

Marie Baratto

Kidney exchanges

Stable exchanges

Locally stable exchanges

IP formulation

Blocking Digraph

Local Kernels

Numerical Tests

Comparison formulations Comparison Stable L-stable

Local Strong Stability

Conclusion

Locally stable kidney exchanges

Marie BARATTO¹, Yves CRAMA¹, Joao Pedro PEDROSO², Ana VIANA³

April 28th 2023

- 1. HEC Management School of the University of Liège, Belgium
- 2. Faculty of Sciences of the University of Porto, Portugal
- 3. Polytechnic of Porto, School of Engineering, Portugal

Marie Baratto

Kidney exchanges

Stable exchanges

Locally stable exchanges

IP formulation

Blocking Digraph

Local Kernels

Numerical Tests

Comparison formulations Comparison Stable L-stable

Local Strong Stability

Conclusion

Kidney Exchanges

Marie Baratto

Kidney exchanges

Stable exchanges

Locally stable exchanges

IP formulation

Blocking Digraph

Local Kernels

Numerical Tests

Comparison formulations Comparison Stable L-stable

Local Strong Stability

Conclusion

Patient 1

Introduction

Patient with a kidney disease that requires a kidney transplant.

- Dialysis
- Deceased donor waiting list
- Willing donor

Patient 1

Marie Baratto

Kidney exchanges

Stable exchanges

Locally stable exchanges

IP formulation

Blocking Digraph

Local Kernels

Numerical Tests

Comparison formulations Comparison Stable L-stable

Local Strong Stability

Conclusion

Kidney exchange problem

Might not be compatible with its donor:

- Blood incompatibility
- Antigens incompatibility

Marie Baratto

Kidney exchanges

Stable exchanges

Locally stable exchanges

IP formulation

Blocking Digraph

Local Kernels

Numerical Tests

Comparison formulations Comparison Stable L-stable

Local Strong Stability

Conclusion

Kidney exchange problem

Patient 2

Donor 2

Marie Baratto

Kidney exchanges

Stable exchanges

Locally stable exchanges

IP formulation

Blocking Digraph

Local Kernels

Numerical Tests

Comparison formulations Comparison Stable L-stable

Local Strong Stability

Conclusion

Kidney exchange problem

kidney exchanges Marie Baratto

Pool of incompatible pairs

Local Strong Stability

kidney exchanges Marie Baratto Kidney exchanges

Compatibility graph

G=(V,A,w) where:

- *V* = {1, ..., *n*} set of vertices, consisting of all patient-donor pairs.
- *A*, the set of arcs, designating compatibilities between the vertices. Two vertices *i* and *j* are connected by arc (*i*, *j*) if the donor in pair *i* is compatible with the patient in pair *j*.

We denote by $C_K(G)$ be the set of feasible cycles of length at most K for G = (V, A).

8/46

Marie Baratto

Kidney exchanges

Stable exchanges

Locally stable exchanges

IP formulation

Blocking Digraph

Local Kernels

Numerical Tests

Comparison formulations Comparison Stable L-stable

Local Strong Stability

Conclusion

Definition

An **exchange** is a set of disjoint cycles in the directed graph such that every cycle length does not exceed a given limit K.

Possible exchanges

Marie Baratto

Kidney exchanges

Stable exchanges

Locally stable exchanges

IP formulation

Blocking Digraph

Local Kernels

Numerical Tests

Comparison formulations Comparison Stable L-stable

Local Strong Stability

Marie Baratto

Kidney exchanges

Stable exchanges

Locally stable exchanges

IP formulation

Blocking Digraph

Local Kernels

Numerical Tests

Comparison formulations Comparison Stable L-stable

Local Strong Stability

Marie Baratto

Kidney exchanges

Stable exchanges

Locally stable exchanges

IP formulation

Blocking Digraph

Local Kernels

Numerical Tests

Comparison formulations Comparison Stable L-stable

Local Strong Stability

Possible exchanges

Locally stable kidney exchanges

Marie Baratto

Kidney exchanges

Stable exchanges

Locally stable exchanges

IP formulation

Blocking Digraph

Local Kernels

Numerical Tests

Comparison formulations Comparison Stable L-stable

Local Strong Stability

Conclusion

Definition

An **exchange** is a set of disjoint cycles in the directed graph such that every cycle length does not exceed a given limit K.

