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Abstract
Structural Health Monitoring refers to the process of implementing a damage

identification strategy for infrastructures. As the global population continues to
grow, urbanisation expands, and the age of existing infrastructure is also increas-
ing. Therefore, the field of Structural Health Monitoring has gained in popular-
ity. A wide variety of methods have already been developed with vibration-based
methods being among the most prevalent.

The concept of early damage detection is crucial. In the absence of apparent
damage to a structure, the common and basic technique of visual inspection,
which is employed for damage detection, is ineffective. The objective of detecting
damage as early as possible is to reduce the costs and time required for repairs,
as well as to enhance the safety and reliability of existing structures.

This thesis presents a novel method, located within the vibration-based meth-
ods. Unlike the modal-based methods, such as those tracking the degradation of
eigenfrequencies, the proposed approach hinges on the concept of First Passage
Time. This concept is applied for the first time to Structural Health Monitoring
and refers to the time required by a dynamical system to reach a particular state
for the first time, while starting from a known initial condition.

Although the mathematical study of First Passage Times has been well-
established, there has been a lack of efficient algorithms for computing First
Passage Times from experimental data. Therefore, a new and optimised algo-
rithm is developed. As the First Passage Time is the keystone of this thesis,
this algorithm benefits from fast computation time to extract the First Passage
Times from any given time signal. For any random signal, First Passage Time is
a random variable. The distribution of First Passage Times is shown to be a good
candidate for the early damage detection. A novel methodology is proposed. It
is based on the pre-processing of the input data and on the comparison of the
distributions of First Passage Times. The latter relies on a new proposed sta-
tistical test, which is based on the sampling distribution of First Passage Times,
and various existing two-sample tests, such as the Kolmogorov-Smirnov and the
Anderson-Darling tests.

Finally, the sensitivity of the methodology is initially evaluated through nu-
merical examples before being applied to two experimental setups: a small-scale
laboratory test under control conditions and a large-scale outdoor test submitted
to environmental effects. It is demonstrated that the First Passage Time is suf-
ficiently sensitive to detect minor structural changes, thereby enabling damage
detection at an early stage.
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Chapter 1

Introduction

1.1 Structural Health Monitoring
Structural Health Monitoring (SHM) refers to the process of implementing a
damage identification strategy for aerospace, civil and mechanical engineering
infrastructures [1]. It represents an approach in ensuring the safety, reliability,
and longevity of infrastructures thanks to a wide variety of techniques, method-
ologies, and technologies that aim at monitoring the condition of structures to
detect, assess, and mitigate potential damages [2]. With the increase of the global
population, urbanisation grows [3] and existing infrastructures age [4]. SHM has
gained in popularity with its applications spanning across civil infrastructures as
bridges [5, 6], buildings [7], dams [8], pipelines [9], offshore structures [10, 11],
and more.

The objective of SHM lies in its proactive approach to maintenance and risk
management. By implementing SHM systems, stakeholders can transition from
reactive responses to structural failures to a proactive stance, wherein potential
issues are identified and addressed before they escalate into catastrophic events
[12]. This goal allows greater safety and reliability of infrastructure but also leads
to significant cost savings [13] by optimising maintenance schedules, extending
the service life of structures, and minimising downtime associated with repairs
[14, 15].

Moreover, SHM is the keystone in the evolution towards smart and resilient
infrastructure systems [16]. By integrating advanced sensing technologies [17],
wireless smart sensor networks [18], high-dimensional data analytics [19], and
decision-making algorithms [20], SHM offers a large volume of data from different
sources that contain essential information about the well-being of the structure
itself. Combinations of data from various sensing techniques, called data fusion
[21], makes SHM systems more resilient and robust to diverse effects that can
affect a structure, such as environmental effects, material aging, and human-
induced factors.
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1.1.1 Fundamentals
Definition and basic principles

SHM involves the deployment of sensors and measurement devices to collect
data regarding the structural response to environmental stresses and potential
anomalies. This data is then analysed using various techniques that require the
comparison of two states of the structure: the healthy state, also known as the ref-
erence state, and the current state that can become a damaged state, if a damage
is detected [22]. To compare two states of the same structure, different techniques
can be used, relying on, for example, the waves velocity inside the material [23],
the modal curvature [24], the inverse of the structural stiffness matrix [25] or some
modal parameters [26, 27], such as eigenfrequencies, eigenmodes, and damping
ratios. Finally, based on data analysis, stakeholders can take decisions concerning
the maintenance and repair of the structure if a damage was detected.

Components of an SHM system
The SHM system is made of different components, each playing an important

role in the overall functionality and effectiveness of the monitoring process:

• Sensors: Sensors are devices that capture the data related to structural
behaviour, including accelerations, strains, displacements, and environmen-
tal parameters. Common sensor types include accelerometers [28], strain
gauges [29], displacement transducers [30], and temperature sensors [31].

• Data acquisition systems: These systems are responsible for collecting,
processing, and storing data in real-time.

• Data analysis algorithms: Algorithms are employed to analyse the col-
lected data and extract meaningful insights regarding the structural health
condition. Techniques such as signal processing [32], statistical analysis
[33], pattern recognition [34], and machine learning [35] are commonly used
to identify anomalies.

• Decision-making tools: Based on the results of data analysis, decision-
making tools facilitate informed decision-making regarding maintenance ac-
tions, structural repairs, and risk mitigation strategies. These tools inte-
grate data from SHM systems with structural performance models, cost-
benefit analyses, and risk assessments to optimise resource allocation and
prioritise interventions [36, 37].
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Common sensing techniques
Among the various sensors that can be used to capture different aspects of

structural behaviour, the most common ones are:

• Acoustic emission sensors: Acoustic Emission (AE) is a technique that
captures transient stress waves due to the release of localised internal en-
ergy, such as micro-fracture in elastic material. AE is particularly adept
at detecting active damage, such as crack initiation and propagation, in a
wide range of materials including metals, composites, and concrete [38, 39].

• Accelerometers: Vibration-based monitoring relies on analysing the dy-
namic response of structures to external forces or ambient vibrations. By
measuring changes in eigenfrequencies, eigenmodes, and damping ratios,
this technique can detect structural anomalies such as cracks, delamination,
material degradation, and the loss of axial force in cables [40]. Recent ad-
vances include the integration of wireless sensor networks [41] and machine
learning algorithms for enhanced data analysis and predictive maintenance
[42].

• Strain gauges: Strain gauges are fundamental sensors used to measure the
deformation or strain in structural components. These sensors are bonded
to critical elements of a structure, allowing for the monitoring of strain vari-
ations induced by external loads or structural changes [43]. Modern strain
gauge technology includes wireless technology, enabling the installation of
strain monitoring on complex structures [44].

• Ultrasonic testing: Ultrasonic Testing (UT) uses high-frequency sound
waves to inspect the internal structure of materials for defects, such as
cracks, voids, and disbonds. UT is a versatile technique employed in vari-
ous industries, including aerospace, automotive, and civil engineering, and
is particularly appreciated for its high resolution and depth penetration
capabilities [45].

• Fiber optic sensors: Fiber optic sensors use optical fibers to measure
parameters such as strain, temperature, and displacement. These sensors
offer several advantages, including immunity to electromagnetic interfer-
ence and high sensitivity. Fiber optic sensing systems are extensively used
in harsh environments and critical infrastructure for continuous and dis-
tributed monitoring [46, 47].
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• Electrical resistivity measurement: Electrical resistivity measurement
is a technique that assesses changes in the electrical resistivity of materials,
which can indicate the presence of cracks, corrosion, or moisture ingress.
This technique is particularly relevant for concrete structures, where mon-
itoring the resistivity of profile provides insights into the condition and
durability of the material. Recent advancements include the integration
of embedded sensors, automated data acquisition systems for in-situ mon-
itoring of concrete structures, and new algorithms based on experimental
databases [48].

• Thermography: Thermography involves the use of infrared cameras to
capture thermal images of a structure surface. By analysing temperature
variations, thermography can detect defects such as delamination, moisture
ingress, and thermal anomalies [49].

• Ground-Based Radar (GBR): GBR is a remote sensing technique used
to monitor large structures, such as bridges, dams, tunnels, and buildings.
GBR measures the displacement of structures over time, providing valuable
insights into structural stability and integrity. Recent developments in GBR
technology include interferometric radar systems and synthetic aperture
radar techniques, enabling high-resolution monitoring over large areas [50].

• Electromagnetic: Electromagnetic methods such as eddy current testing
[51] and magnetic flux leakage [52] are employed to detect changes in the
electromagnetic properties of materials caused by structural damage. These
techniques are particularly effective for inspecting metallic structures for
cracks, corrosion, material loss, and for detecting defects in repaired con-
crete slabs [53].

• Crack width measurements: Crack width on concrete members can also
be used as an insightful data for damage assessment and residual capacity,
see e.g. [54].

Each sensing technique has its own limitations, and the selection of sensors de-
pends on factors, such as the type of structure, the monitoring objectives, the
environmental conditions, and the budget constraints.
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Sensor placement and optimisation
The sensor placement plays an important and critical role in the effectiveness of

an SHM system. Optimal sensor placement ensures adequate coverage of critical
structural components, maximises the sensitivity to potential damage locations,
and minimises the number of sensors required [55]. Various optimisation tech-
niques, such as numerical simulations [56], sensitivity analyses [57], and heuristic
algorithms [58], can be employed to determine the optimal sensor locations based
on factors such as structural geometry, loading conditions, and expected damage
mechanisms.

Additionally, sensor calibration, maintenance, and recalibration are essential
considerations to ensure the accuracy and reliability of sensor measurements over
time [59]. Calibration procedures should be performed regularly to verify sensor
accuracy and correct any drift or calibration error that may arise due to environ-
mental factors or aging.

Levels of damage assessment
Rytter identified four different levels of damage identification [60]. These levels

are reported in Figure 1.1.
The first level corresponds to damage detection. In this level, the goal is to

extract insightful information from the collected data in the current state and
to compare it with the corresponding data in the healthy state. Focusing on
damage detection only is still a trend that is followed at the current stage of
SHM [61, 62, 63].

The second level is the damage location, which is accessed after damage has
been detected. The methods used to locate a damage can be based on measured
data only [64] or on a comparison between experimental data and a digital twin
model [65].

Level 1: damage detection

Level 2: damage location

Level 3: damage 
quanti�cation

Level 4:
remaining

lifetime

Figure 1.1: Levels of damage assessment. Adapted from Rytter.
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The third level refers to damage quantification. Once the damage has been
localised, it is important to assess the severity of this damage [66].

Finally, the fourth level deals with the remaining lifetime of a structure. Nowa-
days, this level seems unreachable as many challenges are still present, such as the
creation of high-fidelity numerical models and the filtering of all environmental
effects, which pollute the measured data.

The objective of this thesis is to achieve level 2 with a novel methodology.

1.1.2 Some SHM vibration-based methods
SHM vibration-based methods are among the most popular SHM methods. These
methods rely on the vibrations of the structure under investigation, which can
be measured by using accelerometers or lasers, for example. The vibration data
can be classified as either acceleration, velocity, or displacement. The dynamic
response of the system is obtained by means of dynamic tests such as free or
forced vibration tests (impact hammer or shaker) and ambient vibration tests,
which use the vibrations of the structure under operational loading. Moreover,
the vibration-based methods can be either output-only methods, which rely solely
on the measured vibrations, or input-output methods. The latter also requires
the measurement of the input force.

Modal-based methods are the most common vibration-based methods. They
rely on the extraction of modal parameters, such as the eigenfrequency. The
eigenfrequency is the simplest of the modal parameters and is one of the earliest
to be applied to SHM [67]. However, eigenfrequencies provide limited informa-
tion about the state of a given structure or are sometimes only slightly affected
by local structural changes. Therefore, the use of additional modal parameters,
like damping ratios [68], mode shapes, and their curvature [69], has gained con-
siderable interest. Great efforts have also been invested in the development of
automated techniques for the tracking of modal parameters under environmental
loading [70]. When environmental loading is employed, the method is designated
as the Operational Modal Analysis (OMA).

The following is a non-exhaustive list of some commonly used methods to
extract these modal parameters.
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• Time domain methods:

In the case of time domain methods, the features in question are extracted directly
from the measured time series. Simple methods, such as the statistical analysis
of the time series, can be used to compute the average, the standard deviation,
or even higher statistical moments, such as the kurtosis [71]. Other methods, like
Auto-Regressive (AR) models, can be used for the purpose of damage detection.
The coefficients of these AR models are identified from observed times series in
the healthy and current states. By catching changes in the coefficients of these
AR models, damage detection can be performed. This comparison can be made
with two distinct (discrete) states [72] or continuously in time.

• Frequency domain methods:

Frequency domain methods rely on the transformation of time series into the
frequency domain through the use of the Fourier Transform. These methods can
either be based on the output-only of the structure, as exemplified by the Fast
Fourier Transform [73], or on the input-ouput, such as the Frequency Response
Function [74].

• Time-frequency analysis methods:

Methods based on the time-frequency analysis have also attracted considerable
interest. These methods are well suited for the analysis of nonstationary data.
In particular, tracking the time evolution of eigenfrequencies is a way to observe
the apparition of damage on structures. Among the available methods, two of
the most popular ones are the Wavelet transform [75] and the Hilbert-Huang
Transform [76], which have demonstrated excellent performances in the context
of SHM.

• Machine learning:

Over the past two decades, the quantity of data collected from SHM systems
has increased. Long-term monitoring of environmental conditions and real-time
damage detection have gained in popularity. Similarly, the monitoring of large
structures, such as bridges or buildings, also requires the deployment of a consid-
erable number of sensors. Consequently, novel advanced data processing methods
have emerged, including deep learning algorithms [77], which appear to be promis-
ing candidates for extracting features and recognising data patterns. Among the
deep learning algorithms, the Convolutional Neural Network (CNN) [78] and the
Recurrent Neural Network (RNN) [79] have already been applied to SHM. These
methods allow to extend detection techniques way beyond classical modal-based
methods as they are able to deal with large structural models.
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1.2 Motivation
The objective of this thesis is to develop a new methodology for early damage
detection. Damage detection is said to be “early” when no visual change can
be observed on the studied structure, rendering visual inspection ineffective. The
motivation behind this challenge is a reduction in repair costs and an improvement
in structural safety. Many safety issues can arise without any alarming visual
signs, such as the corrosion of steel bars inside reinforced concrete structures.
Indeed, prior to the observation of corrosion traces on the concrete surface, the
corrosion process may have already significantly reduced the steel bar sections,
resulting in an imminent failure. Therefore, early damage detection requires a
sensitive technique that is able to address this problem.

Typically, local techniques, such as ultrasonic testing and electromagnetic
methods, can be employed to tackle this problem. These techniques can be
considered for small infrastructures or small areas where the damage is expected.
In the case of large structures, such as buildings or bridges, global techniques
are preferred as it is not possible to cover each element of a large structure with
sensors. Therefore, choices must be made, such as placing sensors only on critical
members regions or relying on vibrations of the whole structure. For the latter
case, the methods are often referred to as vibration-based methods.

However, with respect to early damage detection, these features lack sensitiv-
ity. For example, temperatures impact the eigenfrequencies and this influence has
the same order of magnitude as damage. In addition, the eigenfrequencies and
mode shapes are scalar values and vectors respectively. The information provided
by these mathematical tools is limited, and the introduction of new techniques
involving matrices or even 3-D matrices could highlight more insightful character-
istics of the studied structure. Consequently, the proposal of a novel and sensitive
methodology for the early detection of damage was put forth.
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1.3 The First Passage Time
The proposed method for early damage detection relies on the concept of First
Passage Time (FPT). This method is located inside the vibration-based methods
in time domain. This concept refers to the time required by a dynamical system
to reach a particular state for the first time, while starting from a known initial
condition. Figure 1.2(a) shows a random signal and identifies the first passage
time corresponding to passage by the final state Xf , starting from the initial state
X0.

In many cases, the system dynamics can be the result of changes in loading
conditions, but it could also result from aging of the structure. It is important to
distinguish them. For instance, in the first case, a well-known textbook example
[80] in structural dynamics is the response of an undamped mass-spring system
(with mass m and stiffness k) subjected to a harmonic loading p sin (ω0t) tuned
on the natural frequency of the system, ω0 =

√
k/m. Assuming initial conditions

at rest, X0 = 0 and Ẋ0 = 0, the displacement of the mass reads

X (t) = p

k

(1
2 sin (ω0t)−

ω0t

2 cos (ω0t)
)
.

This response is sketched in Figure 1.2(b). The quantity p/k is the static
displacement of the mass under load p. The second term in the parenthesis
indicates an unbounded growth at resonance. As time goes by, the term in cos
grows and it is possible to reach several times the static displacement. The first
passage time corresponding to the occurrence of a large displacement Xf = n·p/k
with n≫ 1, corresponds to the time t for which X(t) exceeds the final state Xf

for the first time. In this simple introductory example, the first passage time
is approximately equal to 2n/ω0, starting from the initial state X0 = 0, until
reaching the final state Xf .

This example illustrates that, for a given perfectly determined dynamical
system subjected to a deterministic loading, the FPT can be calculated exactly
for any given state based on standard time marching algorithms [81].

However, in real-life applications where environmental conditions influence
observations, and where measurement errors contaminate data collection, exter-
nal loads are stochastic processes. Similarly, the state of a structure can be
modelled with usual techniques, such as the finite element method [82] or with
other simpler kinematic methods [83], with slowly varying parameters to model
their aging. In such cases, the FPT is a random variable. It is characterised
by a probability distribution, and in particular its statistical moments (average,
variance, etc.). In this work, both the loading and the state of the structure will
be considered as stochastic processes. Therefore, the FPT will be considered as
a random variable.
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(a)
time

First Passage Time

Xf

X0

time

First Passage Time

Xf

X0

(b)

Figure 1.2: First Passage Time of a signal: (a) random signal and (b)
response of an undamped mass-spring system.

1.3.1 Omnipresence of First Passage Times
Following its definition, a specific First Passage Time answers a question under the
format: “How much time does it take for ... to (happen)”. As such the concept of
First Passage Time is therefore present everywhere in daily life. Without drifting
into a philosophical discourse, time and space are the two basic independent
variables in physics. Time, as read from the clock or on a calendar, plays a
central role in human lives, which are regulated by 24h-days. First passage time
problems refer to the first occurrence of a particular issue, or a particular event.
Simple applications encompass transportation schedules. For instance, knowing
that a morning train left the station Liège-Guillemins at 6:45AM, how much time
will it take for this train to pass by the platform in Namur? How much time does
it take for a kid to grow higher than 140 cm? How much time does it take for a
baseball player to hit a home run for the first time (maybe never)? Or for wild
flowers having been seeded on a 1-inch square area to cover a whole field? In all
these applications, and the many more, one could just imagine based on his/her
own life experience, FPTs are omnipresent. They are also random variables.

