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Polyhedral results for two-connected networks

with bounded rings

Abstract. We study the polyhedron associated with a network design problem which consists
in determining at minimum cost a two-connected network such that the shortest cycle to which
each edge belongs (a “ring”) does not exceed a given length K.

We present here a new formulation of the problem and derive facet results for different
classes of valid inequalities. We study the separation problems associated to these inequalities
and their integration in a Branch-and-Cut algorithm, and provide extensive computational
results.

1. Introduction

We consider the problem of designing a minimum cost network N with the
following constraints:

1. The network N contains at least two node-disjoint paths between every pair
of nodes (2-connectivity constraints),
and

2. each edge of N belongs to at least one cycle whose length is bounded by a
given constant K (ring constraints).

This problem is called the Two-Connected Network with Bounded Rings (2CNBR)
problem. It was first studied by Fortz et al. [6].

In recent years, many works on telecommunication network design have fo-
cused on low-connectivity constrained network design problems, in which one
wants to design a network with a minimum prespecified number of (edge or
node) disjoint paths between any pair of nodes. The polyhedra associated with
these problems have been widely studied (see e.g. Grötschel and Monma [9],
Grötschel et al. [12], Stoer [15], Mahjoub [13], Biha and Mahjoub [4], and oth-
ers. An extensive survey is available in Fortz [5]).
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As pointed out in Fortz et al. [6], the ring constraints are a relevant extension
as the optimal two-connected network turns out to be often a Hamiltonian cycle.
Although they present valid inequalities for this problem, little is known about
the structure of the associated polyhedron. Fortz et al. propose an extended
formulation of the problem that is projected on the space of design variables.
We introduce here an alternate formulation based only on design variables, and
then study several classes of valid inequalities for which we present facet results.
The formulation is presented in Section 2, where we also study the dimension
of the polytope and trivial facets. In Section 3, we study cut constraints that
impose two-edge connectivity. These constraints are strengthened when they are
not facet inducing, leading to ring-cut inequalities that are presented in Section 4.
In Section 5, we study when subset inequalities (coming from the formulation
of Section 2) are facet-defining and their relation with node-cut inequalities.
The last inequalities studied are node-partition inequalities in Section 6. The
separation problems coming from all these inequalities are studied in Section 7
and are embedded in a branch-and-cut algorithm. Feasibility checking is also an
important issue discussed in this section. Results of our experiments with the
branch-and-cut algorithm are presented in Section 8.

2. Mathematical formulation and associated polyhedron

We present here a new mathematical formulation of the 2CNBR problem based
on a set covering approach. We first introduce some notation.

Given a graph G = (V,E) and W ⊂ V , the edge set

δ(W ) := {{i, j} ∈ E | i ∈ W, j ∈ V \W}

is called the cut induced by W . We write δG(W ) to make clear — in case of
possible ambiguities — with respect to which graph the cut induced by W is
considered. The degree of a node v is the cardinality of δ(v). The set

E(W ) := {{i, j} ∈ E | i ∈ W, j ∈ W}

is the set of edges having both end nodes inW . We denote byG(W ) = (W,E(W ))
the subgraph induced by the edges having both end nodes in W . If E(W ) is
empty, W is an independent set. G/W is the graph obtained from G by con-
tracting the nodes in W to a new node w (retaining parallel edges).

We denote by V − z := V \{z} and E − e := E\{e} the subsets obtained by
removing one node or one edge from the set of nodes or edges. G − z denotes
the graph (V − z, E\δ({z})), i.e. the graph obtained by removing a node z and
its incident edges from G. This is extended to a subset Z ⊂ V of nodes by the
notation G− Z := (V \Z,E\(δ(Z) ∪ E(Z))).

Each edge e := {i, j} ∈ E, has a fixed cost ce := cij ≥ 0 representing the
cost of establishing the direct link connection, and a length de ≥ 0. The cost of
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a network N = (V, F ), where F ⊆ E is a subset of possible edges, is denoted
by c(F ) :=

∑

e∈F

ce. The distance between two nodes i and j in this network is

denoted by dF (i, j) and is given by the length of the shortest path between these
two nodes in F . In E, the distance is simply denoted d(i, j) := dE(i, j).

A useful tool to analyze feasible solutions of 2CNBR is the restriction of a
graph to bounded rings. Given a graph G = (V,E) and a constant K > 0, we
define for each subset of edges F ⊆ E its restriction to bounded rings FK as

FK :=

{

e ∈ F :
e belongs to at least one cycle
of length less than or equal to K in F

}

.

The subgraph GK = (V,EK) is the restriction of G to bounded rings. Note that
an edge e ∈ E\EK will never belong to a feasible solution of 2CNBR.

In order to formulate the 2CNBR problem, we associate with every subset
F ⊆ E an incidence vector xF = (xF

e )e∈E ∈ {0, 1}|E| by setting

xF
e :=

{

1 if e ∈ F,
0 otherwise .

Conversely, each vector x ∈ {0, 1}|E| induces a subset

F x := {e ∈ E | xe = 1}.

Further we denote by DG,K the set of incidence vectors xF with F ⊆ E such
that

1. F is two-connected,
2. F = FK .

Then, the 2CNBR problem consists in

min

{

∑

e∈E

cexe : x ∈ DG,K

}

.

As we show in Section 7.1, checking that GK is two-connected, i.e. that
DG,K is nonempty, can be done in polynomial time. We therefore assume in
the remainder of this paper that there always exists a feasible solution to the
problem.

Since all costs ce, e ∈ E are assumed to be nonnegative, there always exists
an optimal solution of 2CNBR whose induced graph is minimal with respect to
inclusion. More precisely, if FK is two-connected, as F ⊇ FK , F is also two-
connected and the cost of F is greater than or equal to the cost of FK . We can
thus relax the constraints and just require that FK is two-connected for a set of
edges F to be feasible. Hence, 2CNBR can be equivalently formulated as

min

{

∑

e∈E

cexe : x ∈ {0, 1}|E| and F x
K is two-connected

}

.
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We denote by

PG,K := conv{x ∈ {0, 1}|E| : F x
K is two-connected}

the polyhedron associated to the 2CNBR problem.

For any subset of edges F ⊆ E we define

x(F ) :=
∑

e∈F

xe.

We also denote by ei the i-th unit vector in lRn.

If a subset of edges S ⊆ E is such that (G− S)K is not two-connected, then
G − S does not contain a feasible solution, and therefore each feasible solution
contains at least one edge from S. As we are only interested in minimal feasible
solutions, this is sufficient to formulate the 2CNBR problem as the following
integer linear program :

min
∑

e∈E

cexe

s.t.

x(S) ≥ 1 S ⊆ E, (G− S)K is not two-connected, (1)

xe ∈ {0, 1} e ∈ E. (2)

Constraints (1) are called subset constraints.

Proposition 1. Constraints (1) and (2) provide a valid formulation of the
2CNBR problem.

Proof. Let F be a feasible solution to the 2CNBR problem and x be its incidence
vector. If (G−S)K is not two-connectedG−S does not contain a feasible solution.
Therefore, F contains at least one edge belonging to S. We can conclude that
(1) are valid inequalities for the 2CNBR problem.

Conversely, suppose that x is an optimal solution to the integer linear pro-
gram, and that it is not a feasible solution of the 2CNBR problem, i.e. F x

K is not
two-connected. Then the subset inequality x(G − F x

K) ≥ 1 is violated, which is
a contradiction. ⊓⊔

By Proposition 1,

PG,K = conv
{

x ∈ {0, 1}|E| : x(S) ≥ 1, S ⊆ E, (G− S)K is not two-connected
}

and it is a set covering polytope. The following results immediately follow from
properties of set covering polytopes.

Theorem 1. Let G = (V,E) be a graph and K > 0 a given constant.
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Fig. 1. An example for which cut constraints are not facet-defining (K = 4)

1. PG,K is fully-dimensional if and only if (G − e)K is two-connected for each
e ∈ E.

If PG,K is fully-dimensional, then, for each e ∈ E,

2. xe ≥ 0 defines a facet of PG,K if and only if (G− {e, f})K is two-connected
for all f ∈ E \ {e};

3. xe ≤ 1 defines a facet of PG,K .

Proof. Direct consequences of Proposition 2.1 in Sassano [14]. ⊓⊔

In the remainder of this paper, we assume that PG,K is fully-dimensional.

