Sur les surfaces normales de genres un de l'espace à cinq dimensions possédant huit points doubles,

par Lucien GODEAUX, Membre de la Société.

On sait que les conditions nécessaires et suffisantes pour qu'une surface normale de genres un $(p_a=P_4=1)$ représente une involution du second ordre appartenant à une surface de genres un également, sont qu'elle possède huit points doubles coniques et que, parmi les hyperquadriques passant par ces huit points doubles, il y en ait qui touchent la surface en tout point d'intersection (¹). On peut se demander si ces conditions sont indépendantes. Il en est ainsi lorsque la surface envisagée est un plan double ou une surface appartenant à un espace ayant trois ou quatre dimensions. Nous allons montrer qu'il en est de même lorsque la surface appartient à un espace à cinq dimensions. Nous établirons également quelques propriétés de cette surface.

1. Soit F une surface normale de genres un $(p_a=P_4=1)$, d'ordre huit, appartenant à un espace linéaire S_5 à cinq dimensions, possédant huit points doubles coniques $A_1, A_2, ..., A_8$. Nous désignerons par C les sections hyperplanes (de genre cinq) de F, par $a_1, a_2, ..., a_8$ les courbes rationnellles, de degré — 2, équivalentes, au point de vue des transformations birationnelles, aux points doubles coniques $A_1, A_2, ..., A_8$.

Projetons la surface F, à partir de la droite A_7A_8 , sur un espace linéaire Σ à trois dimensions ne rencontrant pas cette droite. Nous obtenons ainsi une surface du quatrième ordre, F', possédant six points doubles coniques $A'_1, A'_2, ..., A'_6$, projections de $A_1, A_2, ..., A_6$. Aux points doubles A_7, A_8 correspondent, sur F', deux coniques a_7, a_8 , ne se rencontrant pas et ne passant par aucun des points doubles.

Les sections planes de la surface F' correspondent aux courbes $C-a_7-a_8$, de genre trois; nous les désignerons par le même symbole.

⁽¹⁾ Voir notre « Mémoire sur les involutions appartenant à une surface de genres un » (Annales de l'École Normale supérieure, 1914, pp. 357-430, 1920, pp. 51-70), et notre exposé sur Les involutions cycliques appartenant à une surface algébrique (Paris, Hermann, 1935).

Les quadriques Q passant par les points A'₁, A'₂, ..., A'₆ découpent, sur F', des courbes Γ d'ordre huit et de genre trois, formant un système linéaire de degré quatre. On a

$$|\Gamma| = |2C - a_1 - a_2 - \cdots - a_6 - 2a_7 - 2a_8|$$

Les courbes Γ sont les projections des courbes découpées sur F par les hypercônes du second ordre ayant pour sommet la droite A_7A_8 .

2. Les quadriques Q passent par A'_1 , A'_2 , ..., A'_6 , forment un système linéaire |Q| de degré deux et définissent donc une involution I_2 d'ordre deux de l'espace Σ . On obtient une représentation de l'involution I_2 en rapportant projectivement les quadriques Q aux plans d'un second espace linéaire à trois dimensions Σ' . Dans cet espace, la surface de diramation Φ' pour la correspondance (1, 2) existant entre Σ' et Σ est, comme on sait, une surface de Kümmer (1). Nous désignerons par T la transformation birationnelle involutive de Σ (d'ordre sept) génératrice de l'involution I_2 .

La surface F' n'est pas en général transformée en elle-même par T. Cette transformation lui fait correspondre une surface F' du quatrième ordre. A l'ensemble des surfaces F', F' correspond dans Σ' une surface du quatrième ordre F*, inscrite dans la surface de Kümmer Φ' .

3. Supposons que la surface F soit l'image d'une involution du second ordre appartenant à une surface de genres un. Il existe alors des hyperquadriques passant par les points doubles et touchant la surface F suivant des courbes C_o; ces courbes satisfont à la relation fonctionnelle

$$|2C| = |2C_0 + a_1 + a_2 + \dots + a_8|.$$

Les courbes C_0 sont d'ordre huit et de genre trois. A ces courbes correspondent sur F' des courbes que nous désignerons toujours par C_0 , d'ordre six, passant par $A'_1, A'_2, ..., A'_6$ et rencontrant en un point chacune des coniques a_7, a_8 .