In structural engineering, FPTs could also relate to the first occurrence of a
specific failure within a system. Structural design can be seen as how long it
takes for a structure to reach failure [84], i.e. for the first time. This approach is
particularly important in seismic engineering, where the earthquake loading can
be seen as a Poisson loading process. In this case, the question addressed in the
design can also be asked as: “How much time does it take for a structure to not
be able to withstand the seismic action anymore?”. Aging and health monitoring
issues follow naturally the same logic.

Recently, the Baltimore Bridge collapsed after a cargo ship collision. This
bridge opened in 1977 and during more than 40 years, many ships crossed under
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the bridge. The design (or the failure) answers the question: how much time
was necessary to observe this failure mode for the first time? Another example is
related to tower cranes. Such structures are subjected to wind forces and during
a period of high wind speeds, the rotation of tower cranes is permitted. However,
after a given period of time, the accumulated energy in the structure may exceed
the threshold limit. This has already been studied in the context of FPT [85].

In other cases, the system parameters may vary over time, resulting in an
earlier degradation of the structure than anticipated. As an example, corrosion
results in a slow, and random, decrease of the structural resistance. In this case,
the failure condition is time-varying and again, the design answers the question
of how much time it would take for the corrosion to diminish the strength for the
first time below the loading, resulting in a failure.

Beside these domains of interest for the structural engineer, the concept of
FPT can be found in other contexts, including chemistry [86], biology [87], wind
engineering [88], sensor design [89], financial applications [90], and the modelling
of global warming [91].

1.3.2 Mathematical context
Let considerD, a closed domain in the phase plane of a dynamical system evolving
from initial condition x0 ∈ D. The FPT corresponding to the first passage
through the boundary ∂D of the domain is defined as [92]

tf = inf {t > 0 |x(t) ∈ ∂D&x(0) = x0} (1.1)
Under stochastic excitations, the FPT is a random variable and can be defined

by either its Probability Density Function (PDF) pf or its Cumulative Density
Function (CDF) Pf . Its complement, P = 1−Pf , is called the reliability function,
or survival probability, and gives the probability that the system has not yet left
the domain D over the time interval [0, t],

P (t;x0) = prob (tf > t) = 1− Pf (t;x0) (1.2)
The intuitive meaning of P (t;x0) is the probability of the FPT tf being greater
than t. Therefore, the PDF of the FPT is given by

pf (t;x0) = ∂Pf (t;x0)
∂t

= −∂P (t;x0)
∂t

(1.3)

The CDF of the FPT, Pf (t;x0), is defined as a function of the transition proba-
bility function p (x, t |x0, t0 = 0)

Pf (t;x0) =
∫

D
p (x, t |x0, 0) dx (1.4)
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The computation of the FPT through this high-dimensional integral has been
tackled in many mathematical problems with the following challenge: given a
known dynamical system modelled by a stochastic differential equation, and given
a random input to this system, determine the distribution of the FPT of any out-
put of this system [92, 93]. Closed form solutions or their asymptotic behaviour
are determined in some very specific cases only [92]. When analytical solutions are
not available, the distribution of the FPT is obtained with numerical techniques
dedicated to solving the backward Fokker-Planck-Kolmogorov equation [94, 95]
or path integral methods [84]. An alternative approach consists in computing
the moments of FPT by solving a Pontryagin equation [92]. These methods are
not further discussed since the current work is aimed at identifying damage on
structures without basing the decision on a fixed mathematical model.

1.3.3 Numerical computation of the First Passage Time
After solving partial differential equations governing the distribution of the FPT,
mathematicians like to validate their analytical solutions or their numerical solu-
tions of adjoint problems [96]. To do so, the standard approach is to use a Monte
Carlo simulation method to generate samples of the dynamical system. They
represent signals, as if they were measured in a random experience. For a given
signal, the first passage time can be determined in a direct manner by travelling
along the signal until the desired crossing of the final state Xf occurs. Repeating
the same operations for another synthetic signal provides another sample of the
FPT. After a large number of repetitions, the collection of FPTs obtained from
each sample can be used to estimate the desired statistical distribution.

On the right, Figure 1.3 shows this way to the statistics of the FPT: from
a theoretical description of a (usually academic) problem, the mathematician
develops analytical solutions for the FPT which are validated by means of a
Monte Carlo method. For each sample of the state of the system, the FPT is
determined by means of a specific algorithm aiming at finding the first occurrence,
then returning the corresponding time.

Since this Monte Carlo approach is used for validation purposes only, it ap-
pears that direct methods are generally used to obtain this time. For instance,
the function find which is implemented in common programming languages is
able to stop and return after the first occurrence of a condition. It is noticed
however, that multiple final states would require several calls to this function,
which makes it ineffective. An improved Monte Carlo algorithm has been pro-
posed in [96] by considering multiple levels with different time steps to compute
the FPT for various final states Xf . This ad hoc implementation of the algorithm
significantly reduces the computation time.
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FPT statistics

Figure 1.3: FPT computation from two different approaches.

In fact, for a given signal, it is possible to determine the FPT from any initial
state X0 to any final state Xf . In some sense, this signal could be a synthetic
realisation, or any signal collected from experiments, see the left part of Figure 1.3.
The same algorithm as the one used in the Monte Carlo approach is applicable.
It turns out that this is a very recent practice to apply this type of statistical
processing to experimental data [88, 97, 98].

The objective of this thesis is to go beyond the data processing stage and
examine the possibility to detect changes in structures based on FPTs.

1.3.4 First Passage Time map
In this thesis, a novel health monitoring framework is built on the concept of
FPT map. A map signifies that FPTs are computed for many combinations of
initial and finale states (X0, Xf ). Figure 1.4(a) shows a signal sample together
with one combination of initial and final states (X0, Xf ). Each crossing of the
signal with level X0 provides the occurrence in time of an initial state, and the
corresponding final state needs to be found as the first later occurrence of Xf .
Once the level Xf encountered, the FPT is simply the time difference between
the two intersections, resulting in the difference between the time when the level
Xf is crossed and the time when the level X0 is encountered. These occurrences
are indicated as FPT1, FPT2, FPT3, and FPT4. In figure, only 4 of the 8 initial
states are shown since there are in fact 8 crossings of the signal with level X0.
In principle, the signal should be long enough to collect a large amount of such
crossings, so that statistics of the FPT can be performed.

For a given signal, various combinations (X0, Xf ) can be taken into account,
which leads to a matrix (the map), see Figure 1.4. The columns and rows of
the FPT map respectively represent X0 and Xf . Hence, each cell of the FPT
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and (b,c,d) FPT maps for various combinations (X0, Xf ) when X0 becomes

closer to Xf .



1.3. The First Passage Time 15

map corresponds to a particular combination of (X0, Xf ). In Figure 1.4(b), the
levels X0 and Xf are far from each other. Consequently, it is expected that
the FPTs are long for this combination, at least on average. For this measured
(or synthetic) signal, all FPTs contained in 1 cell can be statistically processed.
Their histogram provides a first estimation of their statistical distribution. An
alternative representation is the Empirical Cumulative Density Function (ECDF),
which corresponds to the cumulative histogram. The ECDF plays the same role
as the CDF in the theory of probabilistics with the difference that it is associated
with a sample of a random variable, not with the variable itself. In Figure 1.4(c),
the combination (X0, Xf ) is different: the level X0 is closer to the level Xf .
On average, the FPT becomes shorter, compared to the case depicted in Figure
1.4(b). When X0 and Xf are really close to each other, the FPTs are even smaller,
as sketched in Figure 1.4(d).

In these examples and for clarity in the explanations, only the level X0 has
been modified. However, all combinations of (X0, Xf ) are taken into account.
The cases where X0 is greater than Xf are also considered and are located in the
lower half of the map, right below the main diagonal. They are associated to the
time required to transition from an initial state, which is higher than the final
state.

In Figure 1.5, some other important features of the FPT map are illustrated.
If the signal is symmetrical, see Figures 1.5(a) and (b), the ECDF of FPT remains
unchanged when X0 and Xf are swapped. This is not the case if the signal is
non-symmetrical, in which case the top and bottom halves of the FPT map can
be significantly different. The last particular case is shown in Figure 1.5(c). It
corresponds to the case where X0 = Xf . In this case, the FPT is deterministic
and equal to zero, as it takes no time for the process to reach Xf (equal to X0).
Therefore, on the main diagonal of the FPT map, all computed FPTs are null.

The rest of the FPT map is filled for each combination (X0, Xf ), as explained
above. In the most complete description, each square of the map contains an
ECDF, but it can also be attributed to any degenerated quantity, for instance,
the average or the standard deviation of the FPT. In Figure 1.5(d), the average
FPT map is shown for a symmetrical signal. The coloured lines represent the
contours of equal average of FPT, starting from zero along the main diagonal,
and increasing towards the upper and lower edges.

The maps of the first and second statistical moments of the FPT were men-
tioned for the first time in 2017 [99, 100]. In this work, the maps of the ECDF of
FPTs will be exclusively used. Indeed, it was found that a more comprehensive
and detailed information was necessary for damage detection purposes.
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1.4 Outline of the thesis
The law of contraposition says that a conditional statement is true if, and only
if, its contrapositive is true

(A⇒ B) ⇔ (∼ B ⇒∼ A) .

For instance, “rain (A) implies clouds (B)” is equivalent to “no cloud (~B) implies
no rain (~A)”. This law is at the basis of damage detection and, later, localisation.
Indeed, if two structures are the same (A), they have the same response to given
input (B). Damage can be inferred if they don’t have the same response to given
input (~B), in which case the two structures are logically different (~A).

The response to given input could be any mechanical property of the structure
that can be easily monitored, for instance natural frequencies, flexibility or other
quantities obtained with the technologies summarised in Section 1.1. It could also
be the FPT map of the structural response under a given input, a novel approach
that is developed in this thesis. No matter the observed response which is used
to detect changes, a comprehensive study needs to be developed to analyse the
detectability of damage, which is closely related to the sensitivity of FPT maps
to small changes in the structure. The larger this sensitivity, the more reactive
the method to detect changes, and consequently be a good candidate for early
damage detection.

With this objective in mind, and knowing that the concept of First Passage
Time is applied to SHM for the first time, the work provided in the thesis was
a fresh exploration of the playground. In Figure 1.6, the outline of the thesis
is depicted and follows the fundamentals of SHM evoked at the beginning of
the introduction. Chapters 4 and 5 report investigations on two experimental
campaigns that were conducted during this thesis. In Chapter 4, a small-scale
experimental setup made of a steel strip was used to assess and validate the pro-
posed methodology for the first time. Then in Chapter 5, the experiment is a
main beam of a prestressed concrete bridge coming from a demolished bridge in
Luxembourg. This beam was deliberately damaged by progressively cutting the
prestressing tendons, one-by-one, over the course of this project, from 21/07/2022
to 16/06/2023. This experiment served as a second test bed for the proposed
method, making it more challenging owing to unavoidable environmental effects,
such as humidity and temperature variations. Damage detection and localisa-
tion are discussed with these two final experimental campaigns, based on the
methodology described in Chapter 3. This method hinges of the FPT maps of
their complete distributions, more precisely on their cumulated histograms (or
ECDFs). For the method to be efficient, it was necessary to have access to a
fast, efficient and reliable algorithm for the computation of these FPT maps.
This algorithm is presented in Chapter 2. Among other possible outputs, the
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algorithm returns the ECDFs of the FPTs associated with the input signal. The
comparison of the FPT maps obtained from signals collected on the structure in
a reference state and in the current state is used to infer damage. The proposed
method is also extended to localise damage whenever detected.

1.5 Personal contributions
The first contribution is the development of a fast and memory-efficient algorithm
[101]. The creation of a new algorithm to compute FPTs was motivated by its
repeated use to experimental signals. The algorithm has been written in Matlab
and uses, therefore, the vectorization allowed in this programming language to
achieve much faster computation than existing alternatives. As described in
Chapter 2, the key idea of the new algorithm is to process the signal backward.
This allows to go through the signal only once to build the entire FPT map.

The second contribution is the proposed methodology for SHM, which belongs
to the family of the vibration-based methods. It consists of several steps: choice
of an appropriate loading, vibration measurement and standard pre-processing,
computation of the FPT maps at various ages of the structure, comparison of
the corresponding first passage time maps and decision on whether the structure
is damaged or not. More precisely, beside loading and vibration measurement,
which follow classical approaches,

• it was found that a good detectability was obtained when data pre-processing
was relying on the envelope, obtained with the Hilbert transform, and two
filters: a bandpass filter and a frequency content adjustment. These filters
remove the unwanted frequency content from the signal and compensate for
the slight differences in reproducing the same loads with a shaker, when it
is operated in open loop configuration,

• since FPT maps are a rather young concept, it was necessary to develop
an approach to compare two FPT maps coming from two different mea-
surements. This was done by designing and developing a new hypothesis
testing for the comparison of two collections of Empirical CDFs (ECDFs).

Last but not least, the proposed methodology was applied to a small-scale struc-
ture in lab conditions and to a large civil structure in environmental conditions.
In the first experiment, damage detection and localisation were studied based
on velocity measurements acquired by a laser. The second experimental setup
was a prestressed concrete beam submitted to environmental loads on top of the
deliberate damage incurred to the structure and the random passage of nearby
trains. In this case, damage detection was partly successful and recommendations
on how to improve the quality of damage detection could be identified.
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Chapter 2

A Novel Algorithm for the
computation of First Passage
Times

This chapter focuses on a new efficient algorithm that has been developed in order
to compute First Passage Times.

First, the algorithm is described, before assessing its efficiency with realisa-
tions of three stochastic processes: an Ornstein-Uhlenbeck process, a Geometric
Brownian Motion, and a narrowband signal. Second, for the Ornstein-Uhlenbeck
process, the algorithm is validated by comparing the numerical results, obtained
with the algorithm, to the theoretical results. Finally, FPT maps and histograms
of FPTs are computed to illustrate the application of the algorithm to selected
experimental data.

2.1 Algorithm

2.1.1 Generalities
Let Xi, (i = 1, ..., n) a discrete-time signal, which can be seen as a realisation of a
random process. A novel algorithm for computing the First Passage Time maps is
presented. These maps represent some selected centred statistical moments and
histograms of the FPT for various combinations of the initial and final values, X0
and Xf . The kth centred statistical moment is given by

mk = E
[
(FPT (X0, Xf )− E [FPT (X0, Xf )])k

]
. (2.1)

The first two centred moments are the average first passage time (k = 1)
and its variance (k = 2). In general, the first passage time maps of the first
few centred moments k = 1, ..., p are computed. Since the standard error of the
estimators increases with p, it is customary to opt for p = 2. However, it is not
forbidden to use the proposed algorithm for much larger values.
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The maps are computed for Nmap values of X0 and Xf which are uniformly
spaced between two levels, Lmin and Lmax. These values are set to default at the
10th and the 90th percentiles of the given signal, as shown in Figure 2.1(a). The
Nmap equally spaced and ordered levels are noted LiL, with iL ∈ {1, 2, ..., Nmap},
L1 = Lmin and LNmap = Lmax.

Beside centred moments, the proposed algorithm also optionally computes
histograms of the FPT for the same combinations of X0 and Xf , or less if some
data storage needs to be saved. Indeed, these histograms are recursively com-
puted as explained next by counting the number of occurrences of first passage
times in small predetermined bins (b = 1, ..., nbins) which are allocated at the
beginning of the signal processing. These bins can then be aggregated in order to
reach some optimality in the density estimator [105, 106]. Ultimately, the funda-
mentals of the SHM method presented in Chapter 3 will hinge on the Empirical
Cumulative Density Function (ECDF), which corresponds to the cumulative of
these histograms.

For centred moments, each of the FPT maps can therefore be seen as an
Nmap × Nmap array gathering the statistics of the FPT for the different combi-
nations of X0 and Xf , and for k = 1, · · · , p. The FPT map of the histogram,
however, is a Nmap ×Nmap × nbins array.

Since the same crossing levels are used for both X0 and Xf , the main diagonal
of an FPT map is omitted because, there, X0 = Xf , and it takes no time to reach
level Xf = X0, starting from X0. Also, the FPT values above and below this
diagonal respectively correspond to Xf > X0 and Xf < X0. The latter case may
be less intuitive but is not irrelevant (e.g. [96]); it has practical applications in
dissipative systems.

A naive implementation would entail iterating through the varying initial and
final values, leading to reprocessing of the signal for every new combination of
X0 and Xf , and possibly for every other centred moment of interest. This would
result in at least 2 nested loops. Instead, a new algorithm was developed in order
to efficiently compute FPT maps of a given signal. The conceptual idea is the
same as the algorithm presented in [85, 88], in which the statistics of the FPT are
computed for all combinations of X0 and Xf simultaneously. This algorithm can
be described as a variant of the rainflow algorithm [107]. By virtually rotating
the time signal by 90°, one can visualise a water droplet falling and its trajectory
defines the main envelope, which is stored. Subsequently, a partial envelope can
be constructed for every point of the time signal utilising the same process until
the water droplet meets the path of the main envelope. Once the main envelope
is reached, the partial envelope aligns with it until the end of the time signal.
Afterwards, the FPTs are derived from the computed envelopes.
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Another implementation has also been developed [108]. However, before com-
puting the centred statistical moments of FPTs, all FPTs are stored inside a 3-D
matrix, whose rows and columns correspond to the number of X0 and Xf while its
height is the number of FPTs computed for the considered combination (X0, Xf ).
This reduces the algorithm efficiency and all computed FPTs must be stored.

Therefore, a novel algorithm is proposed. It differs as the signal is analysed
backward and does not rely on a variant of the rainflow algorithm anymore. As
a first advantage, only the last encountered time for each level is required to
calculate the FPTs so that, in the reverse analysis process, only those crossing
times are temporarily stored. This considerably reduces the memory storage.
Also, the specific algorithmic arrangements presented in detail later ensure that
the signal is processed only once, which significantly reduces the CPU time for
the signal processing.

For a compact view, three pseudo-codes are provided. The main function of
the algorithm is 1. Algorithms 2 and 3, used by FPT_map(), correspond to the
functions isALevelCrossed() and isAnotherLevelCrossed(). They are related
to the detection of crossed levels. These three functions are described in more
detail later in this document.

In essence, the proposed algorithm is based on two different parts operating
in cycle over each time step. The first part is the detection of level crossing and
the second part is, if a level has been crossed, the computation of the FPT.