3. Cut constraints

Classical inequalities used to impose that a network is two-edge-connected are
cut constraints. These constraints are widely used to formulate the traveling
salesman problem — in this case, they are equivalent to subtour elimination
constraints — or the minimum-cost two-connected network problem. Given a
subset of nodes W ⊆ V , ∅ 6= W 6= V , the cut constraint imposes that there are
at least two edges leaving W , i.e.

x(δ(W )) ≥ 2. (3)

We want to characterize which cut constraints define facets of PG,K . Stoer [15]
(Theorem 5.4, page 51) gives necessary and sufficient conditions for these con-
straints to define facets of the polyhedron of the solutions of low-connectivity
constrained network design problems.

Unfortunately, the conditions of Stoer’s theorem are not sufficient when we
add bounded ring constraints, as illustrated by the following example. Consider
the graph G depicted in Figure 1 with unit edge lengths and a bound K = 4
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on the ring lengths. The cut defined by W = {1, 2, 3, 4, 5, 6, 7} induces the facet
x(δ(W )) ≥ 2 of the polytope of two-connected subnetworks of G. To determine
if this inequality defines a facet of PG,K , we consider the vectors of PG,K that
lie on the face, i.e. such that x(δ(W )) = 2. The pairs of edges in δ(W ) whose
incidence vectors have that property are

{4, 8} and {5, 9},

{6, 10} and {5, 9},

{6, 10} and {7, 11},

{5, 8} and {6, 9},

{7, 10} and {6, 9}.

We can easily conclude that all points in the face defined by x(δ(W )) = 2 satisfy
the following equations :

x{4,8} + x{6,10} + x{5,8} + x{7,10} = 1,

x{5,9} + x{7,11} + x{6,9} = 1.

Therefore, the dimension of the face is at most m− 2 and x(δ(W )) ≥ 2 does not
define a facet.

From this example, we see that we need additional conditions to characterize
which cut constraints are facet-defining. For any pair of edges e, f ∈ δ(W ), it is
useful to know if there exists a vector of PG,K lying in the face x(δ(W )) = 2
whose corresponding graph contains e and f . This is the case if and only if the
incidence vector of

Ce,f := E(W ) ∪ E(V \W ) ∪ {e, f}

belongs to PG,K , i.e. if (Ce,f )K is two-connected. A useful tool to represent
and analyze the vectors belonging to the face defined by a cut constraint is the
ring-cut graph defined below.

Definition 1 (Ring-cut graph).
Let G = (V,E) be a graph, K > 0 a given constant, and W ⊆ V a subset of
nodes, ∅ 6= W 6= V .
The ring-cut graph RCGW,K := (δ(W ), RCEW,K) induced by W is the graph
defined by associating one node to each edge in δ(W ) and by the set of edges

RCEW,K = {{e, f} ⊆ δ(W ) : (Ce,f )K is two-connected} .

The ring-cut graph corresponding to the previous example is depicted in
Figure 2. Note that this graph is bipartite, which implies that the cut constraint
does not define a facet, as we show below (see Theorem 2).



Polyhedral results for two-connected networks with bounded rings 7

{4,8} 

{6,10} 

{5,8} 

{7,10} 

{5,9} 

{7,11} 

{6,9} 

Fig. 2. Ring-cut graph for W = {1, 2, 3, 4, 5, 6, 7} (K = 4)

With the help of the ring-cut graph, we are now ready to characterize which
cut constraints are facet-defining. Before giving this characterization, the follow-
ing technical lemmas give a necessary condition for an inequality to be facet-
inducing and show that when this condition is satisfied, we can restrict our at-
tention to the support of an inequality — variables having non-zero coefficients
— in our facet proofs.

Lemma 1. Let aTx ≥ α be a facet-defining inequality for PG,K . For each f ∈ E,
if af = 0, there exists x̃ ∈ {0, 1}|E| such that

1. x̃f = 0,
2. F x̃

K is two-connected,
3. aT x̃ = α.

Proof. If no such x̃ exists, then the face induced by aTx ≥ α is included in the
facet defined by xf ≤ 1, and aTx ≥ α is not facet-defining. ⊓⊔

Lemma 2. Let aTx ≥ α and bTx ≥ β be two valid inequalities for PG,K , such
that the face induced by aTx = α is included in the face induced by bTx = β. If
af = 0 for some f ∈ E and if there exists x̃ ∈ {0, 1}|E| satisfying the conditions
of Lemma 1, then bf = 0.

Proof. If x̃ satisfies the conditions of Lemma 1 and if af = 0, then x̃ + ef
belongs also to the face induced by aTx = α. Since this face is included in the
face induced by bTx = β, x̃ and x̃+ ef belong to the face induced by bTx = β,
implying that

bf x̃f = bf (x̃f + 1)

and thus bf = 0. ⊓⊔
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Theorem 2. Let G = (V,E) be a graph, K > 0 a given constant, and W ⊆ V a
subset of nodes, ∅ 6= W 6= V . The inequality

x(δ(W )) ≥ 2

defines a facet of PG,K if and only if

1. for all e ∈ δ(W ), there exists f ∈ δ(W ) such that (Ce,f )K is two-connected;
2. in each connected component of RCGW,K , there exists a cycle of odd cardi-

nality;
3. for all e ∈ E(W )∪E(V \W ), there exist f, g ∈ δ(W ) such that (Cf,g \{e})K

is two-connected.

Proof.
Necessity

If there exists e ∈ δ(W ) such that for all f ∈ δ(W ), (Ce,f )K is not two-
connected, then there is no feasible solution of 2CNBR, and therefore no point
in PG,K , such that xe = 1 and x(δ(W )) = 2. The face induced by x(δ(W )) ≥ 2
is thus completely included in the face defined by xe ≥ 0, and the cut constraint
does not define a facet.

Let S ⊆ δ(W ) be a connected component of RCGW,K . If there is no cycle
of odd cardinality in the subgraph RCGW,K(S), then this subgraph is bipartite.
Therefore, there exist two subsets S1 and S2 such that S1 ∪ S2 = S, S1 ∩ S2 =
∅ and RCEW,K(S1) = RCEW,K(S2) = ∅. Any graph whose incidence vector
belongs to PG,K and lies in the face x(δ(W )) = 2 contains exactly two edges
e and f in the cut. These edges are such that (Ce,f )K is two-connected, there is
thus one edge between e and f in RCEW,K . Therefore, either one of these edges
belongs to S1 and the other to S2, or the two edges belong to δ(W )\S. It is
easy to see that this implies that the incidence vector of the graph satisfies the
following system of equalities :

2x(S1) + x(δ(W )\S) = 2,

2x(S2) + x(δ(W )\S) = 2.

This means that all points in the face x(δ(W )) = 2 satisfy a system of equalities
of dimension 2, the dimension of the face is thus at most m − 2 and the cut
constraint does not define a facet.

The necessity of the last condition is a direct consequence of Lemma 1.

Sufficiency

Let the conditions be satisfied for some inequality aTx := x(δ(W )) ≥ 2. Let
bTx ≥ β be a facet-defining inequality such that the face Fa induced by aTx ≥ 2
in PG,K is contained in the face Fb induced by bTx ≥ β. From Lemma 2 and the
last condition, we already know that be = 0 for all e ∈ E(W ) ∪ E(V \W ). The
remainder of the proof is divided in two steps : we first show that the coefficients
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of variables corresponding to edges in the same connected component of the ring-
cut graph are equal in the inequalities aTx ≥ 2 and bTx ≥ β. Then we show
that these coefficient are equal for edges belonging to different components.

1. be = γS for all e ∈ S, for all connected component S of RCGW,K .

Consider a tree rooted at k in S. In this tree, there is a unique path between
k and any l ∈ S. We can partition S in two subsets S1 and S2 where

S1 = {l ∈ S : the path from k to l contains an odd number of edges},

S2 = {l ∈ S : the path from k to l contains an even number of edges}.

Since S contains a cycle of odd cardinality, either S1 or S2 contains at least
two elements. Assume without loss of generality that e, f ∈ S1, e 6= f . By the
definition of S1, the unique path from e to f in the tree contains an even number
of edges. Let e = e0, e1, . . . , e2j = f be this path. By the definition of the ring-
cut graph, the existence of this path means that (Cei,ei+1

)K and (Cei+1,ei+2
)K

are two-connected for i = 0, . . . , 2(j − 1). Therefore, bei = bei+2
and

be = be0 = be2 = . . . = be2j = bf .

Thus all xe such that e ∈ S1 have the same coefficient γS1
. The same reasoning

applies to S2, and all xe such that e ∈ S2 have the same coefficient γS2
.

