using a Spark multimode microplate reader (Tecan). Then,
coelenterazine-h (pjk, #102182) was added to a final concentration
of 5 μM (5 mM stock dissolved in methanol), cells were incubated
for an additional 15 min and total luminescence intensity as well as
luminescence intensities at short (370–480 nm) and long
(520–570 nm) wavelengths were measured using the Infinite®

microplate readers M1000 PRO (Tecan). BRET ratios were
calculated as described above and normalized to solvent control
wells (normalized BRET (nBRET) ratio).

SARS-CoV-2 replication assay
HEK293-ACE2 (3 × 104 cells per well) were plated in white 96-well
plates. The cells were then infected with SARS-CoV-2 (Hou et al, 2020;
Kim et al, 2022) (0.01 MOI) containing a nanoluciferase reporter and
were simultaneously treated with the compounds 459 in 13-point
twofold serial dilution 0–100 µM concentration. Cells were further
cultured for another 24 h and luminescence was measured (Coutant
et al, 2020). Cell viability was measured using the CellTiter-Glo
Luminescent Cell Viability Assay kit (Promega,G7750). All experi-
ments were performed in a BSL3 laboratory authorized by the Service
Universitaire de Protection et d’Hygiène du Travail, Université de
Liege, Belgium. The contained use of OGM/MGM or pathogens,
including SARS-CoV2 in this BSL3 has been notified in the
environmental permit PE/1/1 valid until January 22, 2034.

Combination study of compound 459 with AZ1
HEK293-ACE2 were seeded in 96-well plates as described above.
Cells were then infected with SARS-CoV-2-nanoluciferase (0.01
MOI) and treated with the indicated concentration of compound
459 with 2.5 μM AZ1 or DMSO (three replicates for each
concentration). The following day, luminescence was measured
using the Filtermax F5 microplate reader (Molecular Devices).

Data availability

Newly generated DNA or RNA constructs, proteins and compounds
are available upon request. The protein interactions from this
publication have been submitted to the IMEx (http://
www.imexconsortium.org) consortium through IntAct (Orchard
et al, 2014) and have the assigned identifier IM-29926. All UniProt
and RCSB-PDB accession codes, as well as the AlphaFold-Multimer
predictions are provided in the Source Data. The datasets and
computer code produced in this study are available in the following
databases: (1) PPI datasets: LuTHy and mN2H binary interaction data
(http://www.imexconsortium.org/) Identifier: IM-29926; (2) Virtual
screening workflow code: GitHub (https://github.com/VirtualFlow);
(3) Binary PPI classifier: GitHub (https://github.com/philipptrepte/

binary-PPI-classifier); (4) AFM PISA classifier: GitHub (https://
github.com/philipptrepte/AFM-Pisa-classifier).

Expanded view data, supplementary information, appendices are
available for this paper at https://doi.org/10.1038/s44320-024-00019-8.

Peer review information

A peer review file is available at https://doi.org/10.1038/s44320-024-00019-8
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Expanded View Figures
Figure EV1. (related to Fig. 1). Effect of different scoring approaches on recovery rates.

(A) Schematic overview of the LuTHy-BRET and LuTHy-LuC assays. X: Protein X, Y: Protein Y, D: NanoLuc donor, A: mCitrine acceptor, AB: antibody. (B) With the LuTHy
assay, each protein pair X–Y can be tested in eight possible configurations (N- vs. C-terminal fusion for each protein), and proteins can be swapped from one tag to the
other resulting in 16 quantitative scores for each protein pair, i.e., eight for LuTHy-BRET and eight for LuTHy-LuC. (C) Line plots showing the fraction of protein pairs that
scored positive (y axis) dependent on the quantitative interaction scores (x axis) for 10 binary PPI assay versions. For each tested protein pair, the tagging configuration
with the highest interaction score is used. For LuTHy all eight tagging configurations were tested, whereas for MN2H, VN2H, YN2H, GPCA, NanoBi four and for KISS,
MAPPIT and SIMPL two tagging configurations were tested. Recovery rates at maximum specificity, i.e., where none of the protein pairs in the RRS scored positive (0%),
are indicated. Note that in Choi et al (Choi et al, 2019) recovery rates at maximum specificity were calculated by using distinct cutoffs for each tagging configuration. (D)
Line plots showing the fraction of protein pairs that scored positive (y axis) dependent on the distribution of interaction scores, i.e., the mean of all interaction scores +
n*(sd) (x axis) for 10 binary PPI assay versions. Recovery rates at mean + 1 standard deviation are indicated. (E) Line plots showing the fraction of protein pairs that scored
positive (y axis) dependent on the distribution of interaction scores, i.e., the median of all interaction scores + n*(sd) (x axis) for 10 binary PPI assays. Recovery rates at
median + 1 standard deviation are indicated. LuTHy experiments from this study were repeated twice with n= 2, biological replicates, each containing n= 3 technical
replicates; SIMPL from Yao et al (Yao et al, 2020); all other from Choi et al (Choi et al, 2019). Note that the SIMPL assay was benchmarked by Yao et al (Yao et al, 2020)
against 88 positive proteins pairs derived from the hsPRS-v1 (Venkatesan et al, 2009) and as a random reference set against “88 protein pairs with baits and preys
selected from the PRS but used in combinations determined computationally to have low probability of interaction” (Yao et al, 2020).
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Figure EV2. (related to Fig. 2). Training a maSVM algorithm to classify AFM-predicted structures.