Firstly, the algorithm aims at keeping track of time instants where levels LiL

are crossed, while rewinding the signal. The level crossing detection hinges on two
main functions aiming at efficiently finding a crossed level: isALevelCrossed()
and isAnotherLevelCrossed(). These functions require the sign of the slope
of the previous and current crossed levels LiL. The slope is said to be null if
(Xi−1 = Xi), positive if Xi−1 < Xi and negative otherwise. The first crossed
level LiL is determined based on the last point of the signal. Once the first
crossed level has been determined, a pointer is used to move backward through
the signal, point by point. The function isALevelCrossed() is always used first in
order to check if at least one level is crossed. The efficiency of this function is
based on a fast detection of level crossing, and if so, which level(s) has(have) been
crossed. Thanks to simple if/else statements, the sign of the current slope and
the sign of the slope of the last crossed level, only one level must be checked in
order to detect if a level is crossed. If the checked level is not crossed, then no
other test has to be performed. In the case of a null slope, the algorithm simply
checks if the current level LiL is equal to Xi−1.

There might be several level crossings over one time step, when the gradient
of the signal is large. Therefore, the function isAnotherLevelCrossed() is used.
This function is a lighter version of the function isALevelCrossed() which im-
proves the speed of the algorithm. The function isAnotherLevelCrossed() will
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be called while it detects a level crossing after each FPT calculation.
When a level is crossed, say level iL, a crossing time t̂c is calculated by linear

interpolation between ti and ti−1,

t̂c = LiL −Xi−1

Xi −Xi−1
(ti − ti−1) + ti−1 (2.2)

to provide a refined estimation, see Figure 2.1(b).
This time t̂c is stored at the iLth entry of a 1×Nmap vector tc, possibly replacing

information previously stored at the same location, to indicate that level LiL has
been crossed at that time, see Figure 2.1(c). The vector tc, initialised with empty
values, is used to store the last value t̂c for each level LiL. In addition, a logical
vector 1xNmap called Lmet, initialised with false values, is used to track which
level has already been encountered since the beginning of the signal processing;
Lmet(iL) is therefore set to true. This vector is useful as it enables the vectorial
programming capabilities of the Matlab language [109].

Then, the FPT of all encountered levels is simply the difference tc − t̂c.
These values are samples of the random variables corresponding to the first

passage times. The integer powers k = 1, · · · , p of the differences tc− t̂c are added
to the maps of raw moments which will be ultimately used to compute the centred
moments of the first passage times, see Figure 2.1(d).

The centred moments are then updated inside matrices. Different centred
moments can also be calculated by changing the power k. The histograms
are also updated. These FPT histograms are calculated for all or some com-
binations (X0, Xf ) of a FPT map. The bin width can be determined based
on the chosen accuracy and is a multiple (coef_dt) of the time step. A pos-
teriori, the FPT histograms are post-processed using different formulas [105,
106] in order to reduce the number of bins. Before moving the pointer on-
wards, isAnotherLevelCrossed() checks if another level L is crossed. If this
is the case, the FPT calculation is performed once again until the function
isAnotherLevelCrossed() returns false, i.e. that no level crossing has been
detected. Once the pointer has reached the first data point in the signal, the
processing is complete. The algorithm returns numerical values of the FPT maps
which can then be independently graphically represented.
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FPT_map()

Input: ti, Xi, ∀i = 1, ..., N
Output: FPT maps of centred moments and histograms of FPT
Discretisation of X(t) into Nmap equidistant levels L
Determination of the bin width and the number of bins based on the input
coef_dt

Initialisation of the last crossed level and its slope based on X(N)
for i← N to 1

Save of the slope for the last crossed level LiL

isALevelCrossed()
while A level is crossed

Storage of the current time t̂c for the corresponding crossed level LiL into tc
FPT← tc − t̂c
Update iLth row of maps of raw moments
Update histograms
isAnotherLevelCrossed()

end
end
Transformation of raw moments into centred moments

Algorithm 1: FPT_map()
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isALevelCrossed()

Input: Xi, Xi−1, L, slope_iL, iL, Nmap
Output: iL, slope_iL, crossing, crossing_diff_slope
crossing ← FALSE
crossing_diff_slope ← FALSE
if Xi > Xi−1

if Xi ≥ L1 and Xi−1 ≤ LNmap

if slope_iL is positive
if iL− 1 > 0 and Xi−1 ≤ LiL−1

iL← iL− 1
slope_iL is positive again
crossing← TRUE

end
else

if iL > 0 and Xi−1 ≤ LiL

iL← iL− 1
slope_iL is positive now
crossing ← TRUE
crossing_diff_slope ← TRUE

end
end

end
else if Xi < Xi−1

if Xi ≤ LNmap and Xi−1 ≥ L1
if slope_iL is negative

if iL+ 1 ≤ Nmap and Xi−1 ≥ LiL+1
iL← iL+ 1
slope_iL is negative again
crossing ← TRUE

end
else

if iL ≤ Nmap and Xi−1 ≥ LiL

iL← iL− 1
slope_iL is negative now
crossing ← TRUE
crossing_diff_slope ← TRUE

end
end

end
else

if Xi−1 = LiL

slope_iL is horizontal
crossing ← TRUE

end
end

Algorithm 2: isALevelCrossed()



28 Chapter 2. A Novel Algorithm for the computation of First Passage Times

isAnotherLevelCrossed()

Input: Xi−1, L, slope_iL, prev_slope_iL, iL, Nmap
Output: iL, crossing
crossing ← FALSE
if slope_iL is positive

if prev_slope_iL is positive
if iL− 1 > 0 and Xi−1 ≤ LiL−1

iL← iL− 1
crossing ← TRUE

end
else

if iL > 0 and Xi−1 ≤ LiL

crossing ← TRUE
end

end
else if slope_iL is negative

if prev_slope_iL is negative
if iL+ 1 ≤ Nmap and Xi−1 ≥ LiL+1

iL← iL+ 1
crossing ← TRUE

end
else

if iL ≤ Nmap and Xi−1 ≥ LiL

crossing ← TRUE
end

end
end

Algorithm 3: isAnotherLevelCrossed()
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2.1.2 Other specific features
In order to optimise the algorithm and its performances, several specific features
have been used.

The first one is taking advantage of the vectorization capabilities offered by
Matlab by using the vector Lmet. This vector is useful to reduce the computa-
tional time by avoiding redundant loops. Moreover, the vectorization of Matlab
has also been used in the computation of the FPT histograms. Indeed, by deter-
mining all cells of the 3D matrix that need to be updated, the increment of these
cells is performed directly without any explicit loop.

A second feature of the proposed algorithm concerns the windowing of sig-
nals with missing data. If a part of a signal has been corrupted or is missing,
which is unfortunately not rare with SHM data, the user can discard that part.
Indeed, since the algorithm also returns the occurrences of the first passage time,
by sending one fraction of the signal at a time to the algorithm, the user can
get the matrices with the data that is already processed for the centred moments
calculation. A simple averaging of these matrices is possible and allows to con-
catenate information coming from several fragments of a corrupted signal with
missing pieces.

The last feature concerns the handling of signal with low digitalisation or
rounded values. Indeed, in case of low digitalisation, there are two major issues:
(i) identical consecutive values resulting in a slope equal to zero and (ii) data
values that correspond exactly to a level LiL. While in a signal with significant
digitalisation, these two cases are marginal, they occur much more frequently
in case of low digitalisation. In order to limit the bias, the first issue is easily
solved by taking into account the special case of the null slope in the functions
isALevelCrossed() and isAnotherLevelCrossed() while the second issue re-
quired more attention. In the original version of the proposed algorithm if a data
point was equal to a level LiL this point was taken into account twice. To face
this issue it has been decided that the FPT calculation is skipped if LiL = Xi

except for the point X(n), which is the first point encountered by the algorithm.
This removes the double counting.
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2.2 Efficiency of the proposed algorithm
In this section, the efficiency of the algorithm is discussed on two examples.

2.2.1 Example 1: Experimental data
As a first comparison, the data utilised in [88] has been re-used. The data come
from an experimental setup of a tower crane whose results were measured in
the wind tunnel of the University of Liège. The measured signals consist in the
rotational position of a tower crane free to rotate in a turbulent flow. The number
of points is equal to 3.6 million with a time step ∆t = 0.001 s.

To assess the efficiency of the proposed algorithm, the algorithm from [88]
and the proposed algorithm processed the same data. The algorithm featured
in [88] took 2600 seconds to complete its calculations whereas, the
proposed algorithm only required 6 seconds, resulting in a calculation
time 400 times shorter.

These good results indicate that the new algorithm is indeed a good candidate
for processing larger amounts of data.

2.2.2 Example 2: Synthetic data
As a second comparison, a parametric study is conducted to demonstrate the
effectiveness of the proposed algorithm in addressing various aspects of a problem.
In this case three types of signals with very different spectra have been used:
an Ornstein-Uhlenbeck (O-U) process, a Geometric Brownian Motion (GBM)
and the displacement response of a single oscillator (1-DOF) with mechanical
properties as per [110] (m =28.138 to, k =22495 kN/m, ξ =4%) and subjected
to narrowband white noise excitation in the range [4; 5] Hz.

The first two processes are well-known theoretical stochastic processes. They
have been generated numerically by using an Euler scheme and the definition of
the Wiener process [96]. The third sample has been obtained by solving the mo-
tion equation of the single degree-of-freedom oscillator using the Newmark scheme
under a loading history sampled from a narrow banded white noise around the
first bending mode (4.5 Hz) of the corresponding specimen. Figure 2.2 shows two
samples of each of these processes. A close-up view in the range t ∈ [1000; 1020]s
offers a better picture of the processes at stake. Also, while the geometric Brown-
ian motion is a transient process, the other two considered processes are Gaussian,
as indicated by the histograms of the sampled time series.
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A reference case is obtained by computing the FPT map of samples of these
three random processes. They are sampled at 500 Hz, for a duration of 10 s (i.e.
contain 5000 data points) and the FPT map is established for Nmap × Nmap =
400 values. For the three processes (O-U, GBM and 1-DOF), the mean execution
times, averaged over 150 repetitions, are

O-U GBM 1-DOF
0.0175 s 0.0105 s 0.0144 s

Unlike more traditional processing techniques, such as the Fourier transform,
the computational burden associated with the establishment of an FPT map
depends on the specific nature of the signal. In particular, the computational
time associated with the geometric Brownian motion is significantly shorter than
for the other two processes. As detailed in the following, this is a consequence of
the drift associated with a geometric Brownian motion.

A parametric study has been carried out in order to determine the influence
on the runtime (to compute the whole FPT map) of three major parameters that
have been identified as having a possible influence on the quality of the resulting
FPT map:

1. the total length of the signal;

2. the sampling frequency of the signal;

3. the number of level discretisation Nmap.

The results of this analysis are reported in Figure 2.3 in terms of a wall-clock
time, i.e. the elapsed time as displayed on a chronometer. This measure has been
chosen over CPU-time as the latter is dependent on the number of processing
cores utilised. The wall-clock time is represented for each studied parameter.

Moreover, for enhanced analysis of the influence of the different parameters
on the total execution time, two distinct times, namely tcal and tlevel, have been
utilised. The time tcal is the time required to calculate FPTs and store them into
matrices while tlevel is the time needed to detect if one level is crossed. Together,
tcal and tlevel constitute the total execution time. The order of magnitude of the
Matlab time accuracy is roughly 0.1s. The number of repetitions is therefore
chosen as 150 in order to better discriminate between the different cases. Based on
the number of measurements and the time accuracy of Matlab, a threshold value
equal to 0.1/

√
150 = 8.10−3s has been estimated. Below this value, the estimation

of the wall-clock time is inaccurate and the corresponding zone is coloured in
light grey because the calculated time may be affected by other CPU tasks, for
example. These performance tests have been carried out on a computer with
the following specifications: CPU: Intel(R) Core(TM) i7-10510U CPU 2.30GHz,
RAM: 16Go 2667MHz.
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In Figure 2.3(a), the influence of the signal length is shown. The sampling
frequency is set at fs = 500 Hz, and the parametric analysis concentrates on
the number of data points in the signal. The total duration is T = 0.2 s for
n = 102 and T = 2000 s for n = 106 points in the signal. In the worst case,
the wall-clock time grows proportionally to the number of points. The geometric
Brownian motion is the most advantageous case due to the peculiar occurrence
of crossing times of this random process. In Figures 2.3(d), 2.3(g) and 2.3(j), tcal
and tlevel are represented for each process. For the O-U and the narrowband 1-
DOF processes, tcal always exceeds tlevel by at least one order of magnitude. This
is not the case for the GBM process for which tlevel is getting closer to tcal and
even becomes larger as the signal size increases. This deviation from the other
two processes can be explained by the global exponential behaviour of the GBM
process. Eventually, this process stops passing through the lower levels after a
certain time because the GBM is not stationary. Therefore, for the same number
of points, fewer FPTs are calculated for the GBM process than for the other
two processes. Consequently, as the signal size increases, the algorithm spends
proportionally more time checking if a level is crossed than computing FPTs.

Figure 2.3(b) illustrates the influence of the sampling frequency. A total
duration of T = 10 s is maintained, and the sampling frequency is adjusted so
that using n = 102 data points corresponds to a sampling frequency fs = 10 Hz
and using n = 106 data points corresponds to a sampling frequency fs = 100000
Hz. In Figures 2.3(e) and 2.3(h), it can be observed that tlevel is increasing
faster than tcal. Indeed, doubling the sampling frequency fs does not necessarily
double the number of calculated FPTs; in practice, this number usually decreases.
However, the number of data points doubles, which results in a larger increment
of tcal compared to tlevel. In Figure 2.3(k), the behaviour of tcal is different. At
a sampling frequency fs ≈ 100 Hz, tcal is constant, which can be attributed to
the numerical scheme. When the time step is small enough, i.e. the sampling
frequency fs is sufficiently high compared to the range of the band-limited white
noise used as an input, the Newmark scheme under the same loading history
will compute identical response signals, corresponding to the same number of
calculated FPTs. Finally, it can be concluded that tcal becomes dominant over
tlevel for each signal in this section beyond a sufficiently high sampling frequency
fs.

In Figure 2.3(c), the influence of Nmap is shown. The proposed algorithm
shows a uniform behaviour across all processes: the wall-clock time mainly de-
pends on the number of calculated FPTs, i.e. is proportional to N2

map. This trend
is also observable in Figures 2.3(f), 2.3(i) and 2.3(l) where tcal is at least one order
of magnitude higher than tlevel. For the same signal duration and sampling fre-
quency, the O-U process exhibits more threshold crossings, thereby contributing
to its longer runtime when compared to the 1-DOF and GBM processes.
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Moreover, this algorithm is memory-efficient. Only the last encountered time
for each level Xf is required to compute FPTs, reducing the memory usage of the
algorithm.

2.3 Verification
In this section, the algorithm’s results are compared with theoretical values to
verify the accuracy of the algorithm. Among the 3 processes considered so far,
the Ornstein-Uhlenbeck process has been chosen since it possesses available ana-
lytical solutions and resembles the typical signals that could be measured in an
SHM program. The mathematical formulas for computing the PDF and the cen-
tred statistical moments of the O-U process have been summarised in Appendix
A based on [111]. Their mathematical expressions of these formulas are compli-
cated and based on integrals, such as the imaginary error function. Therefore,
the analytical expression of the narrowband 1-DOF process is intractable. The
stochastic differential equation of the O-U process is

dXt = β(α−Xt)dt+ σdWt (2.3)
whose parameters are α = 0, σ = 1, and β = 1 rad/s. Equation 2.3 is solved
numerically with an Euler-Maruyama scheme [112]. By using Monte Carlo simu-
lations, samples of this O-U process are generated and the maps of average FPT
and standard deviation of FPT are computed. Histograms of the first passage
time are also computed for some selected combinations of (X0, Xf ).

Equation 2.3 has been integrated with three different time steps, correspond-
ing to sampling frequencies 500 Hz, 5000 Hz and 50000 Hz. This allows appre-
ciating the impact of this simulation parameter on the accuracy of FPT maps.
Moreover, a large number of simulations has been used and the results of each
run have been merged in order to have at least 106 FPTs for each combination of
(X0, Xf ). This large number allows to narrow down the confidence intervals on
the FPT statistics. In Figure 2.4(a), the average FPT map is represented. The
numerical results accurately match the theoretical results summarised in Ap-
pendix A, especially for fs = 5000 Hz and fs = 50000 Hz. As expected, greater
sampling frequencies improve accuracy. Figures 2.4(b,c,d) show absolute errors
at sampling frequencies of 500 Hz, 5000 Hz and 50000 Hz. Table 2.1 displays
the highest relative errors for the average FPT at various ratios fs

fO−U

, where

fO−U = β

2π Hz is the characteristic frequency of the O-U process. These values
are located near the main diagonal of the map where X0 and Xf are close to
each other. They correspond to very short passage times and are affected by the
discretisation.
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Figure 2.4: (a) Average FPT map, (b,c,d) Error map [in %] of the average
FPT for a frequency of (b) 500 Hz, (c) 5000 Hz and (d) 50000 Hz.

Table 2.1: Maximum errors for the average and the STD of FPT for
different ratios fs

fO−U
.

Ratio fs

fO−U

≈ 3000 ≈ 30000 ≈ 300000

Maximum error on average of FPT 36% 11% 4%
Maximum error on STD of FPT 19% 6% 3%
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In Figure 2.5(a), the STD of FPT is shown for various combinations of
(X0, Xf ). Again, the contour lines overlap significantly, similar to the average
FPT map. In Figures 2.5(b,c,d), relative errors are plotted for frequencies of 500
Hz, 5000 Hz and 50000 Hz. The maximum values are listed in Table 2.1. It can
be seen that the maximum relative errors on the map of the STD of FPT are
lower than the maximum errors of the average FPT map for the same frequency.
The largest error is always located near the main diagonal. The error reduces to
below 1% when considering combinations of (X0, Xf ) that satisfy the constraint
|X0 −Xf | ≳ 0.2.

The algorithm can precisely compute the FPT centred moments. However,
the quality of values situated around the main diagonal of the map is impacted
by the ratio fs

fO−U

. This limitation is more attributable to the simulation process
rather than to the algorithm itself. Indeed, it has been shown that when this
ratio is equal to 30000 or 300000, the error is significantly reduced. Therefore,
the sampling frequency fs should be chosen in accordance with the characteristic
frequency of the O-U process fO−U .