 \rightarrow Objective is to maximize the number of patients transplanted

Marie Baratto

Kidney exchanges

Stable exchanges

Locally stable exchanges

IP formulation

Blocking Digraph

Local Kernels

Numerical Tests

Comparison formulations Comparison Stable L-stable

Local Strong Stability

- 1 Arc-based models with small number of variables but exponentially many constraints
 - Edge formulation
- Cycle-based models with a small number of constraints but exponentially many variables
 - Cycle formulation
- ③ Arc based compact models that create multiple clones of the directed graph
 - Extended edge formulation
 - EE-MTZ and SPLIT-MTZ formulations
 - Position-indexed formulations (PIEF, PICEF and HPIF)

Marie Baratto

Kidney exchanges

Stable exchanges

Locally stable exchanges

IP formulation

Blocking Digraph

Local Kernels

Numerical Tests

Comparison formulations Comparison Stable L-stable

Local Strong Stability

Conclusion

Let $C_K(K)$ be the set of all cycles in graph G = (V, A) with length at most K. **Variables**

$$y_u = \left\{ egin{array}{cc} 1 & ext{if cycle u is selected;} \ 0 & ext{otherwise} \end{array} \; \forall u \in \mathcal{C}_{\mathcal{K}}(\mathcal{K}) \end{array}
ight.$$

Objective function

$$\max \sum_{u \in C_K(K)} w_u y_u$$

$$\sum_{\substack{u \in C_{K}(K): i \in u \\ y_{u} \in \{0, 1\} \forall u \in C_{K}(K)}} \forall i \in V$$

kidney

exchanges

Marie Baratto

Variants

Altruistic donors

٠

EQUIS

IÈGE

Management School - Liège Université

Marie Baratto

Kidney exchanges

Stable exchanges

Locally stable exchanges

IP formulation

Blocking Digraph

Local Kernels

Numerical Tests

Comparison formulations Comparison Stable L-stable

Local Strong Stability

Conclusion

Stable Exchanges

Marie Baratto

Kidney exchanges

Stable exchanges

Locally stable exchanges

IP formulation

Blocking Digraph

Local Kernels

Numerical Tests

Comparison formulations Comparison Stable L-stable

Local Strong Stability

Conclusion

Stable exchange

For each vertex $i \in V$, a preference order is given on the set of its in-neighbors. That is $N^{-}(i) := \{j : (j, i) \in A\}$.

For a given **node** *i*, **a preference** p **associated to node** *j* means that the recipient of the pair *i* ranks the donor of pair *j* at position *p* in its preferences list of acceptable donors.

Marie Baratto

Kidney exchanges

Stable exchanges

Locally stable exchanges

IP formulation

Blocking Digraph

Local Kernels

Numerical Tests

Comparison formulations Comparison Stable L-stable

Local Strong Stability

Conclusion

Stable exchange

Definition

A **blocking cycle** u for an exchange \mathcal{M} is a cycle that is not included in \mathcal{M} and such that, for every vertex $i \in V(u)$, i prefers u to \mathcal{M} . We say that vertex i prefers the cycle u to the exchange \mathcal{M} if either

- $i \notin V(\mathcal{M})$, or
- $i \in V(\mathcal{M})$, $(k, i) \in A(u)$, $(k', i) \in A(\mathcal{M})$, and *i* prefers *k* to *k'*.

Marie Baratto

Kidney exchanges

Stable exchanges

Locally stable exchanges

IP formulation

Blocking Digraph

Local Kernels

Numerical Tests

Comparison formulations Comparison Stable L-stable

Local Strong Stability

Conclusion

Stable exchange

Definition

A **blocking cycle** u for an exchange \mathcal{M} is a cycle that is not included in \mathcal{M} and such that, for every vertex $i \in V(u)$, i prefers u to \mathcal{M} . We say that vertex i prefers the cycle u to the exchange \mathcal{M} if either

- $i \notin V(\mathcal{M})$, or
- $i \in V(\mathcal{M})$, $(k, i) \in A(u)$, $(k', i) \in A(\mathcal{M})$, and *i* prefers *k* to *k'*.

Marie Baratto

Kidney exchanges

Stable exchanges

Locally stable exchanges

IP formulation

Blocking Digraph

Local Kernels

Numerical Tests

Comparison formulations Comparison Stable L-stable

Local Strong Stability

Conclusion

Stable exchange

Definition

A **blocking cycle** u for an exchange \mathcal{M} is a cycle that is not included in \mathcal{M} and such that, for every vertex $i \in V(u)$, i prefers u to \mathcal{M} . We say that vertex i prefers the cycle u to the exchange \mathcal{M} if either

- $i \notin V(\mathcal{M})$, or
- $i \in V(\mathcal{M})$, $(k, i) \in A(u)$, $(k', i) \in A(\mathcal{M})$, and *i* prefers *k* to *k'*.

