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Apollo program (1961 – 1972)
Inertial navigation with an extended Kalman filter

Drift of inertial measurement unit (IMU) 
corrected by measuring stellar alignments



Inertial
measurement

unit (IMU)

IMU Frame

World Frame
[1] F. Rauscher, S. Nann, and O. Sawodny, "Motion control of an overhead crane using a 
wireless hook mounted IMU." in IEEE Annual American Control Conference (ACC), 2018.



Information about the crane :

• Measured cable length
• Cable straight at all time
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Noise-free pseudo-measurements in extended Kalman filtering:

• Use a classical EKF with small noise covariance

Error distribution not consistent with the constraint

Constraint almost satisfied depending on noise variance



Noise-free pseudo-measurements in extended Kalman filtering:

• Use a classical EKF with small noise covariance

• EKF with linearized equality constraint +  state projection on the equality constraint       
(D. Simon et al., 2002)

[2] D. Simon and Tien Li Chia, "Kalman filtering with state equality constraints“, in IEEE Transactions on Aerospace 
and Electronic Systems, vol. 38, no. 1, pp. 128-136, Jan. 2002.

Error distribution not consistent with the constraint

Constraint almost satisfied depending on noise variance

Arbitrary choice in projection method

Error distribution not consistent with the constraint



Design an Iterated Invariant Extended Kalman Filter (IIEKF) 
able to incorporate equality constraints

as noise-free pseudo-measurements
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➢ Handling noise-free pseudo-measurements with an IEKF

3. Application to IMU pose estimation for the hook of a crane
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First problem:
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Kalman gain with noise-free measurements :
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can be rank deficient
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Second problem:



Noise-free pseudo-measurements in extended Kalman filtering

Second problem: state update inconsistency



Noise-free pseudo-measurements in extended Kalman filtering
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Noise-free pseudo-measurements in extended Kalman filtering
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Noise-free pseudo-measurements in extended Kalman filtering

Third problem:

Riccati update inconsistency
but



Problem 3:       Riccati update inconsistency

Problem 2:       state update inconsistency

Noise-free pseudo-measurements in extended Kalman filtering

Problem 1:                        rank deficiency
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State embedded into a matrix Lie group (Axel Barrau and Silvère Bonnabel, 2016): 

Invariant filtering in a nutshell

[3] A. Barrau and S. Bonnabel, “Invariant Kalman filtering”, in Annual Review of Control, Robotics, and Autonomous Systems, vol. 1, p. 
237-257, 2018.



State embedded into a matrix Lie group (Axel Barrau and Silvère Bonnabel, 2016): 

with

Left- or right-invariant estimation error :

or

[3] A. Barrau and S. Bonnabel, “Invariant Kalman filtering”, in Annual Review of Control, Robotics, and Autonomous Systems, vol. 1, p. 
237-257, 2018.

Invariant filtering in a nutshell



[4] A. Barrau and S. Bonnabel, "The invariant extended Kalman filter as a stable observer.“, IEEE Transactions on Automatic Control, 
vol. 62, no 4, p. 1797-1812, 2016.

or

Output function 
in left- or right-invariant form: Invariant filtering Jacobian H_

independent from the trajectory

[3] A. Barrau and S. Bonnabel, “Invariant Kalman filtering”, in Annual Review of Control, Robotics, and Autonomous Systems, vol. 1, p. 
237-257, 2018.
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[4] A. Barrau and S. Bonnabel, "The invariant extended Kalman filter as a stable observer.“, IEEE Transactions on Automatic Control, 
vol. 62, no 4, p. 1797-1812, 2016.

or

Output function 
in left- or right-invariant form: Invariant filtering Jacobian H_

independent from the trajectory

[3] A. Barrau and S. Bonnabel, “Invariant Kalman filtering”, in Annual Review of Control, Robotics, and Autonomous Systems, vol. 1, p. 
237-257, 2018.

Example (left-invariant case):

Linearization around

Invariant filtering in a nutshell
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Handling noise-free pseudo-measurements with an IEKF

with the Moore-Penrose pseudo-inverse and 

➢ Solving problem 1 (rank deficiency of                 )



➢ Solving problem 2 (state update inconsistency)

Use the Gauss-Newton algorithm to bring the estimate onto the right 
subgroup.
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➢ Solving problem 3 (Riccati update inconsistency)

Handling noise-free pseudo-measurements with an IEKF

independent from the current estimate

enforced at       and

Invariant framework
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Hook pose:

rotation matrix
(IMU to world frame)

IMU velocity vector
in world frame

IMU position vector
in world frame

IMU Frame

World Frame

Application to IMU pose estimation for the hook of a crane

[5] Axel Barrau, ”Non-linear state error based extended Kalman 
filters with applications to navigation”, Diss. Mines Paristech, 2015.



Application to IMU pose estimation for the hook of a crane

System dynamics:



with the cable length and     the 
position of the hang-up point in the 
world frame.

System dynamics :

Pseudo-measurement :

Application to IMU pose estimation for the hook of a crane



Application to IMU pose estimation for the hook of a crane

Length profile :

Simulation :

• Hook initial inclination is w.r.t. the vertical (ground truth)

• No initial angular velocities and known initial azimuthal angle
motion in a plane to avoid observability issues

• Random initial estimation error



Application to IMU pose estimation for the hook of a crane
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IIEKF



Conclusion

• Equality constraints can be seen as noise-free pseudo-measurements

• We tackled the issues stemming from the noise-free nature of pseudo-measurments
and developed a filter that can be applied to a wide range of problems involving
equality constraints:

➢ Rank deficiency (Kalman gain)
➢ State update inconsistency
➢ Riccati update inconsistency

• The noise-free IEKF outperformed the other filters in a simple pose estimation 
simulation. 

Noise-free gain 
Iterative algorithm
IEKF framework
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Back-up slides



Simulation : Crane state estimation

Cable length :

Estimation error (en back-up):

with ➢

➢ the left-Jacobian of group

SO(3) evaluated at 
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