Besides the average FPT maps and STD of FPT maps, histograms of the FPT
are also illustrated for 9 combinations of (X0, Xf ) located at different places of
the FPT map, in order to get a better understanding of the distribution of the
FPT for a given set (X0, Xf ). These empirical PDFs are shown in Figure 2.6
together with the analytical solution, given as a reference. The location of the
combination (X0, Xf ) is indicated by a red square on the pictogram.

In Figures 2.6(c,e,g), corresponding to combinations located close to the main
diagonal of the map, the order of magnitude of the average FPT is the same
as the time step or even below. There, FPTs are overestimated due to the large
time step, resulting in a higher mean value. This explains the large relative errors
computed in that area. By increasing the sampling frequency, the time step is
reduced and for 50000 Hz, the shape of the PDF is well represented.

In Figures 2.6(a,b,d,f,h,i), corresponding to combinations (X0, Xf ) lying out
of the main diagonal of the map, two observations can be made:

1. The shape of the PDF matches the theoretical one. However, it can be
observed that the PDF is slightly overestimated for 500 Hz and 5000 Hz for
higher FPT values. This is a well-known issue [113, 114] that directly comes
from the small sampling frequency of the numerical signal simulation. By
using a smaller time step (= a higher sampling frequency), the probability
of obtaining extreme FPT values is reduced. Hence, it follows that the
results obtained using a sampling frequency of 500 Hz and 5000 Hz slightly
overestimate the probability of large FPT values.
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2. The O-U process is symmetrical and therefore, the PDFs of FPT for (X0, Xf )
and (−X0,−Xf ) are identical. As a result, the maps and PDFs enjoy a
central symmetry about (X0, Xf ) = (0, 0). The proposed algorithm can
adequately model this symmetrical behaviour.

2.4 Illustration of the computation of FPT maps
for experimental data

This section presents the application of the proposed algorithm to compute FPT
maps of a narrowband measured signal from an experimental setup. The exper-
imental setup is described in Chapter 4. It will be first demonstrated that any
time signal, employed as an input of the proposed algorithm, derived from an
experiment, can also be computed to yield FPT maps. The narrowband signal
used here is not much different from the synthetic one, generated in the previ-
ous section. Nevertheless, this example is used to discuss the possible use of the
slowly varying envelope of the narrowband process, and its FPT maps.

In this instance, the measured signal is the velocity. It has been normalised by
its interquartile range, the difference between the 75th and the 25th percentiles.
Moreover, the median has been subtracted. Figure 2.7 illustrates the resulting
signal, its PDF, which reflects the statistical symmetry, and the PSD of the result-
ing signal, whose frequency content is located in the frequency range [35, 43]Hz.
The sampling frequency fs of the signal is equal to 2048 Hz. In the same figure,
the envelope, constructed using the Hilbert transform, of the normalised velocity
is also represented. This envelope will be discussed further in this section.

Figures 2.8(a) and (b) depict the Average FPT map and STD of FPT map,
respectively, for the normalised velocity. As observed in the previous section, the
symmetry of the FPT maps is well represented, even if the maps are derived from
experimental data this time.

To further elaborate, in Figure 2.9, the histograms of FPT are shown.
The shape of the histogram (h) is explained based on Figure 2.10. In this case,

the combination (X0, Xf ) is equal to (−0.04,−1.59). Over a long time period,
multiple intersections (black dots) are computed between the signal and the level
X0 without crossing the level Xf at all. Once the level Xf is crossed for the
first time, the First Passage Time is computed. The computed FPTs correspond
to the right peak of the histogram, called cluster. At a specific point in time,
various intersections (green dots) occur between the level Xf and the signal. Two
distinct behaviours are observed. On the one hand, when the slope of the signal
is negative at the intersection between the level X0 and the signal (blue dots), the
FPTs are the smallest. The computed FPTs are approximately equal to a quarter
of the natural period T1, where T1 ≈ 1

39 ≈ 0.025 seconds. On the other hand,
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Figure 2.8: FPT maps of the normalised velocity: (a) Average FPT map
and (b) STD of FPT map.

if the slope of the signal is positive at the intersection between the level X0 and
the signal (yellow dots), then three-quarters of the natural period T1 are required
to cross for the first time the level Xf . These computed FPTs correspond to the
middle peak of the histogram.

In Figure 2.9, based on FPT histograms (d) and (f), a bimodality in the FPT
can be observed. If the signal is increasing, the first time to hit a higher level is
lower than if the signal is decreasing. The opposite is also true for a lower level.
This is the reason why the FPT histogram is a mixture of two distributions, as
represented in Figure 2.9(d), (f), and (g). This explanation is also valid for the
other histograms even if the peaks of the PDF of FPT are less symmetric.

The shapes of the FPT histograms obtained in this experiment differ signifi-
cantly from those observed in the previous section for the O-U process.

It can also be observed that the FPTs are generally smaller or equal to the
natural period T1 in all subfigures.

The statistical symmetry between (a) and (i), (d) and (f), and (c) and (g) can
be observed. However, a slight difference can be noticed between (a) and (i) by
comparing the highest peak in the histograms. Indeed, the data measured from
the experiment has a finite length.

As explained, by considering the fast dynamics of the system, FPTs are gener-
ally smaller than the natural period T1. Therefore, a slight change in the natural
frequency can significantly impact the shape of the FPT histograms. This is why
the envelope of the measured signal has been taken into account. This envelope
can be computed with the Hilbert transform. Only the upper envelope is shown in
Figure 2.7. It can also be observed that the envelope is statistically asymmetrical
based on its PDF.

In Figure 2.11, the Average FPT map and the STD of FPT map of this
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Figure 2.10: Zoom on the measured signal. Computation of FPTs for
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envelope are shown. The maps are asymmetrical. They start from X0 > 0 since
the upper envelope is positive. The upper part of the map, above the main
diagonal, contains higher values of the FPT centred statistical moments than in
the lower part (see yellow contour line). This indicates that, for the envelope of
this experimental signal, once a higher level X0 has been reached, it requires, on
average, less time to cross a lower level Xf than in the opposite case if X0 < Xf .

The histograms of FPT computed for the envelope of the normalised velocity
are shown in Figure 2.12. The histograms of FPT are not statistically similar
two by two, anymore. Indeed, for example, the histogram of FPT (a) does not
correspond to the histogram of FPT (i).

Since the envelope evolves on a slow timescale, the FPTs, computed when the
envelope of the signal is used as input, are considerably larger than those shown
in Figure 2.9. Furthermore, and as a consequence, the distributions of FPT are
now much smoother.



2.4. Illustration of the computation of FPT maps for experimental data 45

0.5 1 1.5 2
X0

0.5

1

1.5

2

X f

2
4
6
8
10
12
14
16
18
20
22

0.5 1 1.5 2
X0

0.5

1

1.5

2

X f

2
4
6
8
10
12
14
16
18
20

(a) (b)

FPT [s] FPT [s]

Figure 2.11: FPT maps of the envelope of the normalised velocity: (a)
Average FPT map and (b) STD of FPT map.



46 Chapter 2. A Novel Algorithm for the computation of First Passage Times

20 60 100 140
FPT [s]

0

0.01

0.02

0.03

20 60 100 140
FPT [s]

0

0.01

0.02

0.03

0.04

20 60 100 140
FPT [s]

0

0.02

0.04

0.06

0.08

0.1

1 2 3 4 5 6 7 8 9 10
FPT [s]

0

0.1

0.2

0.3

0.4

0
0.2

0.4
0.6

0.8

1
1.2

1 2 3 4 5
FPT [s]

0
0.1

0.2

0.3

0.4
0.5
0.6

0.2 0.4 0.6 0.8 1 1.2
FPT [s]

0

2

4

6

8

10

5 10 15 20 25 30
FPT [s]

0

0.05

0.1

0.15

5 10 15 20
FPT [s]

0

0.05

0.1

0.15

(a) (b) (c)

(d)
2 4 6 8 10 12

FPT [s](e) (f )

(g) (h) (i)

PD
F

PD
F

PD
F

Figure 2.12: Histograms of FPT for the envelope of the normalised ve-
locity for various values of (X0, Xf ): (a) (0.19, 2.17), (b) (1.20, 2.17), (c)
(2.13, 2.17), (d) (0.19, 1.20), (e) (1.16, 1.20), (f) (2.17, 1.16), (g) (0.19, 0.24),

(h) (1.16, 0.19), (i) (2.17, 0.19).



2.5. Conclusion 47

2.5 Conclusion
A novel and optimised algorithm has been presented in this chapter as a sig-
nal processing tool for discrete-time signals. The objective of this algorithm is
to compute centred statistical moments and histograms of FPTs in an efficient
manner for different sets of (X0, Xf ).

The efficiency of the proposed algorithm has been evaluated by comparison to
a direct method. The proposed algorithm is 400 times faster. The fast computa-
tion of this algorithm is attributed to interesting features such as the backward
signal analysis and the Matlab vectorization.

Additionally, a parametric study was conducted, varying three major param-
eters for three different stochastic processes: the Ornstein-Uhlenbeck process, the
geometric Brownian motion and a narrowband process. The objective was the
assess the efficiency of the algorithm by computing FPT maps and histograms
for very different stochastic processes to understand the impact of these param-
eters on the algorithm execution time. This has revealed the ability to deal with
stationary and non-stationary processes, and to deal with processes of various
frequency contents.

The accuracy of the results has also been studied through the Ornstein-
Uhlenbeck process for which analytical expressions of the PDF and moments of
the FPT exist. A good agreement was observed between analytical and numerical
results.

Finally, experimental data have been utilised as input for the algorithm. The
FPT maps and histograms have been computed, illustrating that the proposed
algorithm is capable of computing FPTs for recorded signals, a task that will
be extensively called in the SHM method proposed in the following chapters.
In addition, it has been highlighted that, for narrowband processes, the rapid
oscillations, from experimental data, can mainly impact the FPT histograms
shape. However, when the envelope of the experimental data, obtained with the
Hilbert transform, is processed with the proposed algorithm, FPT with naturally
longer passage times are obtained. The processing of this envelope will, in fact,
serve as a basic ingredient for the SHM methodology proposed in Chapter 3.
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Chapter 3

A Novel Method for damage
detection and localisation

In this chapter, a novel methodology based on First Passage Times is proposed
for the damage detection and localisation. This methodology relies on 3 different
steps:

1. An experimental protocol to collect and pre-process data,

2. The FPT algorithm described in Chapter 2,

3. The comparison of FPT maps to detect changes.
After having been described, the sensitivity of the methodology is assessed by
using numerical simulations. In the last step, four different scenarios are studied.
In the first scenario, a damage is added to the numerical model and the sensitivity
to damage detection is estimated. Then, to test the method’s robustness against
other factors, its ability to detect damage is analysed by providing other presumed
unmeasured disturbances on top of the numerical damage. Three other scenarios
take into account the wind loading as an unmeasured force, an additive noise that
can pollute the measured signal, and the influence of sampling frequency.

3.1 Overview of the proposed methodology

3.1.1 Damage detection
The proposed methodology for damage detection consists of several steps. First,
vibrations are measured under a known loading, at least known from its statis-
tical properties, e.g. Power Spectral Density function (PSD). The known load-
ing is a band-limited white noise whose PSD is constant in the frequency range
[fmin; fmax].

The eigenfrequency of a structure may change over time due to the occurrence
of a damage or environmental effects. The selected frequency range is chosen to
ensure that this eigenfrequency is always located within this frequency range.
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Then, the vibration data, materialised as acceleration, velocity or displace-
ment measured at various places, is pre-processed. Numerical filters are used and
the slow envelope is extracted based on the Hilbert transform.

Then, the pre-processed data is used as an input in the FPT algorithm de-
scribed in Chapter 2.

Finally, the FPT maps are computed in the healthy and current states.
FPT maps of statistical moments of FPT, like the mean and the STD, have

been used to perform damage detection but their sensitivity was not sufficient
to detect slight structural changes, related to early damage detection. Hence,
by comparing FPT histograms, it appeared that the distribution of FPT can
be considered as a good candidate for early damage detection and this step of
the methodology only relies on FPT histograms and not its statistical moments
anymore. In this case, the FPT histograms are compared two-by-two, in the
healthy and current states.

Diverse methods exist for this comparison and are presented in Section 3.3
as well as a novel method. If discrepancies between the FPT histograms are
highlighted, therefore, the structure in its current state is significantly different
from the healthy state, and the current state is identified as a damaged state.

3.1.2 Damage localisation
The proposed methodology for damage localisation relies on the same experi-
mental protocol, FPT algorithm and FPT histograms comparison described in
Subsection 3.1.1.

Since the method treats one signal at a time, the notion of spatial distribution
of information is inexistent.

By comparing the FPT histograms from the experimental setup and those
from the numerical model, the damage localisation can be performed. This re-
quires the construction of a numerical model, which must then be updated. In
the traditional way, the model updating finishes when a good match is reached
between its eigenfrequencies and mode shapes and the identified experimental
natural frequencies and mode shapes in the healthy state [115]. However, it is
now also possible, based on FPT maps, to update the numerical model until a
good match between FPT maps is encountered. The updated model is called a
digital twin model.

Secondly, to locate the damage, the digital twin model is used. By modifying
its mass and stiffness matrices, its response is also affected. Therefore, FPT
histograms are different in each configuration. The stiffness and mass matrices
are modified until the FPT maps from the digital twin model correspond to
those obtained from the experiment, resulting in a good identification of the
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type of damage and damage localisation. Therefore, in contrast with the damage
identification, the damage localisation relies on the similarity of FPT histograms.

3.2 Pre-processing: Numerical filters and slow
envelope

Before using the measured data as an input of the proposed FPT algorithm, it is
pre-processed via numerical filters before computing the envelope obtained with
the Hilbert transform. The sole objective of these numerical filters is to improve
the test repeatability.

The first filter is a bandpass filter applied in the range [fmin, fmax], corre-
sponding to the frequency range of the band-limited loading. This filter consists
in filtering the signal between the minimum and maximum frequencies of the
PSD of the force signal, which is a band-limited white noise, as shown in Figure
3.1(a). It discards the frequency content outside of the targeted frequency range,
isolating a single eigenmode at a time.

The second filter aims to compensate for the slight possible discrepancy be-
tween the actual PSD of the loading (presented earlier) and the targeted PSD.
Indeed, in an open-loop testing, it is possible that the PSD of the loading differs
from one test to another. To compensate for this undesired effect, a frequency
content adjustment can be applied to the signal.

Assuming that the system is linear time-invariant for each state and remains
the same, the following equations, in frequency domain, can be derived{

HXref = Fref
HXcurr = Fcurr

where H is the transfer function in the current state, X is the structure response
and F is the external loading, and indices ref and curr correspond to the reference
and current states.

In the proposed methodology, the loading is a band-limited white noise and
the loading remains the same for each state. To detect a damage, the objective
is to compare the FPT maps from Xref and Xcurr and determine if there exists a
discrepancy. Therefore, it is mandatory that the loading is identical between each
state, meaning that the PSDs of the loading from one state to another remains
also identical. If the frequency content of Fcurr differs from Fref, therefore, Xref
and Xcurr are different. Even if the structure stays the same, and the discrepancy
detected on the FPT maps could solely come from this difference.

Hence, the following correction is used

X̃ref = Fref
FcurrXcurr.
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Figure 3.1: Transformations applied to the input signals: (a) bandpass
filter in the range of [fmin, fmax] of the input force, (b) frequency con-
tent ajustment aiming at compensating variations between two input force
PSDs, and (c) the signal envelope obtained with the Hilbert transform.

It provided the response that could be measured in the current state if the
forcing had been Fref instead of the (slightly different) forcing Fcurr.

In Figure 3.1(b), two loadings with slightly different PSD functions are shown
for the same 1-DOF structure. The blue curve of the input force is chosen as
the reference case Fref while the orange curve is shifted to the left, resulting
in a modification of the frequency content of the input force Fcurr. The natural
frequency of the system is approximately 39.3 Hz. Without the frequency content
adjustment filter, a small peak can be observed around 38.2 Hz, where the peak
of the PSD of the force Fcurr is located. This peak has a strong influence on
the response of the structure, and, therefore, on the proposed methodology. By
applying the frequency content adjustment filter, the two PSD functions of the
structure response, Xref and Xcurr, are almost perfectly matched.

The final step consists in taking the slow envelope of the measured signal
by utilising the Hilbert transform. The proposed methodology heavily relies on
the FPT histograms shape. As mentioned in Chapter 2, by computing FPT
histograms based on the fast dynamics of the signal, the order of magnitude of
FPTs is similar to the natural period. Therefore, if a shift occurs in the natural
period, the FPT histograms shape changes completely, jeopardising the damage
detection. The FPTs computed with the slow envelope of the signal are larger
than the natural period, resulting in smoother and more stable FPT histograms
shapes. Moreover, many other fields also use the Hilbert transform for signal
processing [116] and a procedure based on the Hilbert transform has even already
been used for detecting low damage level [117]. Figure 3.1(c) shows the signal
envelope obtained with the Hilbert transform.
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3.3 Comparison of cumulated histograms (ECDF)

3.3.1 Existing methods
The proposed method hinges on the two-by-two comparison of histograms of
FPT. In the literature, it is more common to compare cumulated histograms,
also called, Empirical CDFs (ECDFs). This comparison is repeated for every
couple (X0, Xf ) of the map.

The rationale behind this comparison is that, if two structures are identical,
the ECDFs of FPT are identical while if the ECDFs of FPT differ, then, the two
structures are different. How different they need to be to detect changes depends
on the sensitivity of the method to undesired and unmeasured perturbation. This
will be discussed in Section 3.4.

By now, it is important to be able to quantify the differences between two
cumulated histograms. In the literature, several 2-sample tests can be used to
compute values called distances. These distances reflect the difference between
two FPT histograms. If the distance is equal to zero, the FPT histograms are ex-
actly the same, meaning that the two studied dynamical systems are also similar.
Conversely, if the distance is large, the 2 structures are different. Below is a non-
exhaustive list of 2-sample tests used and compared for the damage detection and
localisation. In Figure 3.2, The specificities of each test are shown graphically.
All Matlab 2-sample test functions come from the same package [118].

Kolmogorov-Smirnov (KS) test

The Kolmogorov-Smirnov distance is the largest difference between two ECDFs,
as shown in Figure 3.2(a). The Kolmogorov-Smirnov test is probably the simplest
method to implement [119].

Kuiper (K) test

The Kuiper test computes two differences instead of one, as opposed to the KS
test. As shown in Figure 3.2(b), these two differences are simply the largest upper(
D+

)
and lower

(
D−

)
differences between two ECDFs. The Kuiper distance is

then the sum of these two differences [120].