⁽¹⁾ Cette correspondance a été étudiée par Reye et De Paolis. On trouvera un exposé de ses propriétés dans notre Cours de Géométrie supérieure, fasc. II (Liége, Bourguignon, 1937).

Considérons en particulier les courbes C_0 - a_7 et C_0 - a_8 que nous désignerons respectivement par K_7 et K_8 . Nous avons donc

$$C_0 \equiv K + a_7 \equiv K_8 + a_8$$

et par conséquent

$$2C \equiv K_7 + K_8 + a_1 + a_2 + \dots + a_6 + 2(a_7 + a_8).$$

On en déduit

$$|1'| = |K_1 + K_8|.$$

Sur la surface F', les courbes K_7 sont du quatrième ordre et rencontrent la conique a_7 en trois points; les courbes K_8 sont également d'ordre quatre et rencontrent la conique a_8 en trois points. D'autre part, ces courbes sont elliptiques, ce sont des biquadratiques gauches. Par chacune des courbes K_7 ou K_8 passent ∞^1 quadriques Q et les systèmes $|K_7|$, $|K_8|$ sont des faisceaux.

Une courbe K_7 et une courbe K_8 ont en commun deux points formant nécessairement un couple de l'involution I_2 . L'existence du système $|C_0|$ sur la surface F entraı̂ne donc le fait que la surface F' est transformée en elle-même par la transformation T. On voit donc que les conditions exprimant que la surface F représente une involution du second ordre appartenant à une surface de genres un (existence de huit points doubles coniques et existence d'hyperquadriques passant par ces points et touchant la surface en chaque point d'intersection) sont indépendantes.

4. Inversement, si la surface F' est transformée en elle-même par T, le système $|C_0|$ existe.

Partons d'une surface F' possédant les six points doubles coniques $A'_1, A'_2, ..., A'_6$, les deux coniques a_7 , a_8 et transformée en elle-même par T. Il lui correspond dans Σ' une quadrique que nous désignerons par F^* . Désignons par k_7 , k_8 les génératrices rectilignes des deux modes de F^* . Aux droites k_7 , k_8 correspondent sur F' des biquadratiques elliptiques que nous désignerons respectivement par K_7 , K_8 . On a évidemment

$$|K_7 + K_8| = |\Gamma|,$$

les courbes Γ étant, comme tantôt, découpées sur F' par les quadriques Q.

Le plan ρ_7 de la conique a_7 coupe F' suivant une seconde conique a'_7 . Aux points du plan ρ_7 correspondent, dans Σ' , les

points d'une surface de Steiner R_{τ} (à laquelle correspondent dans Σ le plan ρ_{τ} et une surface du septième ordre, transformée du plan par T). La surface R_{τ} coupe la quadrique F* suivant deux quartiques rationnelles qui correspondent aux coniques a_{τ} , a'_{τ} . Les génératrices rectilignes k_{τ} de F* sont des trisécantes d'une de ces courbes et les droites k_{s} des trisécantes de la seconde. On peut supposer que la première quartique a pour homologue dans Σ la conique a_{τ} (et sa transformée, d'ordre quatorze, par T), la seconde correspondant à a'_{τ} .

De même, le plan ρ_s de la conique a_s coupe encore F' suivant une conique a'_s . A ce plan correspond dans Σ' une surface de Steiner R_s coupant la quadrique F* suivant deux quartiques gauches rationnelles. L'une de celles-ci, qui correspond à a_s , a comme trisécantes les droites k_s ; l'autre, qui correspond à a'_s , a comme trisécantes les droites k_7 .

Nous voyons donc qu'il existe, sur F', un faisceau $|K_7|$ de quartiques elliptiques passant par les points $A'_1, A'_2, ..., A'_6$, rencontrant en trois points les coniques a_7, a_8 , en un point les coniques a'_7, a_8 et un faisceau $|K_8|$ de quartiques elliptiques passant par les points $A'_1, A'_2, ..., A'_6$, rencontrant les coniques a_8, a'_7 en trois points, les coniques a'_8, a_7 en un point.

Considérons les surfaces cubiques Ψ passant par la conique a'_{7} et par une courbe \overline{K}_{8} du faisceau $|K_{8}|$. Ces surfaces forment un système linéaire de dimension trois et découpent, sur la surface F', en dehors de la base, des courbes K de genre trois, de degré quatre et d'ordre six.