(A) Receiver characteristic analysis comparing sensitivity and specificity between the five AFM-predicted structural models for PAE, ΔG and iA of the hsPRS-AF and
hsRRS-AF. (B) Bar plots showing the fraction of hsPRS-AF and hsRRS-AF interactions with structures deposited in PDB that scored above classifier probabilities of 50%,
75% and 95% by AlphaFold-Multimer (i) by LuTHy (ii) or the mean recovery of N2H (MN2H, VN2H, YN2H), GPCA, KISS, MAPPIT and NanoBiT (iii). Data for the SIMPL
assay was excluded for this analysis due to the different composition of the reference sets. LuTHy experiments from this study were repeated two times with n= 2,
biological replicates, each containing n= 3 technical replicates; AFM was used to predict n= 5 structural models; all other from Choi et al (Choi et al, 2019). Bars and error
bars in this figure represent mean values and standard error of the proportion, respectively.
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Figure EV3. (related to Figs. 4 and 5). Validating SARS-CoV-2 protein interactions using the mN2H assay and predicting SARS-CoV-2 protein complexes structures
using AlphaFold-Multimer.

(A) Venn diagrams showing the overlap between interactions recovered by LuTHy at >50%, >75% and >95% probabilities and interactions deposited in the IntAct
database (Orchard et al, 2014). (B) Scatter plot showing normalized mN2H ratios (y axis) of each of the eight SARS-CoV-2 interactions newly identified with LuTHy
(x axis). Average classifier probabilities obtained from the hsPRS-v2/hsRRS-v2 mN2H models are displayed as the size of the data points and as a colored grid in the
background. (C) Scatter plot showing normalized mN2H ratios (x axis) against classifier probabilities (y axis) for the newly identified SARS-CoV-2 interactions selected for
validation. (D) Bar plots showing the fraction (left y axis) and number (right y axis) of newly identified SARS-CoV-2 interactions selected for validation that scored above
classifier probabilities of 50%, 75% or 95% with mN2H. Bars and error bars represent mean values and standard error of the proportion, respectively, with n= 3 biological
replicates. (E) Heatmaps showing the mN2H classifier probabilities for the newly identified SARS-CoV-2 interactions selected for validation. (F) Boxplots showing
predicted alignment error (PAE), solvation-free energy (ΔG) and interface area (iA) from AlphaFold-Multimer (AFM) predicted SARS-CoV-2-AF structures. Boxplots
display the median, lower and upper hinges of the 25th and 75th percentiles and lower and upper whiskers extending from the hinges with 1.5× the interquartile range.
Each dot represents one predicted structural model. (G) Scatter plot showing PAE (x axis) against interface area (y axis) for all SARS-CoV-2-AF (orange) protein pairs.
Average classifier probability predicted by the 100 maSVM models trained by the hsPRS-AF and hsRRS-AF set (see Fig. 2F), is displayed as the size of the data points. Each
point in the colored grid in the background displays the average classifier probabilities from the 100 maSVM models. (H) Scatter plot showing the ΔG (x axis) for all five
AFM-predicted structural SARS-CoV-2-AF models against the LuTHy-BRET determined binding strengths (BRET50, see Appendix Fig. S7A,B). The respective log-
transformed interface areas are indicated by the fill color of the data points. A linear regression fit through the data is shown and the Spearman correlation coefficient (R)
and P value are indicated. (I) Barplot showing the fraction of AFM-predicted structures with 0–75%, 75–95% and >95% classification probability that have an
experimentally reported structure deposited to the PDB (Berman et al, 2000) database. (J,K) Luminescence (J) and fluorescence (K) values from LuTHy-BRET donor
saturation experiments, where constant amounts of NSP10-NL WT or K93E (Lys93Glu) are co-expressed with increasing amounts of mCitrine-NSP16 WT or D106K
(Asp106Lys). Experiments with NSP10-NL WT and K93E were repeated two times, with n= 2, biological replicates, and each with n= 2 technical replicates; experiments
with mCit-NSP16 WT and D106K were repeated four times, with n= 4, biological replicates, and each with two technical replicates, n= 2. Bars and error bars represent
the mean and standard deviation, respectively.
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