Since there exists a cycle of odd cardinality in S, there must exist an edge
between two nodes in S1 or between two nodes in S2. Without loss of generality,
suppose there exists an edge between e and f in S1, i.e. (Ce,f )K is two-connected.
Moreover, since S is connected, there exists an edge between some g ∈ S1 and
some h ∈ S2, and (Cg,h)K is two-connected. Thus, be + bf = bg + bh. Since
be = bf = bg = γS1

and bh = γS2
, we can conclude that

γS1
= γS2

= γS

and all edges in S have the same coefficient.

2. γS = γT for all connected components S, T of RCGW,K .

To prove that all edges in δ(W ) have the same coefficient in the inequality, it
remains to prove that the variable coefficients are equal for two edges belonging
to different connected components S and T of RCGW,K . For all e ∈ S, there
exists f such that (Ce,f )K is two-connected. Therefore, f ∈ S and be + bf =
2γS . Similarly, we can find g, h ∈ T such that (Cg,h)K is two-connected and
bg + bh = 2γT . So, be + bf = bg + bh and we can conclude that γS = γT = γ.

We have proved that b = γa. Since Fb cannot define a facet if b ≤ 0, we have
γ > 0. Thus x(δ(W )) ≥ 2 and bTx ≥ β define the same facet Fa = Fb. ⊓⊔

4. Ring-cut inequalities

We saw in Section 3 that the ring-cut graph allows to determine if a cut constraint
is facet-defining. In this section, we use the ring-cut graph to generate new valid
inequalities for the 2CNBR problem.
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Consider the graph depicted in Figure 3 with unit edge lengths and a bound
K = 4 on the ring lengths. The ring-cut graph corresponding to the cut defined
by W = {1, 2, 3, 4, 5, 6} is depicted in Figure 4. Since this graph is bipartite, it
follows from Theorem 2 that the cut constraint x(δ(W )) ≥ 2 does not define a
facet. Our aim is to find some valid inequality that dominates the cut constraint.
The cut constraint is not facet-defining because there are not enough edges in
the ring-cut graph, i.e. not enough pairs of edges e, f ∈ δ(W ) such that (Ce,f )K
is two-connected. A way to find a stronger inequality is to extend the search for
feasible points to solutions using more than two edges in the cut.

To do so, we extend the notation Ce,f to any subset S ⊆ δ(W ) by defining

CS := E(W ) ∪ E(V \W ) ∪ S.

For the example of Figure 3, we can easily enumerate all the minimal subsets
S ⊆ δ(W ) such that (CS)K is two-connected. These subsets are :

{{3, 7}, {4, 8}} ,

{{5, 7}, {4, 8}} ,

{{5, 9}, {4, 8}} ,
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Fig. 3. Graph for which some ring-cut inequalities are valid
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{6,10} 

Fig. 4. The ring-cut graph for W = {1, 2, 3, 4, 5, 6}
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{{5, 9}, {6, 10}} ,

{{3, 7}, {5, 7}, {5, 9}} .

It is easy to see that the incidence vectors of these subsets satisfy

x{3,7} + x{5,7} + x{5,9} + 2x{4,8} + 2x{6,10} = 3.

Moreover, a subset S ⊆ δ(W ) induces a two-connected (C
S
)K if and only if S

contains one of the above subsets. Therefore, any feasible solution satisfies the
inequality

x{3,7} + x{5,7} + x{5,9} + 2x{4,8} + 2x{6,10} ≥ 3.

The next proposition generalizes this result.

Proposition 2. Let G = (V,E) be a graph, K > 0 a given constant, W ⊆ V a
subset of nodes, ∅ 6= W 6= V .

If S ⊆ δ(W ) is an independent subset in the ring-cut graph RCGW,K , then

x(S) + 2x(δ(W )\S) ≥ 3 (4)

is a valid inequality for the 2CNBR problem.

Proof. Let F be a feasible solution to the 2CNBR problem and x be its incidence
vector. Since F is two-connected, x(δ(W )) ≥ 2 and therefore,

x(S) + 2x(δ(W )\S) ≥ 2.

If this inequality is satisfied as equality by F , then F contains exactly two
edges e and f in δ(W ). These edges belong to S since edges in S are the only
edges having a coefficient equal to 1 in the inequality. Moreover, (Ce,f )K is
two-connected since it includes F , thus there is an edge between e and f in the
ring-cut graph. Since S is an independent subset, this leads to a contradiction.
We can conclude that (4) is a valid inequality for the 2CNBR problem. ⊓⊔

Inequalities (4) are called ring-cut inequalities. Note that if the ring-cut graph
is bipartite, as is the case in Figure 4, then it is possible to partition δ(W ) in
two independent subgraphs S1 and S2 that define the two ring-cut inequalities

x(S1)+ 2x(S2) ≥ 3,

2x(S1)+ x(S2) ≥ 3.

The sum of these inequalities, divided by 3, gives the cut constraint x(δ(W )) ≥ 2.
Therefore, in this case, ring-cut inequalities are stronger than cut constraints.

We were not able to characterize completely which ring-cut inequalities are
facet-defining. However, we present here a set of necessary conditions, as well as
two sets of sufficient conditions.
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Theorem 3. Let G = (V,E) be a graph, K > 0 a given constant, W ⊆ V a
subset of nodes, ∅ 6= W 6= V .

If S ⊆ δ(W ) is an independent subset in the ring-cut graph RCGW,K and if

x(S) + 2x(δ(W )\S) ≥ 3

defines a facet of PG,K , then

1. for all e ∈ S, either there exists f ∈ δ(W )\S such that (Ce,f )K is two-
connected or there exist g, h ∈ S such that (C{e,g,h})K is two-connected;

2. for all e ∈ δ(W )\S, there exists f ∈ S such that (Ce,f )K is two-connected;
3. there exist e, f, g ∈ S such that (C{e,f,g})K is two-connected.

Proof. First, note that the incidence vector of a graph lies in the face defined by
(4) if and only if the graph contains three edges belonging to S and no edge in
δ(W )\S, or one edge in S and one edge in δ(W )\S.

Suppose one of the first two conditions is not satisfied for some e ∈ δ(W ). It
is easy to see from the remark above that in this case, there is no vector of PG,K

with xe = 1 lying in the face defined by (4). Therefore, this face is completely
included in the face defined by xe ≥ 0 and (4) does not define a facet.

If the third condition is not satisfied, then any graph whose incidence vector
lies in the face defined by (4) contains exactly one edge in S and one edge in
δ(W )\S. Therefore, these vectors satisfy the following system of equalities :

x(S) = 1,

x(δ(W )\S) = 1.

This means that all points in the face defined by (4) satisfy a system of equalities
of dimension 2, thus the dimension of the face is at most m− 2 and (4) does not
define a facet. ⊓⊔

Consider again the example of Section 3. The ring-cut graph depicted in
Figure 2 is bipartite, and

x{4,8} + x{6,10} + x{5,8} + x{7,10} + 2x{5,9} + 2x{7,11} + 2x{6,9} ≥ 3

is a valid ring-cut inequality. However, it is easy to check that the third condition
of Theorem 3 is not satisfied, and therefore the inequality is not facet-defining.

Theorem 4. Let G = (V,E) be a graph, K > 0 a given constant, W ⊆ V a
subset of nodes, ∅ 6= W 6= V .

If S ⊆ δ(W ) is an independent subset in the ring-cut graph RCGW,K , and if

1. the bipartite subgraph (δ(W ), δRCGW,K
(S)) of RCGW,K — obtained by con-

sidering only edges leaving S — is connected;
2. there exist e, f, g ∈ S such that (C{e,f,g})K is two-connected;
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3. for all e ∈ E(W ) ∪ E(V \W ), there exist f ∈ S and g ∈ δ(W ) \ S such that
(Cf,g \ {e})K is two-connected;

then
x(S) + 2x(δ(W )\S) ≥ 3

defines a facet of PG,K .

Proof. Let the conditions be satisfied for some inequality aTx := x(S) +
2x(δ(W )\S) ≥ 3. Let bTx ≥ β be a facet-defining inequality such that the
face Fa induced by aTx ≥ 3 in PG,K is contained in the face Fb induced by
bTx ≥ β. From Lemma 2 and the last condition, we already know that be = 0
for all e ∈ E(W )∪E(V \W ). The remaining of the proof is divided in three steps :
we first show that the coefficients of variables corresponding to edges belonging
to S are equal in the inequalities aTx ≥ 3 and bTx ≥ β. A similar proof leads to
the same result for edges in δ(W )\S, then we establish the relationship between
all the coefficients.