Parmi les surfaces Ψ se trouvent les surfaces formées du plan ρ_7 et d'une quadrique passant par la courbe \overline{K}_8 ; une telle quadrique coupe encore F' suivant une courbe K_7 , donc on a

$$|\mathbf{K}| = |\mathbf{K}_7 + a_7|.$$

D'autre part, les surfaces Ψ coupent la conique a_8 en un seul point variable, car les coniques a_7 et a_8 ne se rencontrant pas, les coniques a'_7 et a_8 se rencontrent en deux points. Il existe donc ∞^1 surfaces Ψ contenant a_8 . Ces surfaces Ψ rencontrent une courbe \mathbb{K}_8 quelconque en douze points dont six sont les points $A'_1, A'_2, ..., A'_{s6}$, trois sont sur a_8 et trois sur a'_7 . Il existe donc une de ces surfaces contenant la courbe \mathbb{K}_8 envisagée, et l'on a

$$|\mathbf{K}| = |\mathbf{K}_8 + a_8|.$$

On déduit des relations précédentes

$$|2K| = |K_7 + K_8 + a_7 + a_8|$$

et comme la courbe K_7+K_8 est découpée sur F par une quadrique Q, c'est-à-dire est une courbe Γ , on a

$$|2K + a_1 + a_2 + \cdots + a_8| = |2C|.$$

Le système |K| coïncide donc avec le système |C₀|, dont l'existence résulte par suite du fait que F' appartient à l'involution I₂.

5. Envisageons, sur la surface F', le système

$$|C'| = |C - a_7 - a_8 + a_7' + a_8'|.$$

Le système |C'| a le degré huit, le genre et la dimension cinq et a comme courbes fondamentales les coniques a'_7 , a'_8 .

D'autre part, en reprenant le raisonnement précédent, on prouve l'existence sur F' d'un système

$$|K'| = |K_7 + a_8'| = |K_8 + a_7'|$$

tel que

$$2 K' + a_1 + \dots + a_6 + a_7' + a_8' \equiv 2C'.$$

Les coniques a_7' , a_8' ne se rencontrent pas et ne passent par aucun des points doubles A_1' , A_2' , ..., A_6' , par conséquent la surface F' et la surface F représentent une involution du second ordre appartenant à une seconde surface de genres un.

Le raisonnement peut être repris en changeant les points doubles A₇, A₈ d'où l'on est parti; les huit points pouvant être groupés de ving-huit manières en deux groupes de deux et six points, on voit que la surface F représente vingt-neuf involutions du second ordre appartenant à des surfaces de genres un.

6. Rapportons projectivement les courbes C_0 aux plans d'un espace linéaire à trois dimensions Σ'' . A la surface F correspond une surface F_0 du quatrième ordre, sur laquelle les courbes $a_1, a_2, ..., a_8$ sont des droites deux-à-deux gauches. Aux courbes C correspondent sur F_0 des courbes d'ordre huit, de genre cinq, ne rencontrant pas les droites $a_1, a_2, ..., a_8$.

Les surfaces cubiques Ψ découpant, sur F', les courbes C_0 , on obtiendra la surface F_0 en rapportant projectivement les surfaces du système $|\Psi|$ aux plans de Σ'' . Le système $|\Psi|$ est homa-

loïdal, car deux surfaces Ψ ont en commun, en dehors des courbes a'_{τ} et \overline{K}_{s} , une cubique gauche s'appuyant en trois points sur la conique a'_{τ} et en cinq points sur la quartique \overline{K}_{s} . Il en résulte que la surface F_{0} est une surface du quatrième ordre irréductible, et non une quadrique double.

Dans la transformation birationnelle Θ obtenue en rapportant projectivement les surfaces Ψ aux plans de Σ ", aux plans de Σ correspondent des surfaces cubiques Ψ' passant par une droite g_0 et par une quintique elliptique G dont g_0 est une trisécante (¹). Aux points de \overline{K}_8 correspondent les trisécantes de G et aux points de a'_{τ} les bisécantes de G s'appuyant sur g_0 . Les trisécantes de G forment une réglée d'ordre cinq passant doublement par G et les bisécantes de G s'appuyant sur g_0 forment une surface cubique dont g_0 est une droite double. A une droite de Σ correspond dans Σ'' une cubique gauche s'appuyant en un point sur g_0 et en sept points sur la courbe G.