Cramer-Von Mises (CVM) test

The Cramer-Von Mises distance is the sum of all the squared differences between
two ECDFs [121], as shown in Figure 3.2(c).
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Figure 3.2: 2-sample tests for comparing ECDFs: (a) Kolmogorov-
Smirnov test, (b) Kuiper test, (c) Cramer-Von Mises test, (d) Anderson-

Darling test, (e) Wasserstein and (f) Wasserstein-Anderson-Darling.
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Anderson-Darling (AD) test

The Anderson-Darling test is also based on the sum of the square of all differ-
ences between two ECDFs, but this time each difference is weighted [122]. The
Anderson-Darling test focuses more on the tails of the distribution as shown in
Figure 3.2(d). If the colour is lighter, it means that the weight is smaller and
therefore, a difference in these areas has less impact on the Anderson-Darling
distance.

Wasserstein (W) test

Instead of focusing on the algebraic difference of two cumulative histograms, the
Wasserstein test is based on the area between two ECDFs, as shown in Figure
3.2(e). This test is often associated with the optimal transport. Therefore, this
test distance can be seen as the amount of “material” that needs to be moved in
order to obtain the second empirical histogram [123].

Wasserstein-Anderson-Darling (WAD) test

The Wasserstein-Anderson-Darling test is the most sophisticated test as it com-
bines the idea of the Wasserstein test and the weights of the Anderson-Darling
test. This test still computes the area between two ECDFs, but this time, some
parts of that area are weighted by focusing on the tails [124]. If the colour is
lighter, it means that the weight is smaller and therefore, this part of the area
has less influence on the Wasserstein-Anderson-Darling distance as shown in Fig-
ure 3.2(f).

Existing methods are based on the concept of distance. If the distance is
small, the ECDFs are similar.

3.3.2 Another method inspired by hypothesis testing
In addition to these 2-sample tests, another test is proposed. It differs from the
other 2-sample tests as it does not rely on distances or areas measured from two
histograms. Instead, it relies on the sample distribution of FPT histograms. It
consists in dividing the signal into N shorter signals of equal length to approximate
the sampling distribution of the FPT histograms. A typical choice is N = 8.
Then, N maps of FPT histograms are obtained. The objective of this test is to
compare the sample distribution of FPT histograms at different percentiles in the
healthy state, represented by the blue curves in Figure 3.3(a), and in the current
state, shown by the orange curve.
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For a given percentile p, it is assumed that the mean value of the ECDFs of
FPT in the healthy state, x̄ = 1

N

∑N
1 xi with i = 1, ..., N , is equal to the mean

value of the ECDFs of FPT in the current state ȳ. This is a null hypothesis H0
and in the current proposition, this hypothesis is statistically tested. Without
loss of generality and for application purposes, it has been decided to restrict the
percentile values to the range 0.1 to 0.9 with a step of 0.05, as shown in Figure
3.3(a). This choice is motivated by the fact that the sensitivity to small changes
in the tails of the ECDFs can have a large impact on the comparison of the sample
distribution of ECDFs of FPT. Furthermore, it is assumed that the distribution
of these means follows a normal distribution X̄ → N

(
x̄, σx√

N

)
, where σx is the

standard deviation of all the xi. Therefore, the distribution of the difference of
the means also follows a normal distribution Z = X̄ − Ȳ → N (mz, σz), where
mz = 0 (null hypothesis H0) and σz =

√
σ2

x+σ2
y√

N
. Hence, it is possible to compute

the α-values for this test as

α = prob (Z > |z|) = 2
(
1− Φ

(
|z|−mz

σz

))
,

where z = x̄ − ȳ and Φ is the CDF of the standard normal distribution. The
computation of the α-value for a given |z| is illustrated in Figure 3.3(b). Based
on this definition, α ∈ [0; 1]. In Figures 3.3(c,d,e), a variety of scenarios are
presented for the PDFs of xi and yi at a given percentile p. As the PDFs become
more similar, the computed α-value increases until it reaches the value of 1 in the
case where the two PDFs are identical.

The proposed statistical test is based on α-values. If the α-value is close to 1,
the ECDFs are statistically similar at the given percentile p.

For each percentile p, an α-value is calculated. From the experience developed
over the course of this thesis, considering percentiles from 0.1 to 0.9 with a step
of 0.05 provides a relevant comparison of the ECDFs. The final step consists in
averaging all computed α-values (17 in total) to get only one value translating
the similarity of the two compared ECDFs.

If the average of α-values is close to 1, the ECDFs are similar.

Furthermore, if all FPTs are identical, as it is the case on the main diagonal
X0 = Xf , the α-value is not finite as the standard deviation of the sample dis-
tribution of the ECDFs of FPT is equal to zero. However, this does not impact
the comparison of the FPT histograms as, on the main diagonal of the map, all
FPTs are always equal to 0 in any healthy or damaged state.
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3.4 Sensitivity of the methodology
A numerical model has been created and virtually damaged to quantify the sensi-
tivity of the proposed methodology with respect to undesired perturbations. The
numerical model is shown in Figure 3.4(a). It models a 50-m bridge and consists
of beam elements. The size of the cross section has been chosen to represent a
common bridge deck, whose width is 18 meters. The numerical model is made
of 10 elements. The material chosen for this bridge section is steel only, whose
Young Modulus E = 205000 MPa and density is equal to 7850 kg/m3. The inertia
of the section is equal to 0.04 m4 and its area is equal to 0.2 m2.

The input force applied to the structure is located at midspan (node 6) and
the acceleration of the structure is measured at node 4. The damage is detected
based on this sole acceleration. To simulate a damage in the numerical model,
a rotational spring has been added at node 8. Three different damaged cases
are considered. The rotational spring stiffness is decreased from “infinity” (1015

[Nm/rad]) in the healthy state, meaning that the connection between the seventh
and eighth elements is perfectly built-in, to 5 ·109 [Nm/rad] in the third damaged
case. By adding this rotational spring to the numerical model, it results in a
decrease of the eigenfrequencies as shown in Figure 3.4(b). The first bending
mode has been chosen for the damage detection. The eigenfrequencies of the
first bending mode in each case can be found in Table 3.1 as well as the relative
change and the rotational spring stiffness. The relative change of the frequencies
is computed as follow fhealthy−fdamaged

fhealthy
.

Moreover, the simulation time has been fixed to 4 hours. This duration is
set to obtain reproducible results for each 2-sample test as well as the proposed
statistical test.

Based on 4 different scenarios, the sensitivity of the proposed methodology
is assessed. In the first scenario, the damage detection sensitivity is determined,
which represents the corner stage of the suggested methodology. Then, three
other scenarios are based on the wind loading as an unmeasured force, which is
added to the external loading, an additive measurement noise that can directly
pollute the measured signal, and the influence of the sampling frequency.

3.4.1 Test repeatability in ideal conditions
To study the sensitivity of the proposed methodology under damage only, the
damage detection is assessed considering three different input forces for the refer-
ence case as well as for each damaged case. For each given combination (X0, Xf ),
α-values and distances can be computed by comparing the ECDFs of FPT of each
case with those of the first reference case. The remaining two reference cases are
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Figure 3.4: (a) Numerical model and (b) PSDs of the first bending mode
for the reference case and each damaged case.

Table 3.1: Stiffness of the rotational spring, eigenfrequencies of the first
bending mode in each case and their relative change with the healthy state.

Rotational spring First bending mode Relative change [%]
stiffness [Nm/rad] frequency [Hz]

Healthy case ∞ 1.4360 0
Damaged case 1 1011 1.4344 0.11
Damaged case 2 1010 1.4205 1.08
Damaged case 3 5 · 109 1.4055 2.12
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used to evaluate the sensitivity of the methodology to differentiate between very
small damage, in damaged case 1, and variations resulting from test repeatability.

In order to provide a visual representation of the damage detection, the ECDFs
of α-values and distances over the entire map are shown in Figure 3.5. If the two
compared cases are similar, therefore, α-values and distances are on average close
to 1 and 0 respectively. This results in ECDFs of α-values that are close to the
lower right corner and ECDFs of distances that are close to the y-axis. The
reference case 1 compared to itself represents the scenario where all α-values and
distances are equal to 1 and 0, respectively.

Moreover, it can be observed that each scenario is distinct from the others,
resulting in a proper damage identification or at least a ranking of the various
damage levels. The ECDFs are moving from the right to the left for the proposed
statistical test in Figure 3.5(a) and from left to the right for the 2-sample tests
in Figures 3.5(b-g) when going from the reference case to the damaged cases. In
the damaged case 1, the ECDFs are close to those of the reference case. Indeed,
the modal parameters of the numerical model in the damaged case 1 do not differ
significantly from those in the reference case. Indeed, the relative change on
eigenfrequencies for the first bending mode varies by 0.1% only. Then, the ECDFs
are moving further away from the reference case in the damaged case 2 and even
further in the damaged case 3, showing that the damage applied to the structure
increases. Finally, the same conclusions can be drawn for each 2-sample test and
the proposed statistical test, showing a redundancy in the obtained results and
making the proposed methodology more robust.

3.4.2 Influence of additive loading (wind load)
To go further in the sensitivity assessment of the proposed methodology, unmea-
sured wind loads are applied to the structure in addition to the input force. These
wind loads are applied to the whole bridge deck and are then transformed into
nodal forces.

In this example, two different wind speeds have been chosen: 5 and 10 m/s.
These wind speeds correspond to the average wind speed U∞. To generate the
wind fluctuating part, the PSD of Von Karman has been chosen and is given by

Su (f) = L · σ2
u

πU∞

(
1 + 70.7

(
f · L

U∞

)2
)5/6

where L = 30m is the scale of the turbulence scale and σu is the standard deviation
of the turbulent wind and is equal to 1 and 2 m/s when U∞ is equal to 5 and 10
m/s respectively. The PSD of Von Karman is shown in Figure 3.6.
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Figure 3.5: Sensitivity of the proposed methodology - damage detection:
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Figure 3.6: PSD of Von Karman with U∞ = 5m/s, σu = 1m/s, and
L = 30m.

Moreover, the wind loads are spatially correlated. The coherence PSD is the
following [125]

Γu (ω) = e− C·ω·∆x
4πU∞

where C = 11.5 is the coefficient of coherence and ∆x = 5m is distance between
two nodes.

The lift coefficient CL, used to compute wind loads, is equal to 0.9 [126]. More
information about the generation of spatially correlated signals and wind loads
can be found in [127] and in chapter 9 of [128].

Again, for a better visualisation, the ECDFs of the α-values as well as the
distances are shown in Figure 3.7.

• A clear distinction can be made for each scenario, meaning that the damage
detection is slightly disturbed by these wind loads and is feasible.

• For each wind speed, each damaged case is well separated from the others.

• When the wind speed is approaching 10m/s, the reference case is close to
the damaged case 1 without or with the smallest wind load (5 m/s).
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Figure 3.7: Sensitivity of the proposed methodology - damage detection
under wind load: (a) the proposed statistical test and 2-sample tests (b)

KS, (c) K, (d) CVM, (e) AD, (f) W and (g) WAD.
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3.4.3 Influence of additive measurement noise
The next scenario takes into account the noise that affects the measured signal.
This noise is generated as a band-limited white noise. The frequency range chosen
for the noise is [0.5;5]Hz. Different Noise Levels (NL) have been selected, going
from 5% to 100%. NL is defined as

NL = σsignal+noise − σsignal

σsignal
=
√

1 + (N/S)2 − 1

where σ is the standard deviation and N/S is noise over signal ratio.
When the level is NL = 100%, it means that the standard deviation of the

noisy signal is twice greater than the reference signal without noise. The effect
of the added noise can be directly seen in the PSDs as shown in Figure 3.8.
By increasing the noise level, the frequency ranges that are mainly subjected to
changes are the ones close to fmin = 1.29 Hz and fmax = 1.58 Hz. Thanks to the
filtering, every modification outside the frequency range [fmin; fmax] is discarded.

In Figure 3.9, it can be seen that the noise greatly affects the damage detec-
tion. It is important to mention that a level of noise greater than 10% already
represents a high noise level. However, for the completeness of this sensitivity
study, it has been decided to use higher noise levels. The only results displayed
are the ECDFs of α-values from the proposed statistical test. For the other 2-
sample tests, the same conclusions can be drawn. Except for Figure 3.9(a), the
ECDFs of the signal without noise are shown in grey to improve the comparison
with ECDFs of the signals with noise. In Figure 3.9(b), it can be seen that a noise
level of 5% for the reference already exceeds the threshold of the damaged case
1 without noise. This is expected since the two cases are really similar to each
other. However, a noise level higher than 10% for the reference case is required
to surpass the threshold imposed by the damaged cases 2 and 3. In Figure 3.9(c),
it can be observed that for the same noise level, the ECDFs of the α-values in
the reference case are always slightly lower than the ECDFs of the α-values in
the damaged case 1. This shows that the damage detection is still performing
well for the same noise level and is able to make distinction between two systems
with close modal properties. In Figure 3.9(d), it can be seen that when the noise
level is important, superior or equal to 50%, the ECDFs of the α-values for each
case almost coincide. In this scenario, the damage detection fails and is not able
to make the distinction between a small damage, as in damaged case 1, and a
higher damage, like in damaged cases 2 and 3.
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Figure 3.8: PSDs of the measured acceleration of the structure under
the input force and added noise.

3.4.4 Influence of sampling frequency
The final scenario accounts for the sampling frequency. Before introducing the
structural acceleration into the FPT algorithm, the input signal is resampled.
The reference sampling frequency has been fixed at 50 Hz. The other sampling
frequencies tested are 10, 20 and 100 Hz. In Figure 3.10, it can be observed that
each case is well distinct from the others, meaning that the damage detection
methodology is marginally affected by the sampling frequency. However, it can
be noticed that a sampling frequency of 10 Hz or even 20 Hz may be too small
for an eigenfrequency of 1.43 Hz. This is why, in the reference case, the 10 Hz
sampling frequency is the furthest from the 50 Hz sampling frequency, taken as
the reference sampling frequency.

In general cases, 20 points per period are sufficient. As the eigenfrequency
of the first bending mode is equal to 1.46 Hz, a sampling frequency of 30 Hz is
considered sufficient. However, if the sampling frequency is below this threshold,
the signal is badly discretised. This phenomenon is called aliasing. Conversely, if
the sampling frequency is excessively high, such as 100 Hz, it becomes ineffective
as the signal has already been adequately discretised.
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Figure 3.9: Sensitivity of the proposed methodology - damage detection
under different noise levels: (a) influence of the noise in each state, (b)
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Figure 3.10: Sensitivity of the proposed methodology - damage detection
under different sampling frequencies: (a) the proposed statistical test and

2-sample tests (b) KS, (c) K, (d) CVM, (e) AD, (f) W and (g) WAD.
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3.5 Conclusion
In this chapter, the proposed methodology for damage detection and localisation
has been described. This methodology hinges on two main parts. The first
one relies on the pre-processing of the input signal. Indeed, this pre-processing
is intended to be as general as possible and reduces some negative aspects of
using the raw input signal that could undermine the damage detection. The
pre-processing relies on two filters, a band-pass filter between [fmin, fmax] and a
frequency content adjustment filter, before computing the envelope of the filtered
input signal by using the Hilbert transform. The second part of the proposed
methodology is based on 2-sample tests coming from the literature and a proposed
statistical test. For each combination (X0, Xf ) of the map, an ECDF of FPT can
be computed. In two different states (healthy/reference, and current), these two
ECDFs can be compared for each combination (X0, Xf ). Therefore, distances
or α-values are obtained. It has been decided either to use the average of these
distances and α-values as an indicator for damage detection or to plot the ECDFs
of these distances and α-values for a more detailed graphical representation. At
the end of this chapter, the sensitivity of the proposed methodology has been
assessed through four different scenarios. Globally, the methodology has shown
a great robustness for damage detection in the four studied scenarios.
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Chapter 4

Small-scale laboratory test

The algorithm developed in Chapter 2 and the proposed method for damage
detection and localisation described in Chapter 3 are applied to a small-scale lab
test under supervised conditions. The experimental setup is described. Then,
a digital twin model of the experimental setup is created and updated. The
expected performance of damage detection is assessed, first, by using a simple
numerical model. Second, the proposed damage detection method is applied to
detect changes in the experimental setup, which are incurred by slightly modifying
the mass distribution of the tested specimen. Finally, the updated digital twin
model is used to locate the “damage” by comparing its map of FPT histograms
with the one computed from the experimental results.

4.1 Experimental setup
A small-scale experiment [97] has been carried out at the LTAS-Vibrations et
Identification des Structures (LTAS-VIS) laboratory unit of the Department of
Aerospace and Mechanical Engineering at the University of Liège. The exper-
imental setup is illustrated in Figure 4.1(a) to (d) and consists of a steel strip
clamped at both ends and pre-stressed with a mass suspended at the lower ex-
tremity. An electrodynamic vibration shaker (TV 50009) is mounted on the
structure as shown in Figure 4.1(a). It applies horizontal force close to the strip
end. The material properties and the geometry of the steel strip are given in
Tables 4.1 and 4.2.

Table 4.1: Geometrical properties of the steel strip.

Parameter Value Units
Length 498 mm
Width 25 mm

Thickness 0.4 mm
Pre-stress mass 1.816 kg



70 Chapter 4. Small-scale laboratory test

Table 4.2: Material properties of the steel strip.

Parameter Value Units
Density 7767 kg/m3

Young modulus 206 GPa
Poisson ratio 0.33 [-]

Shaker

Steel 
strip

Clamped
support

Pre-
stress
mass

(a) (b)

(c)

P1

P2
P3
P4
P5
P6
P7
P8

5mm

P1

P2

P3 P4

P5

P6 P7

P8

(d)
Figure 4.1: Experimental setup: (a) side view, (b) front view, (c) magnet
used as a structural modification applied to the steel strip, and (d) second

bending mode.
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The response velocity of the structure is measured at several points along the
strip thanks to a Polytec MSA-400 OFV-552 laser transducer as shown in Figure
4.1(b). Points P1 to P8 refer to the eight positions where vibrations have been
measured.

To simulate damage to the structure, a small magnet was placed at three
different locations: P1, P2 and P3. The addition of the magnet slightly changes
the mass distribution of the steel strip. The side length of the cubic magnet,
represented in Figure 4.1(c), is 5mm and its weight is 0.95g. Its ID article is
W-05-N50-G from Supermagnete [129].

The structure without the magnet corresponds to the reference case while the
three considered damaged cases correspond to configurations where the magnet
is placed on the structure.