1. be = γ for all e ∈ S.

We first show that be has the same value γ for all edges belonging to S.
Consider two edges e, f ∈ S, e 6= f . Since (δ(W ), δRCGW,K

(S)) is connected and
bipartite, there exists a path of even cardinality from e to f in RCGW,K . By
arguments similar to those of Theorem 2, we can conclude that be = bf .

2. be = γ for all e ∈ δ(W )\S.

A similar proof leads to the fact that be has the same value γ for all edges
belonging to δ(W )\S.

3. γ = 2γ.

There exist e, f, g ∈ S such that (C{e,f,g})K is two-connected. Moreover, since
(δ(W ), δRCGW,K

(S)) is connected, there exists h ∈ δ(W )\S such that (Ce,h)K is
two-connected. Therefore, be + bf + bg = be + bh. Since be = bf = bg = γ and
bh = γ, we can conclude that γ = 2γ.

We have proved that b = γa. Since Fb cannot define a facet if b ≤ 0, we
have γ > 0. Thus x(S) + 2x(δ(W )\S) ≥ 3 and bTx ≥ β define the same facet
Fa = Fb. ⊓⊔

The example of ring-cut inequality given at the beginning of this section
satisfies these conditions, and therefore is facet-defining.

5. Node-cut and subset inequalities

After examining inequalities that impose two-edge-connectivity, we study in this
section node-cut constraints that impose two-node-connectivity. Given a node
z ∈ V and a subset of nodes W ⊂ V \{z}, ∅ 6= W 6= V \{z}, the cut induced by
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W V \W

z

W

Fig. 5. G− (δ(W )\δ({z}))

W in G− z must contain at least one edge, otherwise z is an articulation point.
The node-cut constraint is thus

x(δG−z(W )) ≥ 1. (5)

If S is the subset of edges not incident to z in the cut, i.e. S = δG−z(W ) =
δ(W )\δ({z}), it is clear that G−S is not two-connected since z is an articulation
point in this graph, as illustrated in Figure 5. Therefore, S defines a subset
inequality which is the node-cut constraint x(δG−z(W )) ≥ 1, and all node-cut
constraints are in fact subset inequalities.

The next theorem shows under which conditions subset inequalities define
facets of PG,K .

Theorem 5. Let G = (V,E) be a graph, K > 0 a given constant, and S ⊆ E a
subset of edges such that (G− S)K is not two-connected. Then

x(S) ≥ 1

defines a facet of PG,K if and only if

1. for all e ∈ S, (G− (S\{e}))K is two-connected;
2. for all f ∈ E \ S, there exists e ∈ S such that G − (S ∪ {f}\{e}))K is

two-connected.

Proof. Direct consequence of Theorem 2.1 in Sassano [14]. ⊓⊔

Consider again the graph depicted in Figure 1, with K = 4. The node-cut
constraint defined by W = {1, 2, 3, 4, 5, 6, 7} and z = 8,

x{5,9} + x{6,9} + x{6,10} + x{7,10} + x{7,11} ≥ 1,

does not define a facet since it is induced by

S = {{5, 9}, {6, 9}, {6, 10}, {7, 10}, {7, 11}}
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and (G− (S\{{7, 11}}))4 is not two-connected. Therefore,

S = {{5, 9}, {6, 9}, {6, 10}, {7, 10}}

induces a stronger subset inequality,

x{5,9} + x{6,9} + x{6,10} + x{7,10} ≥ 1.

This inequality is facet-defining since removing any edge e ∈ S from S induces
a two-connected (G− (S\{e}))K .

This shows that subset inequalities are a useful generalization of node-cut
inequalities for the 2CNBR problem. Note that subset inequalities are also valid
for two-connected networks (without ring constraints). However, in this case,
the only interesting subset inequalities (i.e. those that are facet-defining) are
node-cut constraints, as shown in the next proposition.

Proposition 3. Let G = (V,E) be a graph, and S ⊆ E a subset of edges such
that G− S is not two-connected.

If x(S) ≥ 1 defines a facet of PG,∞ then this inequality is a node-cut con-
straint.

Proof. Since G − S is not two-connected, it contains at least one articulation
point z ∈ V , or G − S is not connected, in which case z can be any node in
V for the proof to hold. Let W ⊆ V be a subset of nodes defining a connected
component of (G − S) − z. Since x(S) ≥ 1 defines a facet, by Theorem 5, for
any e ∈ S, G − (S\{e}) is two-connected. Therefore, at least one edge f of
δ(W )\δ({z}) belongs to G − (S\{e}). The only possible choice for f is f = e,
thus e ∈ δ(W )\δ({z}). We can conclude that S ⊆ δ(W )\δ({z}).

If the two sets are equal, then

S = δG−z(W )

and the subset inequality is a node-cut constraint.

Otherwise, there exists some edge e ∈ δ(W )\δ(z) such that e /∈ S, i.e. e ∈
G−S, which is in contradiction with the fact that W is a connected component
of (G− S)− z. ⊓⊔

6. Node-partition inequalities

The polyhedron of connected networks is completely described by partition in-
equalities (Grötschel and Monma [9]). Given a partition W1,W2, . . . ,Wp (p ≥ 2)
of V into p nonempty subsets, the corresponding partition inequality is

1

2

p
∑

i=1

x(δ(Wi)) ≥ p− 1.
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Since a two-connected network remains connected when a node is removed,

1

2

p
∑

i=1

x(δG−z(Wi)) ≥ p− 1

is a valid inequality for the polyhedron of two-connected networks, and there-
fore for 2CNBR, where W1,W2, . . . ,Wp (p ≥ 2) is a partition of V \{z}. These
inequalities are called node-partition inequalities (Grötschel and Monma [9]).

The following theorem gives sufficient conditions for node-partition inequal-
ities to define facets of PG,K .

Theorem 6. Let G = (V,E) be a graph, K > 0 a given constant, z ∈ V a node
of the graph and W1,W2, . . . ,Wp (p ≥ 2) a partition of V \{z}. Let Ĝ denote the
graph (GK − z)/W1/ . . . /Wp. If

1. Ĝ is two-connected;
2. (G(Wi ∪ {z})− e)K is two-connected for all e ∈ G(Wi ∪ {z});
3. For all e := {i, j} with i ∈ Wi and j ∈ Wj, i 6= j,

– {z, i, j} form a feasible cycle;
– for all f ∈ δ({z}), there exists a feasible cycle C using z and e, not using
f , such that |C ∩ δ(Wk)| ≤ 2 for k = 1, ..., p.

then

aTx :=
1

2

p
∑

i=1

x(δG−z(Wi)) ≥ p− 1

defines a facet of PG,K .

Proof. Let the conditions be satisfied. We show that there are |E| affinely inde-
pendent vectors in the face defined by the node-partition inequality.

Let E′ be the set of all edges whose coefficients in aTx ≥ p− 1 are equal to
zero, i.e.

E′ =

p
⋃

i=1

E(Wi) ∪ δ(z).

By the first condition, the graph Ĝ = (V̂ , Ê) contains |Ê| spanning trees whose
incidence vectors are affinely independent (see Theorem 4.10 in [9]). Any such
tree of Ĝ can be augmented by E′

K to a set C ⊆ E whose incidence vector
belongs to PG,K . To prove this, we will show that C = CK . By Theorem 6.3 in
[11], the first two conditions imply that C is two-connected, and therefore the
incidence vector of C = CK belongs to PG,K .

Consider an edge e := {i, j} ∈ C arising from the tree in Ĝ. By the third
condition, {z, i, j} form a feasible cycle and e ∈ CK . If e ∈ E′

K , then e ∈ CK by
the second condition. Therefore, C ⊆ CK . The reverse inclusion is obvious.
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We have thus constructed |Ê| affinely independent vectors lying in the face
aTx ≥ p− 1.

Now consider an edge f ∈ E′. If there exists some vector in the |Ê| vector
constructed before such that xf = 0, then setting xf = 1 in this vector leads to
a new vector affinely independent with the others. If xf = 1 for all the vectors in
the family above, the same proof as before applied to C\{f} instead of C implies
that the incidence vector of C\{f} belongs to PG,K , for any C of the family. We

have now |Ê| + |E′| = |E| − |δ({z})| affinely independent vectors lying in the
face.

