

Généralisations de théorèmes de Koenigs et de Tzitzeica Lucien Godeaux

Résumé

Généralisation du théorème de Koenigs sur les réseaux à invariants égaux et du théorème de Tzitzeica sur les congruences de Goursat.

Citer ce document / Cite this document :

Godeaux Lucien. Généralisations de théorèmes de Koenigs et de Tzitzeica. In: Bulletin de la Classe des sciences, tome 60, 1974. pp. 319-324;

doi: https://doi.org/10.3406/barb.1974.60890

https://www.persee.fr/doc/barb_0001-4141_1974_num_60_1_60890

Fichier pdf généré le 04/06/2020

COMMUNICATION D'UN MEMBRE

GÉOMÉTRIE PROJECTIVE DIFFÉRENTIELLE

Généralisations de théorèmes de Koenigs et de Tzitzeica

par Lucien GODEAUX

Membre de l'Académie

Résumé. — Généralisation du théorème de Koenigs sur les réseaux à invariants égaux et du théorème de Tzitzeica sur les congruences de Goursat.

On doit à Koenigs le théorème suivant: Si (x) est une surface contenant un réseau conjugué u, v et si x_1 est le transformé de Laplace de x dans les sens des u, x_{-1} celui dans le sens des v, si parmi les coniques du plan x_1xx_{-1} touchant en x_1 la droite x_1x et en x_{-1} la droite $x_{-1}x$, celle qui oscule en x_1 la ligne des v et celle qui oscule en x_{-1} la ligne des u, coïncident, le réseau u0 est à invariants égaux u1.

D'un autre côté, Tzitzeica a établi le théorème suivant: Si (x),(y) sont les nappes focales d'une congruence de droites (g), y étant le transformé de Laplace de x dans le sens des u et si y_1 est le transformé de Laplace de y dans le sens des u,x_1 celui de x dans le sens des v, on considère le faisceau des quadriques passant par les droites xx_1 , yy_1, xy_1, yx_1 . Si la quadrique de ce faisceau osculant la ligne des v en y_1 et celle qui oscule la ligne des u en x_1 , coïncident, la congruence (g) est une congruence de Goursat (2).

⁽¹⁾ Voir par exemple TZITZEICA, Géométrie projective différentielle des réseaux (Bucarest et Paris, 1923).

⁽²⁾ TZITZEICA, Sur certaines congruences de droites (Journal de Mathématiques, 1924, pp. 189-208). Œuvres de Georges Tzitzeica, p. 407 (Bucarest, 1941).

Ces différents théorèmes peuvent être généralisés, ils conduisent à des réseaux ou à des congruences satisfaisant à des propriétés assez compliquées. Nous espérons pouvoir revenir sur leurs propriétés (1).

1. Soit, dans un espace ayant au moins quatre dimensions, deux points U,V transformés de Laplace l'un de l'autre. On peut toujours s'arranger de manière à avoir

$$U_u + 2bV = 0, V_v + 2aU = 0.$$

Soient V^1,V^2 les transformés successifs de Laplace dans le sens des u et U^1 celui de U dans le sens des v. On a

$$V^1 = V_u - V(\log a)_u, V^2 = V_u^1 - V_1(\log ak_1)_u$$

οù

$$k_1 = (\log \cdot a)_{uv} + 4ab, k_2 = (\log \cdot ak_1)_{uv} + k_1,$$

$$V_v^1 = k_1 V, V_v^2 = k_2 V^1$$

et

$$U^1 = U_v - U(\log \cdot b)_v, U_v = h_1 U,$$

οù

$$h_1 = (\log \cdot b)_w + 4ab.$$

Un point de l'espace S₄ à quatre dimensions déterminé par les points V²;V¹;V,U,U¹ a des coordonnées de la forme

$$\eta_2 V^2 + \eta_1 V^1 + \eta V + \xi U + \xi_1 U^1$$
.