4.1.1 Modal analysis of the reference structure
A modal analysis was performed in order to obtain reference values for the natural
frequencies and the mode shapes of the steel strip. To do so, a broadband white
noise was injected through the horizontal shaker at low amplitude (to avoid non-
linearity effects). A frequency range of [3; 200]Hz was used in order to capture
the first six bending modes [108]. The experiment was repeated eight times,
by moving the laser position, from P1 to P8, to capture the same number of
structural responses. The SSI-COV algorithm was then used to obtain the natural
frequencies and damping ratios. Since measurements at each point were not taken
simultaneously, another approach was necessary for the mode shapes. They were
obtained by computing the standard deviation of the structural responses filtered
around each peak of the PSD of the velocity. This was feasible because each
peak was well distant from the others, see Figure 4.2 where the PSD of the
velocity at point P3 is shown. Therefore, the amplitude of the mode shapes can
be directly linked with the standard deviation at each point Pi and the sign of
the correlation coefficient with an arbitrarily chosen reference point. The natural
frequencies and damping ratios are given in Table 4.3 and the first 6 bending
modes are represented in Figure 4.3.
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Figure 4.2: PSD of the velocity at Point P3 recorded under broadband
excitation.

Table 4.3: Identified natural frequencies and damping ratios of the first
6 bending modes (reference state).

Natural frequency [Hz] Damping ratio [%]
1st bending mode 18.26 0.13
2nd bending mode 39.25 0.39
3rd bending mode 64.74 0.18
4th bending mode 97.43 0.90
5th bending mode 133.74 0.36
6th bending mode 173.83 0.90

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6

Figure 4.3: First six identified bending modes.
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4.1.2 Modal analysis of the damaged structure
The second bending mode is selected to assess the new method for damage de-
tection and localisation. Before this assessment, another modal identification of
the damaged state is performed while focusing on this mode. A band-limited
white noise is generated in the frequency range [35; 43]Hz, see Figure 4.4, and
the generated time series is injected through the shaker. For each damaged sce-
nario, the test is repeated three times. For each test, the same signal is used as
an input and the velocity of the strip is measured at point P3. The PSDs of the
velocity in a reference scenario and in the damaged scenarios are shown in Figure
4.5. As the magnet moves from P1 to P3, the natural frequency of the structure
decreases, as expected. In fact, when the magnet is located in P1, the modal mass
in the 2nd bending mode is slightly modified, resulting in a small modification
of the natural frequency. However, when the magnet is located at P3, it is close
to the anti-node of the second bending mode, see Figure 4.1(d), which causes a
higher increase of the modal mass compared to the other two damaged scenarios.
The natural frequencies of the second bending mode for all of the scenarios are
listed in Table 4.4, together with the relative frequency difference compared to
the reference case, which read as follows

∆ = fdamaged case−freference case
freference case

.

These values vary from 0.15% for the damaged case P1 up to 2.7% when the
magnet is located at P3. Typical modal-based methods, detecting damages based
on changes of frequencies, would typically trigger for changes ∆ of 1 to 5%.
Above the damage is obvious, below, it might not be detected due to additional
disturbances. The values shown in Table 4.4 indicate that the considered damaged
states correspond to configurations where modal-based methods face difficulties
(magnet in P1/P2) or start to detect with confidence (magnet in P3). This sets
expectations for the proposed method.

Table 4.4: Natural frequency of the second bending mode for each sce-
nario and the relative frequency difference between each damaged scenario

and the reference scenario.

Case Natural frequency [Hz] Relative difference ∆ [%]
Reference 39.25 0

Damage at P1 39.31 −0.15
Damage at P2 38.78 1.2
Damage at P3 38.19 2.7
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4.2 Digital Twin model
A digital twin model of the experimental setup is also developed. It is used
to perform the damage localisation. The model is sketched in Figure 4.6 and
consists of 80 beam elements. The stiffness and mass matrices of the elements
are constructed according to standard finite element approaches (see Appendix
B). The mass of the shaker head is also included in the mass matrix. The damping
matrix is obtained by combining the mass and stiffness matrices according to the
Rayleigh model, with α = 1.53 [1/s] and β = 6.29 · 10−6 [s]. The eigenfrequencies
obtained with this numerical model are given in Table 4.5. It can be seen that
the discrepancies between the eigenfrequencies are large for the fifth and sixth
bending modes. The relative difference has been computed as

δf = fnumerical−fexperimental
fexperimental

.

Figure 4.6(c) shows the Modal Assurance Criterion1 (MAC) between the identi-
fied modes and the modes of the current numerical model. It can be seen that the
MAC values for the fifth and sixth bending modes are also much lower than 1,
which means that the current numerical model is not able to reproduce these two

1The MAC is a good indicator of the fit of a numerical model. If the MAC is close 1, it
means that the two compared modes are close to each other while, if the MAC tends to 0, the
two modes are significantly different
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Table 4.5: Comparison between the eigenfrequencies of the experimental
setup and the eigenfrequencies of the initial numerical model.

Bending mode Experimental Numerical Difference
eigenfrequencies [Hz] eigenfrequencies [Hz] δf [%]

1st mode 18.35 18.88 2.86
2nd mode 39.25 40.21 2.45
3rd mode 64.74 66.29 2.39
4th mode 97.30 96.39 −0.94
5th mode 133.73 122.84 −8.14
6th mode 171.93 150.75 −12.32

modes. Moreover, some values outside the main diagonal are close to 1, show-
ing that a similarity exists between the fifth experimental and sixth numerical
bending modes.

In order to improve this first numerical model, some minor changes were
made, yielding an updated numerical model. A small rotation at the supports
was allowed by adding a rotational spring and the mechanical model of the shaker
itself has been included. A schematic of the updated numerical model is shown in
Figure 4.6(b). The main parameters that were then adjusted are the rotational
stiffness of the supports and the prestress mass value. By using a standard least
square method, the frequency differences were minimised until a residual of less
than 1% was obtained for each eigenfrequency. The resulting values of each
parameter are listed in Appendix B. In Table 4.6, the updated eigenfrequencies
are shown as well as the updated MAC in Figure 4.6(d). The shapes of the first
six bending modes are plotted in Figure 4.6(e). The good agreement between the
experimental and numerical eigenmodes demonstrates the quality of the finite
element model updating procedure. Nevertheless, the first experimental bending
mode is not well identified. This is because the relative amplitude of the first
bending mode near the supports is much smaller compared to higher bending
modes. Therefore, if a slight perturbation occurs in the force injected through
the shaker, it significantly influences the first bending mode, leading to a worse
identification for this bending mode than for the others. This also explains why
the 2nd mode was used to assess the proposed SHM method.

In addition to comparing the numerical model and the experimental setup by
using MAC values and eigenfrequencies, it is now also possible to compare them
by using FPT maps. These results echo the results presented in Section 2.4. For
this comparison, the normalised velocity is used. This normalisation is obtained
by dividing the velocity by its interquartile range and by subtracting its mean
value. Then, the envelope is constructed with the Hilbert transform and the FPT
is computed on the basis of these signals.
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Table 4.6: Comparison between the eigenfrequencies of the experimental
setup and the eigenfrequencies of the updated numerical model.

Bending mode Experimental Numerical Difference
eigenfrequencies [Hz] eigenfrequencies [Hz] δf [%]

1st mode 18.35 18.26 −0.52
2nd mode 39.25 39.16 −0.24
3rd mode 64.74 65.25 0.79
4th mode 97.30 97.17 −0.13
5th mode 133.73 134.21 0.35
6th mode 171.93 171.72 −0.12

In Figures 4.7(a) and (b), the Average FPT map and the STD of FPT map
are respectively depicted in both the numerical and experimental settings. The
curves with the same colour represent identical FPT statistical values. It can be
seen that the results are similar, especially in the lower half of the maps, under
the main diagonal. However, the average as well as the STD of the FPTs are
underestimated in the numerical model for large Xf levels, located in the upper
left half of the maps. Indeed, the yellow curve of the experimental setup is at
lower Xf levels than the curve of the numerical model.

In Figure 4.8, some FPT histograms are shown. As expected, based on the
aforementioned discussion about the maps of statistical moments of FPT, a good
agreement is observed between the histograms. The observation concerning the
undervaluation of the FPTs in the upper half of the map is highlighted in Figures
4.8(a) and (b). Indeed, the curve of the numerical model is at higher Xf levels
than the curve of the experimental setup when X0 is small while it is the opposite
for larger X0 levels, resulting in an underestimation of the averages and STDs
of FPT. Therefore, FPT histograms are more sensitive to detect changes than
the average of FPT map and the STD of FPT map, which do not sufficiently
discriminate.
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4.3 Illustration of Damage detection
In this section, the proposed method is applied to detecting damage by means
of numerical experiments in a single degree-of-freedom system. The objective
of using a simple numerical model is to determine the efficiency of the damage
detection methodology proposed in Chapter 3 when the mass or the stiffness vary.
Then, the methodology is applied to the experimental setup described earlier in
this Chapter.

4.3.1 With a simple numerical model
FPT histograms have demonstrated the ability to detect slight changes in the
structural response. For each structural response, a FPT map can be computed.
Therefore, if a structural parameter changes, then the structural response is also
affected, resulting in a modification of the FPT map. The objective is to demon-
strate that the computed FPT map is unique for a given set of structural param-
eters.

To achieve this, a set of three parameters (µ, κ, λ) has been selected. The
equation of motion of a single degree-of-freedom (DOF) system is given by the
following relationship:

µmẍ(t) + cẋ(t) + κkx(t) = λF (t).
The λ parameter modifies the amplitude of the external loading, which im-

pacts damage detection, while the parameters µ and κ influence the mass and
stiffness of the structure respectively.

A simple numerical model, whose properties are similar as those of the 2nd

bending mode of the experimental setup, has been employed as a single DOF
system. This choice is motivated by the study of a numerical case that is similar
to the experimental setup in order to assess the effectiveness of the proposed
methodology. This sandbox example is used to discuss the well-posedness of the
problem. The values chosen for the eigenfrequency, modal mass, modal stiffness
and damping ratio ξ can be found in Table 4.7. The modal mass of the steel
strip could not be identified using the output-only identification method. It is
therefore arbitrarily chosen to be equal to m = 1 kg.

A reference set of parameters (µ, κ, λ) = (µd, κd, λd) = (0.95, 0.9311, 1) has
been arbitrarily selected. By modifying the set of parameters (µ, κ, λ) in a range,
the FPT histograms obtained with the set of parameters (µ, κ, λ) are expected
to be different. They are compared with those computed for the reference set of
parameters (µd, κd, λd).

To illustrate this, four different sets of parameters are first selected: one set (a)
close to the reference set of parameters (µd, κd, λd) and three sets (b,c,d) for which
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Table 4.7: The eigenfrequency, the modal mass, the modal stiffness and
the damping ratio ξ of the 1-dof system.

Parameters Values Units
Natural frequency 39.31 Hz

Modal mass m 1 kg
Modal stiffness k 61025 N/m
Damping ratio 0.0039 [-]

Table 4.8: Sets of parameters (µ, κ, λ) to illustrate their influence on the
map of α-values.

Case (µ, κ, λ) Comment
Reference (0.95, 0.9311, 1.00) Reference set of parameters

(a) (0.95, 0.93, 1.00) Small change for κ
(b) (0.98, 0.93, 1.00) Change for µ
(c) (0.95, 0.90, 1.00) Change for κ
(d) (0.95, 0.93, 0.90) Change for λ

one parameter at a time is significantly different. Table 4.8 shows these different
sets of parameters. For each selected set of parameters, FPT histograms are
computed and compared to those obtained with the reference set of parameters
(µd, κd, λd). Therefore, the proposed statistical test is used to compare these
histograms and for each combination (X0, Xf ), an α-value is obtained.

Figure 4.9 shows the α-values for the four selected sets of parameters (µ, κ, λ)
compared with the reference set of parameters (µd, κd, λd). In Figure 4.9(a), the
choice of (µ, κ, λ) = (0.95, 0.93, 1.00) is the closest to (µd, κd, λd) = (0.95, 0.9311, 1).
This results in higher α-values being obtained for the majority of (X0, Xf ) com-
binations compared to those obtained when the values of the parameters (µ, κ, λ)
are more different from the reference parameters (µd, κd, λd), as illustrated in Fig-
ures 4.9(b), (c) and (d). Consequently, the average of α-values over the entire map
provides an indicator, represented as a scalar value, for each set of parameters
(µ, κ, λ). This indicator is a good candidate to highlight the differences between
the FPT histograms from the reference set of parameters (µd, κd, λd) and those
from varying sets of parameters (µ, κ, λ) in a given range. The same conclusions
can be drawn for the distances computed with the existing 2-sample tests ex-
cept that, for the set of parameters (a), the distances are on average significantly
smaller than those for the sets of parameters (b,c,d).
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Figure 4.9: Illustration of the influence of the parameters (µ, κ, λ)
on damage identification by means of α-values when (µ, κ, λ) is
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(0.95, 0.9311, 1.00).
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Next, only the influence of the parameters µ and κ is studied, while λ = 1.
In Figure 4.10, for λ = 1, the proposed indicator, relying on the average of

α-values or distances over the entire map, is shown for the proposed statistical
test and for each 2-sample test. Some distances of the 2-sample tests have been
shown with a log scale for better visualisation. Each test provides a favourable
value of the indicator when (µ, κ) is close to (µd, κd). The red square corresponds
to the optimal value of the indicator, corresponding to the greatest average of the
α-values or the smallest average of the distances, while the black dot corresponds
to the reference set of parameters (µd, κd). The tests performing well are the
proposed method (based on α-values), the Cramer-Von Mises and the Wasserstein
tests (based on distances).

Furthermore, in each subfigure, a preferred line can be seen along the main
diagonal. This line corresponds to the following condition

κ

µ
≈ 1

for which the natural frequency is conserved. In this case, the natural frequency
is equal to 39.31 Hz. This shows that the frequency has a leading influence on
the indicator. If the frequency slightly changes, the indicator drops significantly:
this translates that there is a high sensitivity with respect to the eigenfrequency,
resulting in an ill-conditioned problem.

The same process can be repeated but for different values of λ. This shows the
influence of the force amplitude over the sensitivity of the proposed methodology.

In Figure 4.11, it can be observed that the optimal parameters (µ, κ) are
shifted along the main diagonal as λ changes. Indeed, if λ < 1, the location
of the maximum average of α-values is located in the bottom left corner while
if λ > 1, it is located in the upper right corner. Therefore, the optimal set of
parameters (µ, κ) changes with λ. By increasing the applied load, the structural
response increases proportionally. Therefore, the map is shifted by a factor λ in
the (X0, Xf ) plane. To obtain a map which is similar to the original one, it is
necessary to change the stiffness in the same ratio, which will shift back the FPT
map in the (X0, Xf ) plane. Moreover, the ratio κ

µ
must remain close to 1. This

explains why the optimal point travels along the diagonal.
Nevertheless, this phenomenon of increasing or decreasing signal amplitude

occurs mainly in numerical models. If the amplitude of the eigenmode is not well
captured, it can lead to an increase or a decrease in the structural response even
if the input force applied to the system is the same. Therefore, in order to avoid
this problem, a special attention should be given to the response amplitude of
the numerical model.
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Figure 4.10: Influence of (µ, κ) on the average of α-values and distances.
λ = 1, for (a) the proposed statistical test, (b) the KS test, (c) the K test,
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Figure 4.11: Influence of (µ, κ) on the average of α-values. (a) λ = 0.95,
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Thanks to this numerical example, the sensitivity of FPT maps has been
demonstrated by using the average of α-values and distances. In the following,
the distribution of α-values and distances is considered as it provides better infor-
mation over the entire map. Moreover, the similar results, obtained by comparing
2 full maps of FPT distribution for each 2-sample test and the proposed statisti-
cal test, contribute to fact that FPT histograms are able to capture and detect
slight changes in the structural response due to a small variation of the structural
parameters. As it has been demonstrated, modifications to the force amplitude
can significantly impact the proposed method. Therefore, it is important to keep
a similar force amplitude to improve the robustness of the proposed methodology.
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4.3.2 With the experimental setup
It has already been shown that the proposed method is able to identify occur-
rence of “damage” [102]. In this section, four different cases are considered: the
reference case and three damaged cases, when the magnet is placed at points
P1 (damaged case 1), P2 (damaged case 2), and P3 (damaged case 3). For each
case, the test has been repeated 3 times. The velocities of the steel strip were
only measured at point P3. The signals have been processed according to the
methodology described in Chapter 3. For each combination (X0, Xf ) of the map,
it is possible to obtain either an α-value or a distance by comparing all cases with
the reference case 1.

Instead of using the averages of the α-values or the distances, the ECDFs,
which correspond to the distribution of these values are used as they offer better
discrimination capabilities. They are plotted in Figure 4.12. These plots serve as
a visual representation of the damage detection. As a reminder, when α-values
are close to 1, ECDFs are very similar while for the distances, they must be close
to 0.

It can be observed in Figure 4.12(a) that each scenario can be well distin-
guished. Moreover, as the damage increases from P1 to P3, a shape change in the
ECDFs of α-values is observed, varying from a curve close to the lower right cor-
ner to a curve close to the upper left corner. This shape change is caused by the
decrease of α-values when the damage increases, resulting in greater differences
observed in the FPTs for each combination (X0, Xf ).

In Figures 4.12(b), (c), (d), (e), (f) and (g), the conclusions are similar for the
2-sample tests. Each scenario is well identified and separated from the other ones.
This results in a shift in the ECDFs of the distances from left to right. However,
there is an intersection for the W and WAD test between the reference test 2 and
the damaged case P1. This kind of intersection shows a lack of sensitivity with
the test. Interestingly, the shapes of the ECDFs of the distances are different from
those in Section 3.4. This is because the ECDFs are now data-driven and the
dynamics of the system in the lab does not follow those of the perfect numerical
models, as used in Section 3.4.

Nonetheless, in this case, all ECDFs of α-values or distances exhibit acceptable
results for damage detection. Hence, with the proposed method, it is possible to
represent easily if a damage occurred on the structure. Figure 4.13 represents
the “rule-of-the-diagonal”. This rule is straightforward. Based on the ECDF of
α-values, if the ECDF is located in the bottom right corner, under the main
diagonal, no damage has occurred. Otherwise, if the ECDF is spotted in the
upper left corner, above the main diagonal, then, damage is detected.
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Figure 4.13: The “rule-of-the-diagonal”.

With the “rule-of-the-diagonal”, damage detection becomes straightforward
with the proposed methodology.

For a more compact and quantified view of these results, in Table 4.9, the
average of α-values from Figure 4.12(a) are gathered in the second column while
the other columns are used for the averages of distances from Figures 4.12(b),
(c), (d), (e), (f) and (g). A clear distinction can be made by comparing the
different cases. The α-values decrease as the damage increases while they remain
equivalent when considering the same case. For the distances, the conclusions are
similar except that they increase as the damage increases.