Consider e := {wi, z} ∈ δ({z}), with wi ∈ Wi. We construct a tree T̂ in
Ĝ, corresponding to a subset of edges T in E, such that (T ∪ E′\{e})K is two-
connected, leading to |δ({z})| new affinely independent vectors lying in the face.

Let f ∈ δG−z(Wi) be an edge incident to wi. By the last condition, there
exists a feasible cycle using f and z but not e. Let T be the set of edges in this

cycle that belong to
p
⋃

i=1

δG−z(Wi). The corresponding edges in T̂ form a path

in Ĝ, as each Wi is crossed at most once by the cycle by the last part of the
condition. Since T was constructed from a feasible cycle, we have T ∪E′\{e} =
(T ∪ E′\{e})K .

If T̂ is connected, it is a tree and the construction is finished. Otherwise,
let W be the set of nodes in the connected component defined by T̂ . Since Ĝ
is two-connected, there is at least one edge leaving a node ŵ different from the
node corresponding to Wi. Let f be the corresponding edge in G. Adding f to
T increases the size of the subtree T̂ . It is clear that f is not incident to wi,
and therefore, by the third condition, f belongs to a feasible cycle in T ∪E′\{e}
and we preserve the fact that T ∪E′\{e} = (T ∪E′\{e})K . This construction is
repeated until T̂ forms a tree spanning Ĝ.

We have thus constructed a tree in Ĝ, such that T ∪E′\{e} = (T ∪E′\{e})K .
Again, by Theorem 6.3 in [11], T ∪ E′\{e} is two-connected and therefore, its
incidence vector belongs to PG,K . ⊓⊔

7. Algorithmic aspects

In this section, we study the algorithmic aspects of the problem: we first address
the problem of checking the feasibility of a network, then we consider the separa-
tion problem associated to each class of valid inequalities. We finish this section
with a description of the Branch-and-Cut algorithm in which these inequalities
were embedded.
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7.1. Checking feasibility

An important issue for implementing efficient algorithms for the 2CNBR problem
is feasibility checking. A simple (but inefficient) way to evaluate whether a graph
G is feasible is to check if it is two-connected, and if each edge belongs to a
feasible ring (by computing a shortest path not using the edge, between its
endpoints). In other words, it is the same as checking that G = GK and that
GK is two-connected.

In itself, checking if the second condition is satisfied is an important issue,
e.g. in the separation of subset and ring-cut inequalities (see Sections 7.4 and
7.3). Moreover, we are interested in feasible graphs of minimum cost. If G 6= GK ,
the cost of GK is less than the cost of G. Therefore, if GK is two-connected, it
provides a feasible solution of cost less than the cost of G.

Instead of checking feasibility of G, we are thus more interested in the fea-
sibility of GK , which is simply a two-connectivity test for GK . This test can
be performed by an O(m) depth-first search algorithm (see e.g. Aho et al. [1]).
The bottleneck in this approach is that we still have to construct GK , which
requires to check for each edge if it belongs to a feasible ring. Instead of doing
this check before testing two-connectivity, we propose to adapt the depth-first
search algorithm in order to reduce the number of searches for feasible cycles.

A depth-first search of an undirected graph G = (V,E) partitions the edges in
E into two sets T and B. An edge {v, w} is placed in T if node w has not been
previously visited when we are at node v considering edge {v, w}. Otherwise,
edge {v, w} is placed in B. The edges in T are called tree edges, and those in B
back edges. Nodes in |V | are numbered in the order they are visited during the
depth-first search, num(v) denoting the number of v. If v was visited before w
and if {v, w} ∈ T , v is called the parent of w and w is a child of v.

To check two-connectivity of a graph, we define for each node v ∈ V

inf(v) := min ({num(v)} ∪ {num(w) : {v, w} ∈ B}

∪{inf(w) : w is a child of v}).

If a node v is not the root of the depth-first search, then it can be shown that v
is an articulation point if and only if it has a child w such that inf(w) ≥ num(v).
If v is the root of the depth-first search, then v is an articulation point if we back-
track to v before having visited all nodes (see Aho et al. [1] for details). Moreover,
the computation of inf(v) for all nodes can be embedded in the depth-first search
algorithm, leading to a computing time of O(m) to check two-connectivity of a
graph.

We now turn back to the problem of checking the two-connectivity of GK .
If we apply the two-connectivity algorithm to G, edges that do not belong to
any feasible cycle must be ignored in the search, since they do not belong to
GK . Moreover, if a back edge {v, w} ∈ B, examined from node v, is such that
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num(w) ≥ inf(v), then v and w are in the same two-connected component even if
the edge {v, w} is removed from the graph. Therefore, this edge is not necessary
to ensure two-connectivity and we do not need to check if it belongs to GK ,
reducing the number of necessary checks.

To check if e ∈ GK , we compute the shortest cycle using e in G. If the length
of this cycle is less than or equal to K, all the edges belonging to the cycle are
in GK , and we can keep this information in order to avoid redundant checking.
This is done by giving a mark to each edge which is set to true as soon as we
have found a feasible cycle containing the edge. Moreover, the cycle may use
a node v such that num(v) < inf(w) for some w in the cycle, allowing us to
decrease inf(w) faster than allowed by the classical depth-first search approach,
thus again reducing the amount of work needed.

Computing the shortest cycle to which an edge belongs requires the com-
putation of a shortest path between the endpoints of the edge, and has thus a
complexity of O(n2) if we use Dijkstra’s algorithm. This subroutine is called at
most m times, leading to a complexity of O(mn2) for feasibility checking. Even
if this worst-case complexity is the same as the simple approach described at
the beginning of this section, it is more efficient in practice since the number of
shortest cycle computations is usually far less than m, while it would always be
equal to m with the straightforward approach.

7.2. Separation of cut constraints

The separation of cut constraints x(δ(W ) ≥ 2 can be carried out by computing
a minimum cut in the graph, with capacities given by the current LP solution.
This can be done in polynomial time, e.g. by the Gomory-Hu algorithm [8] that
requires n− 1 maximum flow computations.

7.3. Separation of ring-cut inequalities

The ring-cut inequality associated with an independent subset S ⊆ δ(W ) in the
ring-cut graph RCGW,K defined by a subset of nodes W is

x(S) + 2x(δ(W )\S) ≥ 3.

The separation of ring-cut inequalities is performed using a greedy heuristic,
since the separation problem is NP-hard. A proof of the NP-hardness of the
separation problem is provided in appendix. As we use the Gomory-Hu algorithm
to separate cut constraints, we benefit from this information in the separation
of ring-cut inequalities, considering the n − 1 minimum cuts provided by the
Gomory-Hu tree as good candidates. To each cut of capacity less than 3 in the
tree, we apply the greedy heuristic described in Algorithm 1 to determine an
independent subset in the ring-cut graph corresponding to the cut.
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Algorithm 1 Separation of ring-cut inequalities
Data : a graph G = (V,E), a real number K > 0, a vector x̃ := (x̃f )f∈E , a subset W ⊆ V ,

∅ 6= W 6= V such that x̃(δ(W )) < 3.

1: v := x̃(δ(W ))
2: S := ∅
3: for all e ∈ δ(W ) do
4: mark(e) := false
5: while (v < 3) and (∃e ∈ δ(W ) : mark(e) = false) do
6: e := argmax{x̃f : f ∈ δ(W ),mark(f) = false }
7: for all f ∈ δ(W ) : mark(f) = false do
8: if (Ce,f )K is two-connected then
9: {edge {e, f} belongs to the ring-cut graph}
10: v := v + x̃f

11: mark(f) := true
12: mark(e) := true
13: S := S ∪ {e}
14: if v < 3 then
15: {x(S) + 2x(δ(W )\S) ≥ 3 is a violated ring-cut inequality}

7.4. Separation of subset inequalities

We now study subset inequalities (1) that were used to formulate the 2CNBR
problem. The subset inequality induced by a subset of edges S ⊆ E, such that
(G− S)K is not two-connected, is x(S) ≥ 1.

The separation of subset inequalities for the two-connected network prob-
lem (K = ∞) can be performed in polynomial time as facet-defining subset
inequalities are node-cut constraints (by Proposition 3).

However, the general case is harder to solve. We want to find a subset S ⊆ E
such that x(S) < 1 and (G − S)K is not two-connected. Such a subset S does
not necessarily define a node-cut and has no known special structure. The NP-
completeness of this problem remains an open question, and we rely on the
greedy heuristic described in Algorithm 2 to solve the separation problem.