 \rightarrow Vertex 4 is unmatched in exchange $\mathcal M$ in blue

Marie Baratto

Kidney exchanges

Stable exchanges

Locally stable exchanges

IP formulation

Blocking Digraph

Local Kernels

Numerical Tests

Comparison formulations Comparison Stable L-stable

Local Strong Stability

Conclusion

Definition

A **blocking cycle** u for an exchange \mathcal{M} is a cycle that is not included in \mathcal{M} and such that, for every vertex $i \in V(u)$, i prefers u to \mathcal{M} . We say that vertex i prefers the cycle u to the exchange \mathcal{M} if either

- $i \notin V(\mathcal{M})$, or
- $i \in V(\mathcal{M})$, $(k, i) \in A(u)$, $(k', i) \in A(\mathcal{M})$, and *i* prefers *k* to *k'*.

 \rightarrow Vertex 5 is unmatched in exchange \mathcal{M} in blue

Stable exchange

Marie Baratto

Kidney exchanges

Stable exchanges

Locally stable exchanges

IP formulation

Blocking Digraph

Local Kernels

Numerical Tests

Comparison formulations Comparison Stable L-stable

Local Strong Stability

Conclusion

Stable exchange

Definition

A **blocking cycle** *u* for an exchange \mathcal{M} is a cycle that is not included in \mathcal{M} and such that, for every vertex $i \in V(u)$, *i* prefers *u* to \mathcal{M} . We say that vertex *i* prefers the cycle *u* to the exchange \mathcal{M} if either

- $i \notin V(\mathcal{M})$, or
- $i \in V(\mathcal{M}), (k, i) \in A(u), (k', i) \in A(\mathcal{M})$, and *i* prefers *k* to *k'*.

 \rightarrow Vertex 2 prefers cycle red because the donor of pair 4 is number one on its preference list and donor of pair 1 is at at the second position of its preference list.

Marie Baratto

Kidney exchanges

Stable exchanges

Locally stable exchanges

IP formulation

Blocking Digraph

Local Kernels

Numerical Tests

Comparison formulations Comparison Stable L-stable

Local Strong Stability

Conclusion

Stable exchange

Definition

A **blocking cycle** u for an exchange \mathcal{M} is a cycle that is not included in \mathcal{M} and such that, for every vertex $i \in V(u)$, i prefers u to \mathcal{M} . We say that vertex i prefers the cycle u to the exchange \mathcal{M} if either

- $i \notin V(\mathcal{M})$, or
- $i \in V(\mathcal{M})$, $(k, i) \in A(u)$, $(k', i) \in A(\mathcal{M})$, and *i* prefers *k* to *k'*.

Definitions - Stability

Locally stable kidney exchanges

Marie Baratto

Kidney exchanges

Stable exchanges

Locally stable exchanges

IP formulation

Blocking Digraph

Local Kernels

Numerical Tests

Comparison formulations Comparison Stable L-stable

Local Strong Stability

Conclusion

Definition

A **blocking cycle** *u* for an exchange \mathcal{M} is a cycle that is not included in \mathcal{M} and such that, for every vertex $i \in V(u)$, *i* prefers *u* to \mathcal{M} . We say that vertex *i* prefers the cycle *u* to the exchange \mathcal{M} if either

• $i \notin V(\mathcal{M})$, or

• $i \in V(\mathcal{M})$, $(k, i) \in A(u)$, $(k', i) \in A(\mathcal{M})$, and *i* prefers *k* to *k'*.

Definition

Given a directed graph G = (V, A), an exchange is called **stable** if no blocking cycle *c* exists for \mathcal{M} .

Marie Baratto

Kidney exchanges

Stable exchanges

Locally stable exchanges

IP formulation

Blocking Digraph

Local Kernels

Numerical Tests

Comparison formulations Comparison Stable L-stable

Local Strong Stability

Conclusion

Stable exchange - Drawback

Definition

A **blocking cycle** u for an exchange \mathcal{M} is a cycle that is not included in \mathcal{M} and such that, for every vertex $i \in V(u)$, i prefers u to \mathcal{M} . We say that vertex i prefers the cycle u to the exchange \mathcal{M} if either

- $i \notin V(\mathcal{M})$, or
- $i \in V(\mathcal{M}), (k, i) \in A(u), (k', i) \in A(\mathcal{M})$, and *i* prefers *k* to *k'*.