By comparing Table 4.9 with Table 4.4, containing the relative differences on
natural frequencies, it becomes evident that the methods based on FPT maps
are more sensitive to detect damage at early stage. Indeed, with the proposed
methods, damage can be detected even if the relative difference is as small as
0.15%.



90 Chapter 4. Small-scale laboratory test

Table 4.9: Comparison of α-values and distances obtained with each
method averaged over the entire FPT map.

Proposed KS K CVM AD W WAD
test test test test test test test

Reference case 0.59 0.03 0.04 0.56 0.00 0.01 0.11test 2
Reference case 0.45 0.05 0.06 1.85 0.01 0.03 0.27test 3
Damaged case 0.13 0.09 0.10 12.11 0.03 0.04 0.46P1 test 1
Damaged case 0.13 0.09 0.10 12.52 0.03 0.04 0.46P1 test 2
Damaged case 0.18 0.08 0.09 10.09 0.02 0.03 0.42

P1test3
Damaged case 0.08 0.18 0.20 39.89 0.10 0.11 1.47P2 test 1
Damaged case 0.08 0.18 0.20 40.91 0.10 0.13 1.60P2 test 2
Damaged case 0.08 0.18 0.20 41.13 0.10 0.12 1.50P2 test 3
Damaged case 0.01 0.48 0.54 231.35 0.63 4.03 34.21P3 test 1
Damaged case 0.02 0.44 0.47 202.14 0.50 1.82 19.17P3 test 2
Damaged case 0.01 0.49 0.54 283.97 0.59 3.24 33.63P3 test 3
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4.4 Illustration of Damage localisation
The proposed method is also able to localise changes, by comparing experimental
data with virtual modifications of the digital twin model [103].

To perform damage localisation, the updated numerical model described in
Section 4.2 is used. The magnet, which is an additional mass to an element of
the mass matrix of the numerical model, is placed along each node of the model.
If the mechanical properties of the numerical model are close to the experimental
setup, i.e. the magnet position for the numerical model corresponds exactly to
the magnet position for the experimental setup, then the ECDFs of the FPT for
the numerical model and the experimental setup are also similar. The considered
damage localisation indicator is the average of α-values or distances over the
entire map. So, to localise the damage, one can simulate the FPT maps of the
velocity at point P3 in all variants of the model where the magnet is attached at a
different node2. Then, for each variant, the average of the α-values (or distances)
is computed and this proxy is used to conclude as per the plausibility of this
location for the damage.

However, due to the location of the shaker close to the lower support, it has
been found that the amplitude of the second bending mode was overestimated for
all damaged cases at the loading point. This is due to a modification of the mode
shape near the supports, which comes from the existence of a boundary layer in
this thin flexible strip [130]. Therefore, the mode shapes of the specimen actually
change when magnets are added. While these changes have minor importance
in the middle of the span, they significantly affect the mode shape at the shaker
position (inside the boundary layer). Consequently, it is important to account
for the change of loading conditions. Besides, the small dissipation of energy at
the supports, which is related to the small allowed rotation, is also tributary of
this boundary layer behaviour. Unfortunately, the extensive modal analysis was
not repeated for the damage configurations. Therefore, both the damping of the
numerical model and the amplitude of its response were multiplied by coefficients
that were adjusted to the data to compensate for this effect. The values of these
coefficients can be found in Table 4.10.

In Figure 4.14, the indicators (averages of the α-values or distances) are plot-
ted for each damaged case and each test. The y-axis is the adimensional abscissa
along the steel strip, which is simply the coordinate divided by the total length
of the strip.

A first observation is related to the symmetry of the indicators around y = 0.5,
which is the half-length of the strip. In fact, with the numerical model, we are
only able to capture the amplitude variations of the selected bending mode. Since

2In this case, the magnet mass is known but not its location on the strip.
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Figure 4.14: Indicators for the damage localisation when damage is lo-
calised at points P1, P2, P3: (a) the proposed statistical test, and the (b)
KS, (c) K, (d) CVM, (e) AD, (f) W, and (g) WAD tests. The red line

indicates the actual position of the magnet.
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Table 4.10: Coefficients for the damping and the amplitude of the nu-
merical model response for each damaged case.

Damaged case Damping coefficient Amplitude coefficient
P1 4.5 1
P2 2.5 0.64
P3 3 0.55

the second bending mode is symmetrical around midspan, in absolute value, the
computed results should also be symmetrical around midspan.

The second observation corresponds to the indicator curves being different for
each damaged case. Indeed, each reference and damaged scenario was repeated
three times. It is evident that for all indicators, the obtained results are similar,
meaning that each test of each scenario has the same conclusion. The only slight
discrepancy, appearing between each test, is located where the indicator is small,
especially for damaged cases P2 and P3.

The third observation that can be made is that all the indicators tend to be
at their maximum where the magnet is located (red line), which confirms the
suitability of the methodology proposed in this thesis. Moreover, the sizes of the
regions where the indicators are maximum vary according to the damaged case.
It can be seen that when the magnet is located at point P3, the sizes of the two
regions are quite small. These two regions are located, as expected, where the
magnet is getting close to the antinode of the second bending mode. When the
magnet is located at P1, three regions emerge: two near the supports and one at
midspan. Indeed, in the damaged case P1, the virtual damage is so small that
the method is able to find that the magnet is located where the modal amplitude
is small. The modification of the structure response amplitude is slightly affected
when the magnet is near the supports or at midspan because the amplitude of the
second bending mode at midspan is null. When the magnet is at P2, two large
regions surrounded by two peaks can be seen. However, these regions are smaller
for the proposed method, meaning that it can detect the damaged case P2 more
easily compared to the methods based on distances. In addition, these peaks are
narrow, meaning that they represent a good starting point for investigations, for
instance visually to confirm occurrence of damage. Indeed, the probability of
encountering the damage at the peak locations is the highest even if the indicator
between these peaks tends to be closer to the maximum value of the peaks, except
for the proposed method, compared to the damaged cases P1 and P3.

It is also important to have a look at where the indicator values are small com-
pared to the maximum values. Indeed, even if the damage cannot be restricted
to narrow areas, the fact of discarding regions of the studied structure matters
as it reduces the time needed for investigations and improves the quality of the
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investigation in the necessary regions. If we have a better look at the indicators
graphs for P2 and P3, it is clear that the damage has a very low probability of
being close to the supports.

Finally, in order to improve the results, especially when the magnet is at
point P2, other modes could be used. This allows to combine the information
coming from various modes and restricts the search zone to overlapping areas
where the damage has a high probability of being found. Moreover, instead of
focusing only on bending modes, torsional modes could also be taken into account
if a 3-dimensional model of the studied structure is created. In addition, each
indicator has shown a great capability of localising the damage, which offers
greater confidence in the proposed methodology thanks to the complementarity
of the results.

4.5 Conclusion
In this chapter, the proposed methodology, described in Chapter 3, has been
applied to detect and localise damage in a simple structure. The experimental
setup parameters were introduced, and a numerical model was then created and
updated based on these parameters. Damage detection was assessed by processing
the velocity signals from the experiment. The proposed statistical test was used
and compared to well-known 2-sample tests for each damaged case generated by
adding a magnet at three different places on the structure. The results obtained
for each test were similar. This indicates that damage detection was feasible,
even when the relative difference on natural frequencies was as small as 0.15%,
and a difference between the reference case and each damaged case was observed,
resulting in an increase of distances and a decrease of α-values. Besides, in this
Chapter, the “rule-of-the-diagonal” has been proposed and used. With this rule,
damage detection becomes straightforward with the proposed methodology. If
the ECDF of α-values is located above the main diagonal, damage is detected.

In addition, a digital twin model was used to perform damage localisation.
The magnet has been virtually placed at each node of the digital twin model. The
chosen indicator was the average of distances or α-values, and it yielded good re-
sults. Indeed, for each damaged case, the indicator’s maximum value was found
near the magnet’s exact location. Furthermore, the indicator demonstrated that
certain regions on the steel strip have a low probability of damage, where the min-
imum value was computed. This can help to highlight areas where investigations
should take place to visually confirm the damage.
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Chapter 5

Large-scale outdoor test

This chapter is dedicated to the early detection of a small damage in a large-scale
outdoor specimen, based on the proposed methodology. In a series of tests, delib-
erate damage is progressively created in a prestressed concrete beam by cutting
tendons one-by-one. This bridge concrete beam is also submitted to uncontrolled
environmental effects, like temperature variations and humidity. Firstly, the ex-
perimental setup is described. Secondly, the modal identification of the beam
in the reference state is performed and the vertical mode shapes are identified.
Then, the damaged scenarios are illustrated, and the proposed method is used to
identify occurrence of damage based on measured accelerations under repeatable
broadband excitation with a shaker. The results obtained in some selected scenar-
ios are compared for the proposed statistical test and 2-sample tests. Moreover,
a comparison with the results after temperature compensation is also discussed.
The last section focuses on the influence of a train that passes near the experi-
mental setup, which adds significant noise to the measured accelerations.

5.1 Experimental setup

5.1.1 Overview of the experimental campaign
The experimental setup is made of a prestressed concrete beam extracted from the
dismantled bridge of Mersch (Luxembourg). This bridge was put into operation in
1957. Due to safety issues, it was demolished in 2016. One bridge beam has been
brought to the University campus Belval in Esch-Sur-Alzette in Luxembourg.
The University of Luxembourg has already studied this specimen in previous
research programs [110, 131, 132], as a continuous effort to build knowledge about
SHM [133]. Our involvement in this project has been made possible thanks to a
cross university research project supported by the FNR (Luxembourg) and FNRS
(Belgium).

Figure 5.1 shows a satellite view of the experimental setup. The laboratory
is also represented. Moreover, a railway is located near the experimental setup.
Its influence on the damage identification is discussed at the end of this chapter.
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Figure 5.1: Satellite view (Google maps) of the experimental setup.

Different views of the beam, (b-f) from Figure 5.1, are shown in Figure 5.2.
The convention from the lab to the rails and from the rails to the lab, borrows
from [131], is adopted in this chapter, respectively meaning that the rails or the
laboratory are behind the beam.

The experimental setup also comprises of a trolley and a shaker, which are
described further in the thesis. The setup is depicted in Figure 5.3(a). Deliberate
damage is progressively added by cutting tendons one-by-one, see Figure 5.3(b)
and (c) for the damage region and the tendons. Figure 5.3(d) shows the portable
circular saw used to cut the tendons.

Each tendon cut corresponds to a Damaged Scenario (DS). A total of four
damaged scenarios have been considered. They are labelled DS1, DS2, DS3, and
DS4.

During each damaged scenario, vibration tests have been repeated 4 or 5 times.
These tests consist of using the shaker to make the beam vibrate in a frequency
range around one or several modes. These tests are described in Section 5.3. It
has been decided to repeat the tests multiple times and over several days in order
to cover various environmental conditions and for damage propagation. Indeed,
once a tendon has been cut, damage may not be fully developed in the entire
beam and taking into account this delay is crucial.

The total test campaign is represented on a timeline, in Figure 5.4. The total
duration of the campaign was 11 months. The reference scenario was measured
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Figure 5.2: Pictures of the beam.
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Figure 5.3: (a) Representation of the beam with the shaker, the trolley
and the damaged section, (b) picture of the experimental setup during the
tests, (c) tendons and damaged section and (d) the portable circular saw.
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Figure 5.4: Timeline of the experimental campaign.

on July 21st 2022. Then, the first tendon was cut 2 months later in September
13th. The waiting time between two test days is usually around 1 to 2 weeks.
On November 8th, the second tendon was cut. After DS2-2, a break of 2 months
occurred. The accelerometers are sensitive to humidity and during these two
months, the negative temperatures can have a significant impact on the measure-
ments. Indeed, the humidity inside the cracks on the beam surface may be frozen
and expelled during vibration tests. To avoid this phenomenon, it was decided
to wait until temperatures came back above 0 Celsius degrees. Therefore, on
February 2nd, tests recommenced with DS2-3 and DS2-4. On February 24th, the
third tendon was cut. Due to bad weather conditions, DS3-2 was postponed until
March 16th. The fourth tendon was cut on May 16th. The last test day was on
June 16th for DS4-3 and DS4-4.

5.1.2 Prestressed concrete bridge beam
The total bridge beam length is 25.7 m. The width and the height are 1.90 m and
1.45 m respectively, see Figure 5.2. The total weight of the beam is around 34 t.
The beam is supported by a fixed bearing and a movable bearing. Each bearing
is made, from bottom to top, of a thick steel plate, a circular rod, a H-beam 200
and a thick steel plate [131]. The circular rod of the fixed bearing was welded to
the lower steel plate to prevent it from rolling.

The cross section of the beam is varying linearly from the edges to its centre.
In Figure 5.5, two beam sections are shown. In Figure 5.5(a), the section of the
beam near the edge is represented while in Figure 5.5(b), the section of the beam
at midspan is shown. It can be observed that the section becomes thinner towards
the centre, reducing the web area of the beam at midspan.

The prestressing of the beam was done by using 8 tendons. A tendon is made
of 12 round bars of 7 mm. During the construction phase, these tendons were
prestressed and grounded to the beam by using mortar. The role of this mortar
is to allow a good force transfer between the tendons and the concrete beam and
to protect the tendons from corrosion.
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Figure 5.5: Cross section of the beam (a) near the edge and (b) at
midspan. Units: mm.

Above the beam, a thin layer of asphalt is still present. The thickness of this
asphalt layer is around 7.5 cm on the whole beam.

A more comprehensive description of the beam is given in [131] from which
relevant information was extracted here.

5.1.3 Trolley and shaker
The shaker, used during the dynamic tests, was designed by the University of
Luxembourg. It is made of an electrodynamic shaker TIRAvib (TV50350/LS120),
a mass of 500 kg, four springs and a steel frame (1.0 m x 1.2 m x 2.5 m). The
total weight of the shaker is around 1.2 t. Additional information about the
shaker system can be found in [134, 135]. In Figure 5.6, the shaker is shown. The
electrodynamic shaker moves the mass, attached to the steel frame by 4 springs.
This shaker is used for modal identification and damage detection.

On the bridge beam, a trolley, which acts as dead load, was added to the
experimental setup as it can be seen in Figure 5.7. This trolley carries 9 HEB1000
beams. The total weight of the trolley is approximately 8.8 t and its length is
equal to 3 m. The trolley is also equipped with wheels in order to move on the
top of the beam from one side to the other. When the shaker is on the beam, it
obstructs the passage and prevents the trolley to move across the entire beam.
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Figure 5.6: Picture of shaker on the beam.

(a) (b)

Figure 5.7: Pictures of the trolley.
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5.1.4 Accelerometers and temperature sensors
Accelerometers were installed on the beam before each test. As they are sensitive
to humidity, they were always dismounted after the tests. Machined grub screws
were glued into the concrete beam to facilitate this task and conserve the exact
accelerometers’ location.

A total of 23 PCB PIEZOTRONICS model 393B04 accelerometers were used:
accelerometers number 1 to 20 are positioned vertically while accelerometers from
21 to 23 are placed horizontally, see Figure 5.8. The accelerometer number 10,
which was fixed to the bottom face of the top flange of the beam, was vertically
located under the shaker, which was on the top flange, while the accelerometer
number 20 was put under the bottom flange of the beam, close to the damaged
section. A sketch, representing the accelerometer locations, is depicted in Figure
5.8. The accelerometer locations are the same for the modal identification and
the damage detection.

Temperatures were measured using seven PT100 sensors. Four sensors (T1 -
T4) were placed inside a 100-millimeter hole, which was then closed with glue,
to measure the temperatures of the concrete beam as well as another sensor T5,
which was mounted inside the top of the beam to measure the temperature of the
asphalt. Two other sensors were used to measure the ambient air temperature.
They were placed on top of the container next to the beam and protected from
direct sunlight by using a bright cover right above them. The temperature sensor
locations are shown in Figure 5.9.

In addition to accelerometers and temperature sensors, displacement trans-
ducers and laser-based measurement system were also present on the experimental
setup. Further information can be found in Chapter 3 in [131]. This equipment is
not used in this thesis as it provides static measurements. These measurements
will be used in a forthcoming PhD thesis that was developed at the University of
Luxembourg in parallel with this work [136].
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5.2 Modal identification in the reference state
The modal identification of the beam in the reference state, when the trolley is at
midspan and with the shaker on the beam, see Figure 5.3(a), has been performed.
A band-limited white noise, whose frequency content is located between 2 and 25
Hz and whose RMS is equal to 137 N, has been used to measure the accelerations
of the beam. Then, the SSI-COV algorithm, with a selected time window equal to
3 seconds for the covariance matrix, was used to identify a total of 4 mode shapes
with vertical components in this frequency range: the first 2 bending and torsion
modes. These modes are shown in Figure 5.10. For a better representation of
the vertical modes, only the accelerometers [1-9, 11-19] have been used. Table
5.1 shows the natural frequencies and damping ratios of the 4 vertical modes.

In Figure 5.11, the trace of the PSD matrix of all accelerometers is shown.
Five distinct peaks can be observed. The first bending and torsion modes and
the second bending and torsion modes correspond respectively to peaks number
1, 2, 4 and 5. The peak number 3 has been identified as the 1st horizontal mode
but it is not illustrated due to the lack of horizontal accelerometers. The natural
frequencies of the 4 vertical modes are reported in Table 5.1. On the stabilisation
diagram, a model order of n = 30 has been selected. For this model order, all
vertical modes were stabilised in frequency and in damping.

Table 5.1: Identified natural frequencies and damping ratios of 4 bending
and torsional modes in the frequency range [2; 25] Hz, in the reference

state.

Natural frequency [Hz] Damping ratio [-]
First bending mode 3.93 0.0418
First torsion mode 6.99 0.0251

Second bending mode 17.72 0.0278
Second torsion mode 20.05 0.0224
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Figure 5.10: (a) First bending mode and (b) torsion mode, (c) second
bending mode and (d) torsion mode.
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5.3 Damaged scenarios
To apply damage to the structure, it was decided to cut tendons at one section
of the beam, see Figure 5.3.

Four different damaged scenarios were considered. In each damaged scenario,
a new tendon was cut except for DS4, for which half a tendon was cut as shown
in Figure 5.12. In Figure 5.13, it can be observed that the concrete was still
partially surrounding the back of the tendon number 4. Therefore, it was not
possible to fully cut this tendon.

Figure 5.14 shows pictures of the tendons cut process. Before each tendon cut,
strain gauges were installed on 3 bars of the tendon to quantify the prestressing
force that was in the tendons before cutting [136].