The algorithm is divided in two phases : the first phase (lines 1-10) tries
to find in a greedy way a subset F ⊆ E such that x̃(E\F ) < 1 and FK is
not two-connected. If it succeeds, x(E\F ) ≥ 1 is a violated subset inequality.
The second phase (lines 11-18) is used to find S ⊆ E\F such that for all e ∈
S, (G − (S\{e}))K is two-connected. The generated subset inequality is facet-
defining by Theorem 5.

The main drawback of the greedy heuristic is that it often fails to find a
suitable F . It is easy to adapt the algorithm to perform the exact separation by
a backtracking procedure, enumerating all the subsets F such that x̃(E\F ) < 1.
However, there is an exponential number of such subsets, and complete enumer-
ation is not efficient in practice. An intermediate approach is to allow a fixed
number of backtracking steps. Our computational experiments show that per-
forming 10 backtracking steps is a good tradeoff between computing time and
quality of the separation.
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Algorithm 2 Separation of subset inequalities
Data : a graph G = (V,E), a real number K > 0, a vector x̃ := (x̃f )f∈E .

1: let F := {e ∈ E : x̃f > 0}
2: if FK is two-connected then
3: sort edges of F in increasing order of x̃f ,

such that F = {j(1), . . . , j(|F |)}, x̃j(i) ≤ x̃j(k) for all i < k.
4: i := 1
5: v := 0
6: while v + x̃j(i) < 1 and i ≤ |F | and FK is two-connected do

7: F := F\{j(i)}
8: if FK is two-connected then
9: v := v + x̃j(i)
10: i := i + 1
11: if FK is not two-connected then
12: S := ∅
13: for all e ∈ E\F do
14: if (F ∪ {e})K is two-connected then
15: S := S ∪ {e}
16: else
17: F := F ∪ {e}
18: {x(S) ≥ 1 is a violated facetdefining subset inequality}
19: else
20: {no violated subset was inequality found}

Another way of deriving violated subset inequalities comes from the separa-
tion of metric inequalities. Metric inequalities were introduced by Fortz et al.
[6], and are valid for the original 2CNBR problem, but not for the set covering
formulation studied here. Consider an edge e := {i, j} ∈ E and a set of node
potentials (αk)k∈V , derived from a directed flow from i to j, and satisfying

αi − αj > K − d(i, j).

Then
∑

f∈E\{e}

vfxf ≥ xe (6)

is a valid inequality for 2CNBR (metric inequality) where

vf = min

(

1,max

(

0,
|αl − αk| − d(k, l)

αi − αj + d(i, j)−K

))

(7)

for all f := {k, l} ∈ E\{e}. A heuristic for the separation of these inequalities
was proposed in [6].

Let S := {f ∈ E\{e} : vf > 0}. If (G − S)K is not two-connected and
x(S) < 1, then S defines a violated subset inequality. This situation is often
met in practice. Moreover, if vf = 1 for all f ∈ S, then the subset inequality is
stronger than the metric inequality.
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7.5. Separation of node-partition inequalities

Given a node z ∈ V and a partition W1,W2, . . . ,Wp (p ≥ 2) of V \{z} into p
nonempty subsets, the corresponding node-partition inequality is

1

2

p
∑

i=1

x(δ(Wi)) ≥ p− 1.

In Fortz et al. [6], these inequalities are separated using a heuristic suggested
by Grötschel et al. [10]. However, it is possible to perform the exact separation
in polynomial time. The first separation algorithm for these inequalities was
given by Cunningham [3] and requires |E| min-cut computations. Barahona [2]
reduced this computing time to |V | min-cut computations.

Separating node-partition inequalities can thus be done for each node z ∈ V
by applying Barahona’s algorithm to G− z. This requires |V |2 min-cut compu-
tations.

In order to reduce this number, note that if G is a two-edge-connected net-
work, any articulation point in G has a degree at least equal to 4. Therefore, we
decided to apply Barahona’s algorithm to G− z only if x(δ(z)) > 3, which leads
to a much faster separation procedure.

7.6. Separation of weighted partition inequalities

Another class of valid inequalities arises from a partition of the node set (Fortz
et al. [6]). Given a partition W1,W2, . . . ,Wp (p ≥ 2) of V ,

1

2

p
∑

i=1

∑

e∈δ(Wi)

(K − de)xe ≥ (p− 1)K (8)

is a valid inequality for 2CNBR, called weighted partition inequality.

Again, in Fortz et al. [6], these inequalities are separated heuristically. But
the separation of weighted partition inequalities can also be performed using
Barahona’s algorithm, as the weighted partition inequality (8) can be rewritten

1

2

p
∑

i=1

∑

e∈δ(Wi)

K − de
K

xe ≥ p− 1.

Solving the separation problem for partition inequalities for the vector x̃ defined
by x̃e := K−de

K
xe, e ∈ E is thus equivalent to solving the separation problem

for weighted partition inequalities for x.
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7.7. Implementation of the Branch-and-Cut algorithm

We now describe some strategic choices that were made in the implementation
of our Branch-and-Cut algorithm for the 2CNBR problem. Our aim here is not
to describe in detail the general Branch-and-Cut framework, but to emphasize
the problem-specific aspects of our algorithm. A more complete description of
the algorithm can be found in Fortz [5].

In our numerical experiments, we suppose for all instances that the original

graph is complete, and therefore, the problem has n(n−1)
2 variables. However, it

is possible that some of these edges have such a large length that they cannot
belong to a feasible cycle. Such edges are removed in the preprocessing step,
allowing a substantial decrease in the number of edges for instances where edge
lengths are Euclidean.

Since we suppose edge lengths satisfy the triangle inequality, this prepro-
cessing can be done in O(n3), checking for each triplet (i, j, k) of nodes if
d(i, j) + d(j, k) + d(k, i) ≤ K and keeping only edges that belong to such a
feasible triangle.

The initial linear program is defined by degree constraints x(δ(v)) ≥ 2 for all
v ∈ V .

An important issue in the effectiveness of a Branch-and-Cut algorithm is
the computation of good upper bounds. We developed an effective Tabu Search
heuristic for this problem (Fortz [5]). In parallel with the Branch-and-Cut algo-
rithm, 600 iterations of this heuristic are performed in order to obtain a good
upper bound.

Moreover, we try to transform each LP-solution obtained in the Branch-and-
Cut to a feasible solution by rounding up to 1 all the variables with fractional
value.

The pool used to store generated inequalities is the standard pool in ABA-
CUS (Thienel [16]). We start with a pool size equal to 100 times the number
of nodes in the network, and we allow this size to be increased dynamically if
necessary. All the generated inequalities are put in the pool and are dynamic, i.e.
they are removed from the current LP when they are not active. The separation
of valid inequalities is performed as follows. We first separate inequalities from
the standard pool. If all the inequalities in the pool are satisfied by the current
LP-solution, we separate the classes of inequalities introduced in the previous
sections in the following order :

1. weighted partition inequalities;
2. subset inequalities;
3. cut constraints;
4. ring-cut inequalities;
5. node-partition inequalities;
6. metric inequalities.
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This order was chosen after a series of numerical experiments, the choice of
inequalities separated first seemingly being the best trade-off between separation
time and efficiency of the cuts.

Moreover, we go to the next class of inequalities only if the number of gener-
ated cutting planes is less than 50. Otherwise, we solve the LP again and restart
the separation procedure.

All inequalities are global (i.e. valid in the whole tree), except ring-cut in-
equalities that are valid locally. This is due to the fact that setting a variable to
0 may change the ring-cut graph generated by a cut not containing the corre-
sponding edge.

8. Computational Results

We present in this section numerical results obtained for the 2CNBR prob-
lem with our Branch-and-Cut algorithm. This algorithm was implemented using
ABACUS 2.0 and CPLEX 4.0, and tested on a SUN Sparc Ultra 1 workstation
with a 166 Mhz processor and 128 Mo RAM. We fixed the maximum CPU time
to 10 hours, except for randomly generated problems with 40 and 50 nodes,
where it was limited to 3 hours, due to the large number of problems to solve.
Moreover, for these large problems, we noticed that the bounds did not improve
much after 3 hours.

