SUR LA GÉNÉRATION DES CUBIQUES PLANES,

par M. Lucien Godeaux, Professeur à l'Université de Liège.

Dans cette note, nous indiquons la génération de deux cubiques planes associées en partant de trois couples de faisceaux de rayons projectifs. Nous montrons que ces projectivités peuvent être choisies de ∞^3 manières pour chaque couple de cubiques.

1. Soient, dans un plan σ , trois points A_1 , A_2 , A_3 non en ligne droite et, dans un plan σ' , trois points A_1' , A_2' , A_3 non en ligne droite. Supposons que les faisceaux de rayons de sommets A_1 , A_2 , A_3 soient respectivement projectifs aux faisceaux de rayons de sommets A_1' , A_2' , A_3' , c'est-à-dire que l'on ait

$$(A_1) \overline{\wedge} (A_1'), \qquad (A_2) \overline{\wedge} (A_2'), \qquad (A_3) \overline{\wedge} (A_3').$$

Désignons par a'_{12} , a'_{13} les droites du faisceau (A'_1) qui correspondent respectivement à A_1A_2 , A_1A_3 , par a'_{23} , a'_{21} les droites du faisceau (A'_2) homologues respectivement de A_2A_3 , A_2A_1 , enfin par a'_{31} , a'_{32} les droites du faisceau (A'_3) qui correspondent respectivement à A_3A_1 , A_3A_2 . Nous supposerons que les droites a'_{12} , a'_{13} , $A'_1A'_2$, $A'_1A'_3$ sont distinctes, de même que les droites a'_{23} , a'_{21} , $A'_2A'_3$, $A'_2A'_1$ et que les droites a'_{23} , a'_{32} , A'_{34} , $A'_3A'_1$.

Nous nous proposons de rechercher le lieu d'un point P de σ tel que les droites des faisceaux (A_1') , (A_2') , (A_3') homologues des droites A_1P , A_2P , A_3P concourent en un point P'.

Considérons dans σ une droite x support de deux ponctuelles (X_1) , (X_2) . Par un point X_1 menons la droite passant par A_1 et soit p' la droite qui lui correspond dans le faisceau (A_1') . Les droites des faisceaux (A_2) , (A_3) homologues des droites projetant les points de p' de A_2' , A_3' , engendrent deux faisceaux projectifs ; les points communs aux rayons homologues engendrent une conique coupant x en deux points X_2 . Inversement, joignons un point X_2 aux points A_2 , A_3 ; les droites homologues dans les faisceaux (A_2') , (A_3') se coupent en un point. La droite du faisceau (A_1) homologue de la droite joignant ce point à A_1' coupe x en un point (X_1) . Entre les ponctuelles (X_1) , (X_2) , nous avons donc une correspondance (1, 2); d'après le principe de correspondance de Chasles, il y a trois points unis, qui sont des points du lieu cherché. Ainsi, le point P décrit une cubique C.

En intervertissant les rôles des plans σ , σ' , on voit que le lieu du

point P' est également une cubique C'.

2. Supposons que le point P coı̈ncide avec A_1 . Aux droites A_2A_1 , A_3A_1 correspondent les droites a'_{21} , a'_{31} . Soit B'_1 leur point de rencontre. A la droite $a'_1 = A'_1B'_1$ correspond une droite a_1 passant par A_1 , donc ce point appartient à la courbe C. Il en est de même des points A_2 , A_3 et les points A'_1 , A'_2 , A'_3 appartiennent à la cubique C'.

Soient p une droite passant par A_1 , p' la droite qui lui correspond dans le faisceau (A_1) . Les droites des faisceaux (A_2) , (A_3) homologues des droites qui projettent de A_2 , A_3' les points de p' engendrent deux faisceaux projectifs; les éléments homologues de ceux-ci se coupent aux points d'une conique p. Celle-ci coupe la droite p aux deux points de rencontre de p aux deux points de p aux deux points de rencontre de p aux deux points de rencontre de p aux deux points de rencontre de p aux deux points de p aux deux points de rencontre de p aux deux points de

Pour que p soit la tangente à la courbe C en A_1 , il faut que la conique γ passe par A_1 . Cela exige que la droite p' passe par le point B_1' , c'est-à-dire coïncide avec a_1' . La droite homologue a_1 touche donc C en A_1 .