Aux points $A'_1, A'_2, ..., A'_6$, qui appartiennent à \overline{K}_8 , correspondent des trisécantes $a_1, a_2, ..., a_6$ de la courbe G. A la conique a_7 , qui s'appuie en quatre points sur a'_7 et en un point sur \overline{K}_8 , correspond une droite que nous désignerons encore par a_7 . Observons qu'aux points de la droite g_0 correspondent les droites du plan ρ_7 de a'_7 passant par le point de rencontre de ce plan et de la courbe K_8 en dehors de a'_7 . La droite a_7 est donc infiniment voisine de g_0 .

A la conique a_8 , qui s'appuie en deux points sur a_7 et en trois points sur \overline{K}_8 , correspond une droite s'appuyant en un point sur G, mais ne rencontrant pas la droite g_0 . Nous désignerons encore cette droite par a_8 .

La surface F_0 passe par la courbe G et par les droites $a_1, a_2, ..., a_6, a_7 \ (\equiv g_0)$ et a_8 . On voit sans peine qu'aux courbes K_7 correspondent les sections de F_0 par les plans passant par $g_0 \ (\equiv a_7)$ et aux courbes K_8 , les sections de F_0 passant par la droite a_8 .

On sait que les trisécantes d'une quintique elliptique appartiennent à un complexe linéaire. Les droites $a_1, a_2, ..., a_7$ appartiennent donc à un complexe linéaire Ω . Celui-ci est certainement déterminé par les six premières droites, car il y a au plus cinq trisécantes de G appartenant à une congruence bilinéaire.

⁽¹⁾ Cette transformation a été étudiée récemment par un de nos élèves, M. J. LADSOUS, Sur une transformation birationnelle du troisième ordre (Bull. de la Soc. Roy. des Sciences de Liége, 1938, pp. 486-490).

Si nous reprenons le raisonnement précédent en intervertissant les rôles de a_7 , a_8 , nous voyons que les droites a_1 , a_2 , ..., a_6 , a_8 appartiennent à un même complexe linéaire qui ne peut être que Ω .

La surface F₀ contient donc huit droites deux-à-deux gauches, appartenant à un même complexe linéaire. Il existe des quintiques elliptiques ayant comme trisécantes sept de ces droites et rencontrant la huitième en un point.

Au système |C| correspond sur F₀ le système

$$|3C_0 - G + a_8|;$$

il est découpé par les surfaces du quatrième ordre passant par G et par une cubique, section de F_0 par un plan passant par a_8 .

7. Les surfaces du quatrième ordre passant par six droites $a_1, a_2, ..., a_6$ appartenant à un complexe linéaire forment un système linéaire de dimension quatre, composé au moyen d'une involution du second ordre (1). Par conséquent, si l'on rapporte projectivement ces surfaces aux hyperplans d'un espace linéaire à quatre dimensions, il correspond à la surface Fo une quadrique double non conique. Aux génératrices rectilignes de cette quadrique correspondent sur Fo des quintiques elliptiques trisécantes des droites $a_1, a_2, ..., a_6$ et formant deux faisceaux. L'un de ces faisceaux coı̈ncide certainement avec le faisceau |G|, car les surfaces du quatrième ordre passant par une courbe G et par les six droites $a_1, a_2, ..., a_6$ forment un réseau et découpent sur F₀ des quintiques elliptiques ayant pour trisécantes les droites $a_1, a_2, ..., a_6$. De plus, ces quintiques coupent a_7 en un point et a₈ en trois points. Nous désignerons ce faisceau de quintiques par |G₇| et le faisceau |G| sera à son tour désigné par $|G_s|$.

On voit finalement que la surface F_0 contient huit faisceaux de quintiques elliptiques $|G_1|$, $|G_2|$, ..., $|G_8|$, le faisceau $|G_i|$ étant formé de courbes rencontrant en un point la droite a_i et en trois points les autres droites. Les courbes de deux quelconques de ces systèmes se rencontrent en des couples de points.

Liége, le 9 octobre 1939.

⁽¹⁾ J.-A. Todd, Configurations definited by six lines in space of three dimensions (*Proc. of the Cambridge Philos. Society*, 1932-1933, pp. 52-68). Voir aussi notre note « Sur les surfaces du quatrième ordre passant par six droites » (*Bull. de la Soc. Roy. des Sciences de Liége*, 1935, pp. 37-39).

M. HAYEZ, Imprimeur de l'Académie royale de Belgique, rue de Louvain, 112, Bruxelles. Imprimeur de l'Académie royale de Belgique.