Results are presented here for instances where edge lengths and costs are
equal to the rounded Euclidean distances. Tests were made for different values
of the bound, for instances coming from real applications, with 12, 17, 30 and
52 nodes, and for random problems with nodes uniformly generated in a square
of size 250 × 250. ”Real” instances come from the network of Belgacom (52
nodes) and subsets of theses nodes. Random problems with 10 to 50 nodes were
generated, and we tested five instances of each size.

|V | number of nodes in the graph
|E| number of edges after preprocessing
K bound on the length of cycles
p/o for random problems, total number of problems/number of prob-

lems solved to optimality
# ineq. number of inequalities generated
# B&B nodes number of Branch-and-Bound nodes examined (including the root

node)
LB (root) lower bound obtained at the root node of the Branch-and-Bound

tree (after adding cutting planes)
LB (final) global lower bound at the end of the optimization
UB best upper bound found
Gap gap between the final upper and lower bounds :

gap =
100(UB−LB)

LB
CPU time time spent in the Branch-and-Cut (without the Tabu Search)

Table 1. List of abbreviations
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|V | K |E| # ineq.# B&B LB LB UB Gap Gap CPU time
nodes (root) (final) (root) (final) (hh:mm:ss)

12 200 49 220 35 577 622 622 7.8 0.0 0:00:09
12 250 58 64 7 530 541 541 2.1 0.0 0:00:01
12 300 63 125 35 514 541 541 5.3 0.0 0:00:27
12 350 65 65 5 509 521 521 2.4 0.0 0:00:01
12 400 66 92 13 503 521 521 3.6 0.0 0:00:02
12 450 66 79 15 499 516 516 3.4 0.0 0:00:12
12 500 66 27 1 496 496 496 0.0 0.0 0:00:01
17 200 88 296 39 802 834 834 4.0 0.0 0:00:22
17 250 109 379 103 743 789 789 6.2 0.0 0:00:47
17 300 119 144 23 711 726 726 2.1 0.0 0:00:08
17 350 126 223 45 701 725 725 3.4 0.0 0:00:14
17 400 133 336 139 688 720 720 4.7 0.0 0:00:36
17 450 135 69 7 680 689 689 1.3 0.0 0:00:03
17 500 136 93 11 675 689 689 2.1 0.0 0:00:05
30 150 174 34851 44411 1057 1180 1258 19.0 6.6 10:00:00
30 200 266 25477 32175 973 1065 1065 9.5 0.0 8:26:55
30 250 328 1712 1765 894 935 935 4.6 0.0 0:31:40
30 300 372 1090 815 875 898 898 0.3 0.0 0:15:53
30 350 406 390 115 858 874 874 1.9 0.0 0:03:51
30 400 422 559 365 849 868 868 2.2 0.0 0:07:04
30 450 432 1622 1313 843 868 868 3.0 0.0 0:26:19
30 500 435 273 47 837 844 844 0.8 0.0 0:01:45
52 150 559 7877 12127 1198 1249 1339 11.8 7.2 10:00:00
52 200 821 6514 7475 1132 1165 1239 9.5 6.4 10:00:00
52 250 1040 5161 4845 1097 1125 1184 8.0 5.2 10:00:00
52 300 1149 5220 3627 1073 1096 1138 6.1 3.8 10:00:00
52 350 1230 4486 3727 1061 1082 1085 2.3 0.3 10:00:00
52 400 1287 2828 1407 1048 1066 1066 1.7 0.0 4:32:55
52 450 1313 926 195 1042 1053 1053 1.1 0.0 0:54:33
52 500 1324 1558 417 1039 1053 1053 1.3 0.0 1:49:12

Table 2. Results for real applications

K cut subset ring-cut node- weighted metric
partition partition

150 143 250 2317 550 1151 3466
200 194 473 1074 364 481 3928
250 140 415 648 119 242 3597
300 239 561 383 117 286 3634
350 198 559 271 89 209 3160
400 170 466 115 41 101 1935
450 111 138 27 2 40 609
500 110 349 41 9 58 991

Table 3. Inequalities generated for the 52 nodes real instance

Data on the randomly generated test problems are available at the Web page
http://smg.ulb.ac.be/~bfortz/2cnbm/data.html.

Table 2 reports results obtained for problems coming from real applications,
while Table 5 reports average results obtained for randomly generated problems.
The gaps are relative to the best upper bound found. The CPU times reported
do not include the Tabu Search procedure, as it was run in parallel on another
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|V | K |E| # ineq.# B&B LB LB UB Gap Gap CPU time
nodes (root) (final) (root) (final) (hh:mm:ss)

12 200 49 190 59 565 622 622 10.1 0.0 0:00:08
12 250 58 60 11 525 541 541 3.0 0.0 0:00:01
12 300 63 77 91 513 541 541 5.5 0.0 0:00:04
12 350 65 24 9 507 521 521 2.8 0.0 0:00:00
12 400 66 54 19 502 521 521 3.8 0.0 0:00:01
12 450 66 39 51 499 516 516 3.4 0.0 0:00:02
12 500 66 11 1 496 496 496 0.0 0.0 0:00:00
17 200 88 246 81 784 834 834 6.4 0.0 0:00:20
17 250 109 299 119 738 789 789 6.9 0.0 0:00:26
17 300 119 102 23 711 726 726 2.1 0.0 0:00:04
17 350 126 147 89 701 725 725 3.4 0.0 0:00:11
17 400 133 334 279 688 719 720 4.7 0.1 0:00:38
17 450 135 69 13 678 689 689 1.6 0.0 0:00:02
17 500 136 50 17 675 689 689 2.1 0.0 0:00:02
30 150 174 18202 39697 1043 1151 1269 21.7 10.3 10:00:00
30 200 266 14858 32661 945 1035 1065 12.7 2.9 10:00:00
30 250 328 1775 2559 891 935 935 4.9 0.0 0:39:00
30 300 372 1064 1087 870 898 898 3.2 0.0 0:15:45
30 350 406 582 439 856 874 874 2.1 0.0 0:06:07
30 400 422 617 517 847 868 868 2.5 0.0 0:07:50
30 450 432 2567 2609 840 868 868 3.3 0.0 1:26:48
30 500 435 178 39 836 844 844 1.0 0.0 0:00:54
52 150 559 4674 11195 1192 1242 1339 12.3 7.8 10:00:00
52 200 821 6805 9005 1125 1158 1253 11.4 8.2 10:00:00
52 250 1040 4282 4721 1092 1119 1192 9.2 6.5 10:00:00
52 300 1149 3964 4331 1070 1094 1121 4.8 2.5 10:00:00
52 350 1230 3617 2505 1057 1078 1088 2.9 0.9 10:00:00
52 400 1287 4227 3235 1047 1062 1066 1.8 0.4 10:00:00
52 450 1313 1753 551 1042 1053 1053 1.1 0.0 1:37:25
52 500 1324 1238 377 1039 1053 1053 1.3 0.0 1:24:05

Table 4. Results for real instances without subset and ring-cut inequalities

processor. Only feasible problems appear in the tables. We also report in Table 3
the number of inequalities generated for each class of inequalities implemented,
for the real instance with 52 nodes.

For 20 nodes or less, all problems could be solved to optimality. For larger
problems, we remark that the problems with a small value of K are much harder,
the lower bound at the root of the Branch-and-Bound tree being far from the
optimum.

Problems with a large value of K are easier to solve due to the fact that
these problems are closer to the two-connected network problem (without ring
constraints), which can be solved efficiently using cut and node-partition in-
equalities (for the instances we considered). Abbreviations used in the tables are
summarized in Table 1.