Locally stable exchange

Locally stable kidney exchanges

Marie Baratto

Kidney exchanges

Stable exchanges

Locally stable exchanges

IP formulation

Blocking Digraph

Local Kernels

Numerical Tests

Comparison formulations Comparison Stable L-stable

Local Strong Stability

Conclusion

Definition

A locally blocking cycle u for an exchange \mathcal{M} is a cycle that is not included in \mathcal{M} but has a vertex in common with \mathcal{M} and such that, for every vertex $i \in V(u)$, i prefers u to \mathcal{M} .

We say that vertex *i* prefers the cycle u to the exchange M if either

- $i \notin V(\mathcal{M})$, or
- $i \in V(\mathcal{M})$, $(k, i) \in A(u)$, $(k', i) \in A(\mathcal{M})$, and *i* prefers *k* to *k'*.

Definition

Given a directed graph G = (V, A), an exchange is called **locally stable** (L-stable) if no L-blocking cycle *c* exists for M.

kidney exchanges Marie Baratto

Locally stable exchanges

Aim

Stability

known notion, stable marriage problem, stable rommate problem

VS.

Local Stability ...

- · In the context of KE, local stability seems more relevant
- Our aim is to better know that notion
- Formulation(s)

• ...

Comparison with stability

28/46

Marie Baratto

- Kidney exchanges
- Stable exchanges

Locally stable exchanges

- IP formulation
- Blocking Digraph
- Local Kernels

Numerical Tests

Comparison formulations Comparison Stable L-stable

Local Strong Stability

Conclusion

For each cycle *u*, one can define two sets of cycles:

- $\mathcal{B}(u) :=$ the set of cycles blocking $\{u\}$
- $\mathcal{F}(u) :=$ the set of cycles not blocking *u* and not blocked by $\{u\}$.

If two cycles *u* and *v* intersect, three situations can occur:

- u is blocking $\{v\} := u \in \mathcal{B}(v)$
- v is blocking $\{u\} := v \in \mathcal{B}(u)$
- *u* is not blocking *v* and *v* is not blocking $u := u \in \mathcal{F}(v)$ and $v \in \mathcal{F}(u)$

Marie Baratto

Kidney exchanges

Stable exchanges

Locally stable exchanges

IP formulation

Blocking Digraph

Local Kernels

Numerical Tests

Comparison formulations Comparison Stable L-stable

Local Strong Stability

Conclusion

Variables

Formulation

$$y_u = \begin{cases} 1 \text{ if cycle u is selected;} \\ 0 \text{ otherwise} \end{cases} \quad \forall u \in C(K) \end{cases}$$

Objective function

 $y_u \leq \sum_{w \in \mathcal{B}(v) \cup \mathcal{F}(v)} y_w$

 $y_v \in \{0, 1\}$

 $\max \sum_{u \in C(K)} w_u y_u$

Constraints

$$y_u + y_v \le 1$$
 $\forall u \in \mathcal{C}_K(G), \forall v \in \mathcal{B}(u) \cup \mathcal{F}(u)$ (1)

$$\forall u \in \mathcal{C}_{\mathcal{K}}(G), \forall v \in \mathcal{B}(u)$$
 (2)

$$\forall v \in \mathcal{C}_{\mathcal{K}}(G) \tag{3}$$

Management School - Liège Université

1 Constraints (4) ensure the independence of the cycles selected

2 Constraints (5) ensure the local stability of the exchange HEC.L

kidney exchanges Marie Baratto

Constraints

$$y_u + y_v \le 1$$
 $\forall u \in \mathcal{C}_{\mathcal{K}}(G), \forall v \in \mathcal{B}(u) \cup \mathcal{F}(u)$ (4)

$$\forall u \in \mathcal{C}_{\mathcal{K}}(G), \forall v \in \mathcal{B}(u)$$
 (5)

$$y_{\nu} \in \{0,1\}$$
 $\forall \nu \in \mathcal{C}_{\mathcal{K}}(G)$ (6)

- 1 Constraints (4) ensure the independence of the cycles selected
- 2 Constraints (5) ensure the local stability of the exchange