On obtient de même les tangentes à C en A_2 , A_3 et les tangentes à C' en A_1' , A_2' , A_3' .

Observons qu'aux droites a_1 , A_2A_1 , A_3A_1 correspondent les droites a_1' , a_{21}' , a_{31}' se coupant en B_1' , donc ce point appartient à la courbe C'. De même, le point B_2' , intersection de a_{32}' , a_{12}' et le point B_2' , commun aux droites a_{13}' , a_{23}' , appartiennent à la courbe C'.

On peut de même construire trois points B_1 , B_2 , B_3 appartenant à C.

3. Soit D_1 le troisième point de rencontre de C avec la droite A_2A_3 . Aux droites A_2A_1 , A_3A_1 correspondent les droites a_{23} , a_{32} qui se cou-

pent en un point D_1' . Puisque le point D_1 appartient à C, la droite $d_1 = A_1D_1$ et la droite $d_1' = A_1'D_1'$ doivent se correspondre dans l'homographie entre les faisceaux (A_1) , (A_1') . On en conclut que le point D_1' appartient à C'.

De même, le point D_2 commun à a_{31} , a_{13} et le point D_3 , commun à a_{12} , a_{21} , appartiennent à C'. Ils ont comme homologues sur C les troisièmes points de rencontre D_2 , D_3 de cette courbe respectivement

avec A₃A₁, A₁A₂.

Les neuf points A_1 , ..., B_1 , ..., D_1 , ... sont les points-base d'un faisceau de cubiques. En effet, la droite a_{12} contient les points A_1 , B_2 , D_3 , la droite a_{33} les points A_3 , B_3 , D_1 et la droite a_{31} , les points A_3 , B_1 , D_2 ; par conséquent la cubique C et la cubique dégénérée $a_{12} + a_{23} + a_{31}$ déterminent un faisceau de cubiques. On vérifie aisément que ce faisceau contient également la cubique dégénérée $a_{13} + a_{31} + a_{32}$.

Dans le plan σ , la cubique C et la cubique formée des trois côtés du triangle $A_1A_2A_3$ déterminent un faisceau dont les cubiques ont même tangente en A_1 , A_2 , A_3 et passent par les points D_1 , D_2 , D_3 .

4. Supposons donnés les triangles $A_1A_2A_3$ et $A_1A_2A_3$. Une homographie entre deux formes de première espèce dépendant de trois paramètres, en choisissant de toutes les manières possibles les homographies ω_1 entre les faisceaux (A_1) , (A_1) , ω_2 entre les faisceaux (A_2) , (A_2) , ω_3 entre (A_3) , (A_3) , on parviendra à ∞^9 couples de courbes C, C'. Mais les cubiques passant par trois points sont en nombre ∞^6 , par conséquent, si deux cubiques C, C' se correspondent de la manière indiquée, elles doivent se correspondre de ∞^3 manières. C'est ce que nous allons vérifier.

Soient C, C' deux courbes obtenues de la manière indiquée lorsque

les homographies ω_1 , ω_2 , ω_3 sont choisies.

Par le point A_4' , menons une droite \bar{a}_{12}' ; elle rencontre encore C' en deux points que nous désignerons par \bar{B}_2' , \bar{D}_3' . Menons la droite $\bar{a}_{21}' = A_2'\bar{D}_3'$; elle rencontre encore C' en un point \bar{B}_1' . Menons la droite $\bar{a}_{32}' = A_3\bar{B}_2'$; elle rencontre encore C' en un point \bar{D}_1' . La droite $\bar{a}_{23}' = A_2\bar{D}_1'$ rencontre encore C' en un point \bar{B}_3' ; la droite $\bar{a}_{13}' = A_1\bar{B}_3'$ rencontre encore C' en un point \bar{D}_2' . Menons enfin la droite $\bar{a}_{31}' = A_3'\bar{b}_1'$.