Nous désignerons les quantités η_2 , η_1 , η , ξ , ξ_1 par coordonnées locales du point.

Considérons le faisceau d'hyperquadriques

$$\xi_1 \eta_2 + \lambda \eta^2 = 0, \tag{1}$$

et cherchons la valeur de λ qui correspond à l'hyperquadrique qui oscule au point V^2 la courbe v tracée sur cette surface.

⁽¹⁾ Nous utilisons les notations de notre mémoire la Géométrie différentielle des surfaces considérées dans l'espace réglé (Mémoires in-8° de l'Académie roy. de Belgique, 1964).

On a

$$V^{2}(u,v+\varepsilon) = V^{2} + \varepsilon(k_{2}V^{1} + \cdots) + \frac{\varepsilon^{2}}{2}(k_{1}k_{2}V + \cdots) + \frac{\varepsilon^{3}}{6}(-2ak_{1}k_{k}U + \cdots) + \frac{\varepsilon^{4}}{24}(-2ak_{1}k_{2}U^{1} + \cdots) + \cdots$$

et l'hyperquadrique cherchée doit passer par le point

$$\eta_2 = 1, \eta_1 = k_2 \varepsilon, \eta = k_1 k_2 \frac{\varepsilon^2}{2}, \xi = -2ak_1 k_2 \frac{\varepsilon^3}{6}, \xi_1 = -2ak_1 k_2 \frac{\varepsilon^4}{24}$$

ce qui donne

$$-\frac{2ak_1k_2}{24} + \frac{\lambda(k_1k_2)^2}{4} = 0$$

et l'équation de l'hyperquadrique cherchée est

$$3k_1k_2\xi_1\eta_2 + a\eta^2 = 0 (2)$$

2. Cherchons maintenant l'équation de l'hyperquadrique du faisceau (1) qui oscule en U^1 la ligne u située sur cette surface.

On a

$$U^{1}(u + \varepsilon, v) = U^{1} + (h_{1}U + \cdots)\varepsilon + (-2bh_{1}V + \cdots)\frac{\varepsilon^{2}}{2} + (-2bh_{1}V^{1} + \cdots)\frac{\varepsilon^{3}}{6} + (-2bh_{1}V^{2} + \cdots)\frac{\varepsilon^{4}}{24} + \cdots$$

On a donc $\lambda = bh_1$: 4! et l'hyperquadrique cherchée a pour équation

$$12bh_1\xi_1\eta_2 + \eta^2 = 0. (3)$$

Si les hyperquadriques (2) et (3) coïncident, on a

$$\frac{4bh_1}{k_1k_2} = \frac{1}{a}.$$

c'est-à-dire

$$4abh_1 = k_1k_2$$
.

On sait que les invariants de la surface (U) sont $h'_1 = 4ab$ et $h'_2 = h_1$. L'équation (4) peut s'écrire

$$k_1k_2=h_1'h_2'.$$

Le résultat obtenu peut donc être énoncé sous la forme suivante:

Soit (X) une surface contenant un réseau conjugué (u,v) et soient V^1,V^2 ses transformés de Laplace dans le sens des u et U'^1,U'^2 ses transformés dans le sens des v. Tout point de l'espace à quatre dimensions S_4 déterminé par les points V^2 , V^1 , X, U'^1 , U'^2 a des coordonnées de la forme

$$\eta_2 V^2 + \eta_1 V + xX + \xi_1 U^1 + \xi_2 U^2$$

et $\eta_2, \eta_1, x, \xi_1, \xi_2$ sont les coordonnées locales du point. Considérons dans S_4 le faisceau de quadriques

$$\xi_2 \eta_2 + \lambda x^2 = 0.$$

Si celle de ces hyperquadriques osculant en V^2 la ligne des v et celle qui oscule en U'^2 la ligne des u coïncident, le produit des invariants de la surface (V^1) est égal au produit des invariants de la surface (U'^1) .