 $y_u \leq \sum_{w \in \mathcal{B}(v) \cup \mathcal{F}(v)} y_w$

Local Kernels

Numerical Tests

Comparison formulations Comparison Stabl L-stable

Local Strong Stability

Marie Baratto

- Kidney exchanges
- Stable exchanges
- Locally stable exchanges
- IP formulation

Blocking Digraph

Local Kernels

Numerical Tests

Comparison formulations Comparison Stable L-stable

Local Strong Stability

Conclusion

Definition

Starting from the initial directed graph G = (V, A), lets construct a directed graph G' = (V', A') such that:

- For each $v \in C_{\mathcal{K}}(G)$ there is a vertex v in V' representing that cycle.
- An arc $(u, v) \in A'$ if $v \in \mathcal{B}(u)$ or if $v \in \mathcal{F}(u)$.
- G' is the **blocking directed graph** associated to G.

Marie Baratto

- Kidney exchanges
- Stable exchanges
- Locally stable exchanges
- IP formulation
- Blocking Digraph
- Local Kernels

Numerical Tests

Comparison formulations Comparison Stable L-stable

Local Strong Stability

Conclusion

(Local) Kernel - Definitions

Definition

Given a directed graph G' = (V', A'), subset $S \subseteq V'$ is a **kernel** of G' if it is independent and absorbing. That is:

- for all $(u, v) \in A'$ either $u \notin S$ or $v \notin S$
- for every $v \notin S$ there exists a vertex $u \in S$ such that $(v, u) \in A'$

Marie Baratto

Kidney exchanges

Stable exchanges

Locally stable exchanges

IP formulation

Blocking Digraph

Local Kernels

Numerical Tests

Comparison formulations Comparison Stable L-stable

Local Strong Stability

Conclusion

Definition

A **local kernel** of G is an independent subset S of vertices such that every neighbor (or out-neighbor) of S is absorbed by S.

Marie Baratto

Kidney exchanges

Stable exchanges

Locally stable exchanges

IP formulation

Blocking Digraph

Local Kernels

Numerical Tests

Comparison formulations Comparison Stable L-stable

Local Strong Stability

Conclusion

Result

A L-kernel in G' defines a L-stable exchange in G.

and a kernel in G' defines a stable exchange in G.

Marie Baratto

Kidney exchanges

Stable exchanges

Locally stable exchanges

IP formulation

Blocking Digraph

Local Kernels

Numerical Tests

Comparison formulations Comparison Stable L-stable

Local Strong Stability

Conclusion

Result

The empty set $S = \emptyset$ is an L-kernel. So, every directed graph has an L-kernel (but not necessarily a not empty one).

Result

Given a directed graph G = (V, A), deciding whether G has a nonempty local kernel is NP-complete.

Reduction from SAT

Result

Given a directed graph, the cardinality of its maximum L-kernel is greater or equal than the cardinality of its maximum kernel (if there is one).

Marie Baratto

Kidney exchanges

Stable exchanges

Locally stable exchanges

IP formulation

Blocking Digraph

Local Kernels

Numerical Tests

Comparison formulations Comparison Stable L-stable

Local Strong Stability

Marie Baratto

Kidney exchanges

Stable exchanges

Locally stable exchanges

IP formulation

Blocking Digraph

Local Kernels

Numerical Tests

Comparison formulations Comparison Stable L-stable

Local Strong Stability

Conclusion

Formulation (bis)

$$y_u + y_v \le 1$$
 $\forall (u, v) \in A'$ (7)

$$u \leq \sum_{w \in N^+(v)} y_w \qquad \forall (u, v) \in A'$$
 (8)

$$y_{\nu} \in \{0,1\} \qquad \forall \nu \in V'$$
(9)

• Independence constraint (7) can be replaced by

$$\sum_{u \in \mathcal{C}_{\mathcal{K}}(G): i \in V(u)} y_u \le 1 \qquad \forall i \in V$$
(10)

Stability/Absorbing constraint (8) can be replaced by fixing *v* and adding each constraint above for all (*u*, *v*) ∈ *A*′:

$$\sum_{w \in N^-(v)} y_w \le |N^-(v)| \sum_{w \in N^+(v)} y_w \qquad \forall v \in V'$$
(11)

where
$$N^{-}(v) = |\{w : (w, v) \in A'\}|.$$

V

Marie Baratto

- Kidney exchanges
- Stable exchanges
- Locally stable exchanges
- **IP** formulation
- Blocking Digraph
- Local Kernels