Observons que les neuf points A', \bar{B}' , \bar{D}' appartiennent à la cubique C' et à la cubique dégénérée $\bar{a}'_{13} + \bar{a}'_{21} + \bar{a}'_{32}$. La cubique dégénérée $\bar{a}'_{12} + \bar{a}'_{23} + \bar{a}'_{31}$ passe par les huit points A'₁, \bar{B}'_{2} , \bar{D}'_{3} , A'₂, \bar{D}'_{1} , \bar{B}'_{3} , A'₃, \bar{B}'_{1} ; elle passe donc par le point \bar{D}'_{2} . On en conclut que la droite \bar{a}'_{31} passe par \bar{D}'_{2} .

Choisissons maintenant un point arbitraire P de C et un point arbitraire P' de C'. Considérons, entre les faisceaux (A_1) et (A_1') , (A_2) et (A_2') , (A_3) et (A_3') , les homographies

$$\begin{split} \omega_{1}^{'} = \begin{pmatrix} \bar{a}_{12}^{'}, & \bar{a}_{13}^{'}, & A_{1}^{'}P' \\ A_{1}A_{2}, & A_{1}A_{3}, & A_{1}P \end{pmatrix}, & \omega_{2}^{'} = \begin{pmatrix} \bar{a}_{23}^{'}, & \bar{a}_{21}^{'}, & A_{2}^{'}P' \\ A_{2}A_{3}, & A_{2}A_{1}, & A_{2}P \end{pmatrix}, \\ \omega_{3}^{'} = \begin{pmatrix} \bar{a}_{31}^{'}, & \bar{a}_{32}^{'} & A_{3}^{'}P' \\ A_{3}A_{1}, & A_{3}A_{2}, & A_{3}P \end{pmatrix}. \end{split}$$

Nous obtenons, en partant de ces homographies, deux cubiques \overline{C} , \overline{C}' . La cubique \overline{C}' passe par les neuf points A', \overline{B}' , \overline{D}' et par P', elle coïncide donc avec C'.

Dans le faisceau (A_2) , l'homographie $\omega_2^{-1}\omega_2'$ fait correspondre aux droites a_{21}' , a_{23}' respectivement les droites \bar{a}_{21}' , \bar{a}_{23}' . Dans le faisceau (A_3) , l'homographie $\omega_3^{-1}\omega_3'$ fait correspondre à a_{31}' la droite \bar{a}_{31}' et à a_{32}' , la droite \bar{a}_{32}' . Par conséquent, dans le faisceau (A_1) , $\omega_1^{-1}\omega_1'$ doit faire correspondre la droite $A_1'\bar{B}_1'$ à la droite $A_1'\bar{B}_1'$ et la droite $A_1'\bar{D}_1'$ à la droite $A_1'\bar{D}_1'$. Il en résulte qu'à la tangente a_1 à C en A_1 correspond dans ω_1' la droite $A_1'\bar{B}_1'$; par conséquent, \bar{C} touche également a_1 en A_1 . D'autre part, à la droite $A_1\bar{D}_1$, ω_1' fait correspondre $\bar{A}_1'\bar{D}_1'$, donc C passe par le point B_1 de rencontre de \bar{C} avec A_2A_3 en dehors de A_2 , A_3 .

On démontre de même que $\overline{\mathbb{C}}$ touche \mathbb{C} en A_2 , A_3 et passe par les points D_2 , D_3 , donc les courbes $\overline{\mathbb{C}}$ et \mathbb{C} coïncident.