These instances were already considered in Fortz et al. [6]. In addition to
the polyhedral analysis provided before, our new contribution consists in the
addition of subset and ring-cut inequalities, as well as better separation proce-
dures for node-partition and weighted partition inequalities. It is quite difficult
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|V | |E| K p/o # ineq. # B&B Gap Gap CPU time
nodes (root) (final) (hh:mm:ss)

10 23.0 300 2/2 94.0 10.0 6.9 0.0 0:00:02
10 28.8 350 4/4 125.0 15.0 7.7 0.0 0:00:02
10 34.6 400 5/5 197.0 28.2 10.3 0.0 0:00:05
10 40.0 450 5/5 291.2 48.6 10.2 0.0 0:00:09
10 43.2 500 5/5 231.2 45.0 10.1 0.0 0:00:07
20 65.8 200 4/4 441.0 129.0 8.1 0.0 0:01:25
20 96.5 250 4/4 1942.2 2163.0 14.0 0.0 0:14:58
20 121.8 300 5/5 10059.2 14358.2 9.7 0.0 1:31:59
20 149.6 350 5/5 1307.6 1496.2 9.3 0.0 0:11:02
20 170.2 400 5/5 1123.6 685.8 9.0 0.0 0:07:28
20 182.4 450 5/5 2868.6 2734.6 8.0 0.0 0:26:06
20 187.2 500 5/5 679.0 208.2 6.1 0.0 0:03:03
30 145.7 200 3/2 17464.7 27474.3 14.3 1.9 6:41:46
30 226.2 250 4/0 26095.0 31736.0 18.6 9.2 10:00:00
30 288.8 300 5/2 17840.8 19965.8 12.6 4.9 7:12:18
30 345.8 350 5/4 7251.2 8892.6 7.4 1.0 3:19:02
30 381.6 400 5/4 4984.0 5570.6 5.3 0.5 2:25:00
30 414.8 450 5/5 1843.2 1605.4 5.1 0.0 0:48:41
30 426.8 500 5/5 1683.0 1171.0 4.9 0.0 0:39:38
40 258.0 200 4/0 5086.0 5454.0 17.7 9.6 3:00:00
40 368.8 250 5/0 4586.8 4677.0 18.0 10.6 3:00:00
40 466.6 300 5/0 3465.0 3319.0 15.1 9.1 3:00:00
40 561.6 350 5/0 3107.4 2854.2 10.3 5.3 3:00:00
40 645.6 400 5/0 3272.0 2873.4 6.9 2.6 3:00:00
40 719.8 450 5/1 2479.4 1640.2 7.0 3.1 2:45:33
40 753.6 500 5/0 2538.2 1610.2 5.8 1.9 3:00:00
50 243.0 150 1/0 3566.0 4917.0 9.4 3.9 3:00:00
50 442.2 200 4/0 2899.8 2368.0 16.4 10.8 3:00:00
50 607.0 250 5/0 1977.0 1531.4 15.7 11.0 3:00:00
50 775.4 300 5/0 1810.6 1011.8 9.4 6.0 3:00:00
50 926.0 350 5/0 1668.0 537.8 8.3 5.3 3:00:00
50 1055.2 400 5/0 1772.8 823.0 7.3 4.7 3:00:00
50 1141.0 450 5/0 1613.2 548.6 7.6 5.1 3:00:00
50 1195.4 500 5/0 1545.8 344.2 6.5 4.4 3:00:00

Table 5. Results for random networks

to compare results presented here with those in [6], as our code was completely
rewritten using ABACUS, and tested on a different hardware. However, we can
measure the impact of subset and ring-cut inequalities that did not appear in
[6] by disabling their separation in our new code. Results obtained for prob-
lems coming from real applications are presented in Table 4. For almost all
instances, we observe that the gap at the root node and the number of nodes
in the Branch-and-Bound tree are larger when ring-cut and subset inequalities
are not generated. For small instances (12 and 17 nodes), the computing time
decreases when ring-cut and subset inequalities are not generated, due to the
expensive separation procedures. However, for difficult instances, it is worth gen-
erating these inequalities since either the total computing time or the final gap
decreases.
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9. Conclusion

In this paper, we study the polyhedron associated with the problem of designing
at minimum cost a two-connected network such that that the shortest cycle to
which each edge belongs does not exceed a given length K.

Several classes of valid (and sometimes facet-defining) inequalities are pro-
posed, and efficient algorithms to solve the corresponding separation problems
are described. Numerical results obtained with a branch-and-cut algorithm in-
tegrating these separation algorithms are reported.

A. Complexity of the separation of ring-cut inequalities

In this appendix, we show that the separation problem for ring-cut inequalities
is NP-complete. We first define the decision version of the problem.

Problem 1 (RING-CUT-SEP). Let G = (V,E) be a graph, K > 0 a given
constant and x := (xe)e∈E a vector such that 0 ≤ xe ≤ 1 for all e ∈ E.

Does there exist a subset of nodes W ⊆ V , ∅ 6= W 6= V , and an independent
subset S ⊆ δ(W ) in the ring-cut graph RCGW,K , such that

x(S) + 2x(δ(W )\S) < 3 ?

Theorem 7. If |V | ≥ 4, RING-CUT-SEP is NP-complete for any fixed K ≥ 3.

Proof. It is easy to see that RING-CUT-SEP belongs to NP. We show that the
independent subset problem reduces to RING-CUT-SEP.

The independent subset problem is the following : given a graph G = (V,E)
and an integer p, 1 ≤ p ≤ |V |, does there exists an independent subset S ⊆ V
of cardinality |S| ≥ p ?

The independent subset problem is known to be NP-complete (see Garey
and Johnson [7]). Given an instance of this problem, we construct an instance
of RING-CUT-SEP in the following way. Let G′ = (V1 ∪ V2, E1 ∪E2 ∪E) be an
undirected graph where V1 and V2 are two identical copies of V , E1 and E2 are
edge sets defining complete graphs over V1 and V2, and E contains edges joining
nodes in V1 and V2 corresponding to a same node in V . G′ has 2|V | nodes and
|V |2 edges. This transformation is illustrated in Figure 6.

The length of the edges and the vector x are defined as follows :

de =























1 if e ∈ E1 ∪ E2

and e does not correspond to an edge in E,
1
2 if e ∈ E1 ∪ E2

and e corresponds to an edge in E,
K−1
2 if e ∈ E.
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G′G

Edges of E1 and E2 with de = 1 and xe = 1

Edges of E1 and E2 with de = 1
2
and xe = 1

Edges of E with de = K−1
2

and xe = 3
2|V |−p+1

Fig. 6. Transformation of independent subset into RING-CUT-SEP

xe =

{

1 if e ∈ E1 ∪ E2,
3

2|V |−p+1 if e ∈ E.

We must show that there exists an independent subset S ⊆ V of cardinality
|S| ≥ p in G if and only if there exists a subset of nodes W ⊆ V1 ∪ V2, ∅ 6= W 6=
V1 ∪ V2, and an independent subset S ⊆ δG′(W ) in the ring-cut graph RCGW,K

of G′, such that x(S) + 2x(δG′(W )\S) < 3.

Consider the cut defined by W = V1. Each edge in this cut corresponds to a
node in V . Let e, f ∈ δG′(W ) be two edges in the cut. If there exists a feasible
cycle containing e and f , it is easy to see that (Ce,f )K = E1 ∪ E2 ∪ {e, f} and
that (Ce,f )K is two-connected, since E1 and E2 define complete subgraphs, since
each edge in E1 and E2 has a length less than or equal to one, and since K ≥ 3.
A feasible cycle containing e and f must use at least one edge in E1 and one
edge in E2. The only possibility is thus to use one edge of length 1

2 in E1 and
in E2, leading to a cycle of length equal to K. These edges may be chosen
provided there exists an edge between the nodes corresponding to e and f in E.
We can conclude that (Ce,f )K is two-connected if and only if there is an edge
in E between the nodes corresponding to e and f . Therefore, the ring-cut graph
RCGW,K is isomorphic to G.

Suppose S ⊆ V is an independent subset of cardinality |S| ≥ p in G, and
let again W = V1. Since RCGW,K is isomorphic to G, there exists S ⊆ δG′(W )
such that |S| = |S| ≥ p and S is an independent subset in the ring-cut graph
RCGW,K . By the definition of x, we obtain that

x(S) + 2x(δG′(W )\S) = 2x(δG′(W ))− x(S)
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=
3(2|V | − |S|)

2|V | − p+ 1

≤
3(2|V | − p)

2|V | − p+ 1

< 3,

and W and S define the requested violated ring-cut inequality.

If there exists a subset of nodes W ⊆ V1 ∪ V2, ∅ 6= W 6= V1 ∪ V2, and an
independent subset S ⊆ δG′(W ) in the ring-cut graph RCGW,K of G′, such that
x(S)+2x(δG′(W )\S) < 3, then we must have x(δG′(W )) < 3, since S ⊆ δG′(W ).
The edge sets E1 and E2 define complete subgraphs with edges of value 1, and
therefore each cut separating two nodes of V1 or two nodes of V2 has a value
greater than or equal to |V | − 1. The only possibility for W is then to have
δG′(W ) = δG′(V1), and the ring-cut graph RCGW,K is again isomorphic to G.
Thus there exists an independent subset S ⊆ V in G such that |S| = |S|.
Moreover,

3 > x(S) + 2x(δG′(W )\S) =
3(2|V | − |S|)

2|V | − p+ 1
.

It follows that |S| = |S| > p−1, thus |S| ≥ p and S is the requested independent
subset.
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