Numerical Tests

Comparison formulations Comparison Stable L-stable

Local Strong Stability

Conclusion

Numerical Tests

SB

Marie Baratto

Kidney exchanges

Stable exchanges

Locally stable exchanges

IP formulation

Blocking Digraph

Local Kernels

Numerical Tests

Comparison formulations

Comparison Stable -L-stable

Local Strong Stability

Conclusion

Comparison LP formulations Comparison between 4 formulations:

- 1 Initial formulation for L-stable exchange (Form-LS) (7)-(8)
- Porm-LS with stability constraints modified (7)-(11)
- 3 Form-LS with independence constraints modified (10)-(8)
- Form-LS with independence constraints and stability constraints modified (10)-(11)

Integrality gap:

$$Gap_{LP}^k = 100 imes rac{z_{LP}^k - z^*}{z^*}, \qquad \in [0; +\infty[$$

- Formulation 1 and 2 $Gap_{LP} \in [112; 6094]$
- Formulation 3 and 4 Gap_{LP} < 35%

Marie Baratto

- Kidney exchanges
- Stable exchanges

Locally stable exchanges

IP formulation

Blocking Digraph

Local Kernels

Numerical Tests

Comparison formulations

Comparison Stable -L-stable

Local Strong Stability

Conclusion

Comparison IP formulations

- Initial formulation for L-stable exchange (Form-LS) (7)-(8)
- 2 Form-LS with stability constraints modified (7)-(11)
- 3 Form-LS with independence constraints modified (10)-(8)
- Form-LS with independence constraints and stability constraints modified (10)-(11)

Best IP formulation for L-stable exchanges in terms of computation time:

Marie Baratto

Kidney exchanges

Stable exchanges

Locally stable exchanges

IP formulation

Blocking Digraph

Local Kernels

Numerical Tests

Comparison formulations

Comparison Stable -L-stable

Local Strong Stability

Conclusion

Stability

VS.

Local Stability ...

CSR

Aim

Marie Baratto

- Kidney exchanges
- Stable exchanges
- Locally stable exchanges
- IP formulation
- Blocking Digraph
- Local Kernels
- Numerical Tests
- Comparison formulations
- Comparison Stable -L-stable
- Local Strong Stability
- Conclusion

Stability vs Local stability

• Problem of maximum stable exchange(SE) and problem of maximum L-stable exchange (LSE) are not the same problems (not the same set of feasible solutions) **BUT** we can compare the objective value of both problems

- ♦ SE problem: Some instances do not have an optimal solution (K = 2, 72 out of 600 tested 12%)
- ◇ LSE problem: All instances have an optimal solution.
 (K = 2, 1 out of 600 tested has a solution of cardinality zero 0.2%)
 - for N=200,
 - 1 45 out of 50 instances have a stable exchange
 - 2 50 out of 50 instances have a locally stable exchange > 0
 - 3 45 instances stable exchange = locally stable exchange
 - 4 45: average optimal value is 105.8
 - 5: average optimal value is 43.8

kidney exchanges Marie Baratto

Local Strong Stability

Local Strong Stability

CSR

Marie Baratto

- Kidney exchanges
- Stable exchanges
- Locally stable exchanges
- IP formulation
- Blocking Digraph
- Local Kernels

Numerical Tests

Comparison formulations Comparison Stable L-stable

Local Strong Stability

Conclusion

New notion of stability: Local stability

- Revelant in the context of kidney exchanges
- IP Formulations
- Link between (local) stable exchanges and (local) kernels in an associated digraph
- Many digraphs have a local stable exchange (> 0) without having a stable exchange

Further research

• ...

- Investigate the relevance of local stability for different classes of matching problems
- Strengthen the formulations

Marie Baratto

Kidney exchanges

Stable exchanges

Locally stable exchanges

IP formulation

Blocking Digraph

Local Kernels

Numerical Tests

Comparison formulations Comparison Stable L-stable

Local Strong Stability

Conclusion

Locally stable exchanges

Marie BARATTO¹, Yves CRAMA¹, Joao Pedro PEDROSO², Ana VIANA³

marie.baratto@uliege.be

- 1. HEC Management School of the University of Liège, Belgium
- 2. Faculty of Sciences of the University of Porto, Portugal
- 3. Polytechnic of Porto, School of Engineering, Portugal