La droite \bar{a}_{12} peut être choisie de ∞^1 manières, le point P peut être choisi de ∞^1 manières sur C et le point P' de ∞^1 manières sur C', donc les courbes C, C' se correspondent de ∞^3 manières.

Observons que la droite \bar{a}_{12} coupe C', en dehors de A_1' en deux points qui peuvent être choisis arbitrairement comme points \bar{B}_2' et \bar{D}_3' , par conséquent : Il existe deux familles triplement infinies de ternes d'homographies ω_1 , ω_2 , ω_3 faisant passer d'une courbe C à une courbe C'.

5. La génération des courbes C, C' peut être traitée analytiquement de la manière suivante :

Dans le plan σ , prenons $A_1A_2A_3$ comme triangle de référence et dans le plan σ' , le triangle $A_1'A_2'A_3'$. Les équations des homographies $\omega_1, \omega_2, \omega_3$ peuvent s'écrire

$$a_{32}x_2x_2' + a_{23}x_2x_3' + a_{32}x_3x_2' + a_{33}x_3x_3' = 0,$$
 (ω_1)

$$b_{33}x_3x_3' + b_{31}x_3x_1' + b_{13}x_1x_3' + b_{11}x_1x_1' = 0, \qquad (\omega_2)$$

$$c_{11}x_1x_1' + c_{12}x_1x_2' + c_{21}x_2x_1' + c_{22}x_2x_2' = 0.$$
 (\omega_3)

La courbe C a pour équation

$$\begin{vmatrix} 0 & a_{22}x_2 + a_{32}x_3 & a_{23}x_2 + a_{33}x_3 \\ b_{31}x_3 + b_{11}x_1 & 0 & b_{33}x_3 + b_{13}x_1 \\ c_{11}x_1 + c_{21}x_2 & c_{12}x_1 + c_{32}x_2 & 0 \end{vmatrix} = 0$$

et la courbe C',

$$\begin{vmatrix} 0 & a_{22}x'_2 + a_{23}x'_3 & a_{32}x'_3 + a_{33}x'_3 \\ b_{13}x'_3 + b_{11}x & 0 & b_{33}x'_3 + b_{31}x'_1 \\ c_{11}x'_1 + c_{12}x'_2 & c_{21}x'_1 + c_{22}x'_2 & 0 \end{vmatrix} = 0.$$

L'équation de C, développée, s'écrit

$$\begin{aligned} &(a_{32}b_{13}c_{11}+a_{23}b_{11}c_{12})x_1^2x_2+(a_{32}b_{13}c_{11}+a_{33}b_{11}c_{12})x_1^2x_3\\ &+(a_{22}b_{13}c_{21}+a_{23}b_{11}c_{22})x_2^2x_1+(a_{22}b_{33}c_{21}+a_{23}b_{31}c_{22})x_2^2x_3\\ &+(a_{32}b_{33}c_{11}+a_{33}b_{31}c_{12})x_3^2x_1+(a_{32}b_{33}c_{21}+a_{33}b_{31}c_{22})x_3^2x_2\\ &+(a_{22}b_{33}c_{11}+a_{32}b_{13}c_{21}+a_{23}b_{31}c_{12}+a_{33}b_{11}c_{22})x_1x_2x_3=0.\end{aligned}$$

L'équation de C' s'en déduit en intervertissant les indices des quantités $a,\ b,\ c.$

6. Nous avons autrefois considéré un cas particulier de la question qui vient d'être traitée (¹); nous en rappelons l'énoncé: Considérons deux triangles ABC et A'B'C' d'un même plan. Projetons un point P de A, B, C respectivement en A", B", C" sur les côtés opposés du triangle ABC. Si les droites A'A", B'B", C'C" concourent en un point Q, les points P, Q décrivent des cubiques C, C' circonscrites aux triangles donnés.

⁽¹⁾ Sur les courbes planes du troisième ordre (Bulletin de l'Association des Élèves des Écoles spéciales, Liège, 1911, pp. 1-4).