3. Ce théorème s'étend facilement aux réseaux appartenant à un espace à plus de quatre dimensions.

Soient (X) une surface d'un espace à 2n + 1 dimensions et contenant un réseau conjugué $(u,v),V^1,V^2,...,V^n$ ses n transformés successifs de Laplace dans le sens des u et $U^1,U^2,...,U^n$ ses transformés successifs de Laplace dans le sens des v. Tout point de cet espace a des coordonnées de la forme

$$\eta_n V^n + \ldots + \eta_1 V^1 + xX + \xi_1 U^1 + \ldots + \xi_n U^n$$

et nous dirons que les coefficients des $V^n,...,U^n$ sont les coordonnées locales de ce point.

Considérons le faisceau d'hyperquadriques

$$\xi_n\eta_n+\lambda x^2=0.$$

S'il existe une hyperquadrique de ce faisceau qui oscule la ligne des v en V^n et la ligne des u en U^n , on a

$$k_1k_2\ldots k_n=h_1h_2\ldots h_n,$$

les k et les h étant les invariants des surfaces (V^i) et (U^i) .

4. Retournons aux suifaces (U), (V) et considérons le transformé de Laplace U² de U¹. Tout point de l'espace S₄ déterminé par les points V², V¹, V, U, U¹, U² a des coordonnées de la forme

$$\eta_2 V^2 + \eta_1 V^1 + \eta V + \xi U + \xi_1 U^1 + \xi_2 U^2$$

et nous dirons que les η et les ξ sont les coordonnées locales de ce point.

Considérons le faisceau d'hyperquadriques

$$\xi_2\eta_2 + \lambda\xi\eta = 0.$$

Celle de ces hyperquadriques osculant en V^2 la ligne des v tracée sur la surface (V^2) doit passer par le point

$$\eta_2 = 1, \eta_1 = k_2 \varepsilon, \eta = k_1 k_2 \frac{\varepsilon^2}{2},$$

$$\xi = -2ak_1 k_2 \frac{\varepsilon^3}{6}, \xi_1 = -2ak_1 k_2 \frac{\varepsilon^4}{24}, \xi_2 = -2ak_1 k_2 \frac{\varepsilon^5}{120}$$

et a donc pour équation

$$10k_1k_2\xi_2\eta_2 + \xi\eta = 0.$$

De même, l'hyperquadrique osculant en U^2 la ligne des u a pour équation

$$10h_1h_2\xi_2\eta_2 + \xi\eta = 0.$$

Si ces deux hyperquadriques coïncident, on a

$$h_1h_2 = k_1k_2$$
.

c'est-à-dire que le produit des invariants des points V¹ et U¹ sont égaux.

5. Considérons le faisceau d'hyperquadriques

$$\xi_2 \eta_2 + \lambda \xi_1 \eta_1 = 0$$

Celle de ces hyperquadriques osculant en V^2 la ligne des v a pour équation

$$5k_2\xi_2\eta_2 - \xi_1\eta_1 = 0$$

et celle qui oscule en U^2 la ligne des v,

$$5h_2\xi_2\eta_2 - \xi_1\eta_1 = 0.$$

Si ces deux hyperquadriques coïncident, on a

$$h_2 = k_2$$
.

6. Le théorème établi au n° 4 se généralise aisément.

Désignons par $V^1, V^2, ..., V^n$ les n premiers transformés de Laplace de V dans le sens des u et par $U^1, U^2, ..., U^n$ ceux de U dans le sens des v.

Les coordonnées locales d'un point de l'espace déterminé par ces points se déterminent comme dans le cas n=2. Considérons alors le faisceau d'hyperquadriques

$$\xi_n\eta_n+\lambda\xi\eta=0.$$

S'il existe une hyperquadrique de ce faisceau qui oscule en V^n la ligne des v et en U^n la ligne des u, on a

$$k_1k_2\ldots k_n=h_1h_2\ldots h_n,$$

les k et les h étant les invariants des équations considérées successivement.

Liège, le 11 février 1974.