The objective of this experiment is to detect small damage for which no surface
change of the structure can be observed. This is why it was decided to cut tendons
until first cracks appeared and propagated along the beam surface. This happened
in DS3 on both side of the beam as shown in Figure 5.15(a-c). In DS4, the crack
elongated and widened even more. It was clear that, at this stage, a damage
occurred on the beam by performing a visual inspection only. Hence, DS4 was
the last damaged scenario of this experimental campaign.
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Figure 5.12: Damaged scenarios: (a) reference state, damaged states (b)
1, (c) 2, (d) 3, and (e) 4.
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Tendon number 4

Figure 5.13: Damaged scenario 4 with tendon number 4 half cut.

In Table 5.2, the test dates are reported as well as the dates on which the
tendons were cut and the weather during the tests. In each damaged scenario,
the tests were repeated 4 times on 3 different dates. The first crack was expected
to appear between DS3 and DS4. Therefore, two additional tests were added
right before cutting the third and fourth tendons, corresponding to DS2-5 and
DS3-5.

A test scenario, which is made of 3 different tests, is repeated 4 or 5 times for
each damaged scenario. For each test, the accelerations of the beam are measured
by injecting a band-limited white noise by the shaker in the beam. The frequency
range of the PSDs of these band-limited white noises was selected carefully to
isolate one or several modes.

• Test A: Frequency range = [3.6; 4.6] Hz. The first bending mode is the only
mode inside this frequency range.

• Test B: Frequency range = [3.6; 7.5] Hz. In this frequency range, the first
bending and torsion modes are located.

• Test C: Frequency range = [2; 25] Hz. Various modes are inside this fre-
quency range whose first and second bending and torsion modes.

The PSD of each band-limited white noise is shown in Figure 5.16. The Root
Mean Squares (RMSs) of each noise, from Test A to Test C, are equal to 172.97,
164.41, and 136.83 N respectively.
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Figure 5.14: (a) Tendon number 1 is cut in DS1, (b) strain gauges on
tendon number 5 in DS2, (c) tendon number 5 is being cut in DS2, (d)
tendon number 2 is cut in DS3, (e) zoom on tendon number 2 in DS3, and

(f) strain gauges on tendon number 4 in DS4.
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Figure 5.15: Cracks on the beam (a) from lab to rails and (b) from rails
to lab, zoom on the crack that appeared (c) in DS3, and (d) in DS4.
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Table 5.2: Overview of the tests and tendons cut.

Dates Tests Weather
21/07/2022 Reference: Healthy state Cloudy
13/09/2022 Cut of the first tendon /
30/09/2022 DS1-1 Sunny
06/10/2022 DS1-2 Sunny
19/10/2022 DS1-3 and DS1-4 Foggy
08/11/2022 Cut of the second tendon /
18/11/2022 DS2-1 Cloudy and light rain
01/12/2022 DS2-2 Cloudy
02/02/2023 DS2-3 and DS2-4 Cloudy

24/02/2023
DS2-5 Cloudy

Cut of the third tendon /
DS3-1 Cloudy and partially sunny

16/03/2023 DS3-2 Sunny
05/04/2023 DS3-3 and DS3-4 Sunny

16/05/2023
DS3-5 Partially sunny

Cut of the fourth tendon /
DS4-1 Sunny

02/06/2023 DS4-2 Sunny
16/06/2023 DS4-3 and DS4-4 Sunny
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Figure 5.16: PSDs of the band-limited white noise for (a) Test A, (b)
Test B, and (c) Test C.
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Out of the 23 accelerometers placed on the structure, only 6 have been selected
for damage detection. They correspond to the accelerometers with the highest
RMS value. The highest RMS value means that the signal intensity is the highest
and by assuming that the noise level remains the same for all accelerometers,
therefore, selecting the accelerometers with the highest RMS value results in
analysing the data with the lowest noise to signal ratio. Based on this criterion,
accelerometers 4-5-6 and 14-15-16 were selected. These accelerometers are the
closest to midspan of the beam, see Figure 5.8.

5.4 Damage Identification
In this section, the proposed method is illustrated to identify damage occurrence.
Test A and Test B have been taken into account for some selected scenarios. The
results are also compared with and without temperature compensation. Then,
nonlinear behaviour is discussed in the light of the force amplitude. Finally, due
to the proximity of the railway close to the experimental setup, the influence of
train passage is assessed.

5.4.1 Without temperature compensation
Test A: First bending mode

Damage detection is illustrated with selected scenarios: DS1-3, DS1-4, DS2-2,
DS3-4, and DS4-2.

In Figure 5.17, the acceleration of the accelerometer 5 and its PDF in the
reference scenario are represented. It exhibits the typical features of a narrowband
Gaussian process.

Figure 5.18 shows the PSDs of the acceleration for the first bending mode and
for accelerometer number 5. This accelerometer was selected because its RMS
value is the highest. Moreover, the shape of the PSDs of the acceleration for the
same scenario is similar for all accelerometers.

It can be observed that the PSDs of the acceleration for the damaged scenarios
are shifted compared with the PSD of the acceleration for the reference scenario.
This shift hints a change of the frequency content of the beam. This change of
frequency content can be possibly linked with a potential damage that occurred
on the beam.

Using a peak picking method, the natural frequency of the first bending mode
for each selected scenario is reported in Table 5.3. The relative change on natural
frequencies ∆ is given as

∆ = fdamaged − freference

freference
.
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Figure 5.17: Acceleration from accelerometer 5 in the reference scenario,
zoom on a small time window, and PDF of the acceleration.
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Figure 5.18: PSDs of the acceleration of accelerometer 5 for the reference
state, DS1-3, DS1-4, DS2-2, DS3-4, and DS4-2 for Test A.
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Table 5.3: Natural frequency of the first bending mode for the reference
state, DS1-3, DS1-4, DS2-2, DS3-4, and DS4-2.

States Frequency ∆[%]
REF 4.08 0

DS1-3 4.14 1.47
DS1-4 4.14 1.47
DS2-2 4.12 0.98
DS3-4 3.87 −5.15
DS4-2 (< 3.6) /

The natural frequency computed with the peak picking method for DS4-2 may
be even lower. Indeed, in Figure 5.18, the peak of the PSD of the acceleration
for this damaged scenario hits fmin = 3.6 Hz. It results in an estimation of the
natural frequency as the maximum value of the peak could have been located
below 3.6 Hz.

In addition, it can be observed that the PSDs of the acceleration for DS1-3
and DS1-4 are very similar. Indeed, as reported in Table 5.2, during these tests,
the weather was foggy with nearly no temperature variation observed during the
day as well as no temperature gradient on the beam.

Another observation that can be made is that the relative change on natural
frequencies ∆ is smaller for DS2-2 than for DS1-3 and DS1-4, which was expected
to be the opposite as the damage has increased between DS1 and DS2.

Therefore, it results that relying on the natural frequencies for damage detec-
tion is not satisfactory in this case. Use of temperature compensation is discussed
later.

Before and without any temperature compensation, the proposed method,
described in Chapter 3 is applied to the same selected damaged scenarios. The
accelerations provided by accelerometers 4-5-6 and 14-15-16 are pre-processed
and then sent to the FPT algorithm.

The ECDFs of FPT for each combination of (X0, Xf ) between the healthy
state and each damaged state are then compared. Some ECDFs of FPT for the
reference state and DS2-2 are shown in Figure 5.19. They correspond to various
combinations (X0, Xf ) of the FPT maps, localised with the red square in the
pictograms. The ECDFs of FPT between these two states do not coincide except
in the bottom left corner. Moreover, a tendency is represented: when X0 < Xf ,
above the main diagonal of the map (a,b,d), the ECDFs of FPT for DS2-2 are on
the right of those for the reference state, resulting in greater FPTs on average for
DS2-2. This means that, in damaged state DS2-2, when X0 is crossed, it takes
more time to reach a higher level Xf on average.
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Figure 5.19: ECDFs of FPT for the envelope of the acceleration of
accelerometer 5 for various values of (X0, Xf ): (a) (0.0034, 0.0107),
(b) (0.0068, 0.0107), (c) (0.0102, 0.0107), (d) (0.0034, 0.0073),
(e) (0.0068, 0.0073), (f) (0.0107, 0.0073), (g) (0.0034, 0.0039), (h)

(0.0068, 0.0039), (i) (0.0107, 0.0039) .
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This tendency is inverted when X0 > Xf , under the main diagonal of the map
(f,h,i). The FPTs are smaller on average for DS2-2.

These discrepancies between the ECDFs of FPT are essential for damage
detection, as already mentioned. Each selected damaged state is compared with
the reference state in the following for the proposed statistical test as well as for
the KS and WAD tests. The ECDFs of α-values and distances for these 3 tests
are shown in Figures 5.20, 5.21 and 5.22 respectively.

The averages of α-values and distances are reported for each accelerometer
in each damaged state in Tables 5.4, 5.5 and 5.6 for the proposed test and for
the KS and WAD tests respectively. The KS and WAD tests have been selected
because they are the simplest, for the KS test, and the most sophisticated, for
the WAD test, of the 2-sample tests. Moreover, they show the same tendency as
the other 2-sample tests. Therefore, the AD, CVM, K and W tests are shown in
Appendix C to avoid redundancy.

The first observation concerns DS1-3 and DS1-4. In these damaged scenar-
ios, the ECDFs of α-values and distances coincide almost perfectly for each test.
Indeed, as reported in Table 5.2, the weather was foggy, limiting the effects of
temperatures on the results. Therefore, this shows that, under the same envi-
ronmental conditions, the tests between identical scenarios, in this case DS1, are
repeatable.

Secondly, the ECDFs of α-values and distances distinctively highlight damage
but also rank damaged scenarios in the right order, except for accelerometers 15
and 16 for DS3-4 and DS4-2. Therefore, the damage detection is always successful
but the order of damaged scenarios depends on the choice of accelerometers. In
addition, the observed differences revealed by the method based on FPTs are
capable of a better discrimination than a method based on relative changes of
natural frequencies obtained for each accelerometer.

Finally, in Figures 5.21 and 5.22, it can be observed that ECDFs of distances
intersect each other. The intersection points are highlighted with a pictogram.
These intersections show that the KS and WAD tests lack sensitivity for damage
detection in this case. The proposed statistical method, based on the sampling
distribution of ECDFs of FPTs, is more consistent. Moreover, based on the “rule-
of-the-diagonal” proposed in Chapter 4, regarding the position of the ECDF with
the diagonal, it is seen that each selected scenario is identified as a damaged
scenario because the ECDFs of α-values are located in the upper half area, above
the main diagonal of the map.

Another easy way to assess damage detection with the proposed statistical
test is based on the average of α-values. Indeed, if this average is greater than
0.5, meaning that the ECDF of α-values is in the lower half region of the map,
then no damage is identified. However, in Table 5.4, each reported average of
α-values is lower than 0.5, resulting in ECDFs of α-values that are in the upper
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Figure 5.20: ECDFs of α-values for accelerometers (a) 4, (b) 14, (c) 5,
(d) 15, (e) 6, and (f) 16 for Test A in DS1-3, DS1-4, DS2-2, DS3-4, and

DS4-2 compared to the reference scenario. Test A.
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Figure 5.21: ECDFs of the KS distances for accelerometers (a) 4, (b) 14,
(c) 5, (d) 15, (e) 6, and (f) 16 for Test A in DS1-3, DS1-4, DS2-2, DS3-4,

and DS4-2 compared to the reference scenario.
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Figure 5.22: ECDFs of the WAD distances for accelerometers (a) 4, (b)
14, (c) 5, (d) 15, (e) 6, and (f) 16 for Test A in DS1-3, DS1-4, DS2-2,

DS3-4, and DS4-2 compared to the reference scenario.
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half of the map. Hence, each selected scenario is correctly identified as dam-
aged scenario with the proposed statistical test, even DS1-3 and DS1-4 with very
limited damage.

For the rest of this section, to avoid redundancy, only the ECDFs of α-values
are shown. The ECDFs of the distances of the 6 other 2-sample tests are reported
in Appendix C.

Table 5.4: Average of α-values for accelerometers 4, 5, 6, 14, 15 and 16
in DS1-3, DS1-4, DS2-2, DS3-4, and DS4-2.

Accelerometers
4 5 6 14 15 16

DS1-3 0.47 0.46 0.45 0.44 0.45 0.45
DS1-4 0.47 0.47 0.44 0.44 0.45 0.44
DS2-2 0.31 0.27 0.34 0.35 0.35 0.34
DS3-4 0.25 0.25 0.19 0.25 0.20 0.18
DS4-2 0.10 0.12 0.14 0.21 0.27 0.31

Table 5.5: Average of KS distances for accelerometers 4, 5, 6, 14, 15 and
16 in DS1-3, DS1-4, DS2-2, DS3-4, and DS4-2.

Accelerometers
4 5 6 14 15 16

DS1-3 0.08 0.08 0.08 0.08 0.08 0.08
DS1-4 0.08 0.09 0.09 0.08 0.08 0.08
DS2-2 0.11 0.12 0.10 0.10 0.10 0.10
DS3-4 0.13 0.14 0.16 0.14 0.15 0.16
DS4-2 0.16 0.15 0.14 0.13 0.11 0.11

Table 5.6: Average of WAD distances for accelerometers 4, 5, 6, 14, 15
and 16 in DS1-3, DS1-4, DS2-2, DS3-4, and DS4-2.

Accelerometers
4 5 6 14 15 16

DS1-3 0.11 0.11 0.11 0.11 0.11 0.11
DS1-4 0.11 0.11 0.11 0.11 0.11 0.11
DS2-2 0.20 0.23 0.18 0.17 0.17 0.17
DS3-4 0.23 0.23 0.26 0.24 0.25 0.27
DS4-2 0.41 0.39 0.34 0.30 0.25 0.23
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Test B: First bending and torsional modes
The selected damaged scenarios for illustrations under Test B are DS1-2, DS2-5,

DS3-3 and DS4-4.
In Figure 5.23, the PSDs of the acceleration of the first bending and torsion

modes are shown for the accelerometer 5.
By using the peak picking method, the natural frequencies of these two modes

are reported in Table 5.7 as well as the relative change on natural frequencies ∆.
Once again, it can be observed that the PSD of the acceleration in DS4-4 is
affected by the minimum frequency fmin = 3.6 Hz of the frequency range used in
the Test B. Therefore, the natural frequency obtained for this damaged scenario
may be lower than fmin.

It appears that DS3-3 is the closest to the reference state because its relative
change on natural frequencies ∆, for both first bending and torsion modes, is
the smallest (in absolute value). A modal-based method relying on natural fre-
quencies would erroneously conclude that DS3 is less damaged than DS2. This
reinforces the fact that using only the natural frequencies is not sufficiently robust
to perform damage detection.

In Figure 5.24, the ECDFs of α-values for the proposed test are shown and
their average is reported in Table 5.8. The results are computed by taking into
account the first bending and torsion modes together.

First, damage detection in DS1-2 for the Test B failed. Indeed, in Figure 5.24,
it can be observed that all ECDFs of α-values for all accelerometers are located
in the lower half of the map so that application of the “rule-of-the-diagonal”
would conclude that DS1 is not damaged. This is also visible by looking at the
DS1-2 row of Table 5.8: all averages of α-values are higher or really close to 0.5.
However, for the other 3 damaged scenarios, a damage can be observed.

Second, for accelerometers 4-5-6, damaged scenarios are very nicely ordered.
Nevertheless, DS2-5 and DS3-3 cross each other for accelerometers 15 and 16. Due
to the crossing, it results in almost the same average of α-values for accelerometers
15 and 16 in DS2-5 and DS3-3, see Table 5.8.

Therefore, Test B is less conclusive than Test A. This could be related to
the use of the Hilbert transform. Indeed, in Test B, the first bending and tor-
sional modes are considered. Consequently, the proposed method works better
for isolated modes, one-by-one.
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Figure 5.23: PSDs of the acceleration of accelerometer 5 for the reference
state, DS1-2, DS2-5, DS3-3, and DS4-4 for Test B.

Table 5.7: Natural frequency of the first bending and torsion modes for
the reference state, DS1-2, DS2-5, DS3-3, and DS4-4.

1st bending mode 1st torsion mode
States Frequency ∆[%] Frequency ∆[%]
REF 4.06 0 6.99 0

DS1-2 4.16 2.46 7.14 2.15
DS2-5 4.20 3.45 7.25 3.72
DS3-3 4.00 −1.48 7.10 1.57
DS4-4 (< 3.6) / 6.66 −4.72

Table 5.8: Average of α-values for accelerometers 4, 5, 6, 14, 15 and 16
in DS1-2, DS2-5, DS3-3, and DS4-4.

Accelerometers
4 5 6 14 15 16

DS1-2 0.63 0.66 0.65 0.52 0.49 0.49
DS2-5 0.34 0.36 0.43 0.31 0.28 0.30
DS3-3 0.20 0.16 0.23 0.21 0.27 0.30
DS4-4 0.12 0.13 0.13 0.21 0.18 0.19
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Figure 5.24: ECDFs of α-values for accelerometers (a) 4, (b) 14, (c) 5,
(d) 15, (e) 6, and (f) 16 for Test B in DS1-2, DS2-5, DS3-3, and DS4-4

compared to the reference scenario.
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Test A in another configuration
For Test A, another combination of damaged scenarios can be considered. This

new combination consists of DS1-2, DS3-3 and DS3-4. In this case, the temper-
ature influence is shown.

The PSDs of the acceleration from the accelerometer 5 in these selected dam-
aged states are shown in Figure 5.25 and the natural frequencies, obtained by
using the peak picking method, are reported in Table 5.9. In this particular case,
the natural frequencies show the expected tendency with the damage. Indeed,
the relative change on natural frequencies ∆ is smaller for DS1-2 than for DS3-3
and DS3-4. However, a large difference can be observed between the relative
change ∆ for DS3-3 and DS3-4. It should have been expected that the natural
frequencies would remain the same for DS3-3 and DS3-4 as they correspond to
the same damaged state and were performed on the same day. Indeed, even if
these tests were done during the same day, for DS3-3 it was in the early morning
while for DS3-4 in the early afternoon. During this day, the sun was shining and
large temperature discrepancies could be observed between the face exposed to
the sun (Temperature sensor T4) and the face always in the shadow (Tempera-
ture sensor T2). For DS3-3, the temperature difference between these two faces
is equal to 10 Celsius degrees while for DS3-4, this difference reached 15 Celsius
degrees.

In Figure 5.26, the ECDFs of α-values for the proposed statistical test are
displayed. The average of α-values is reported in Table 5.10. It can be observed
that the ECDFs of α-values are all located in the upper half of the map, resulting
in a successful damage detection for each accelerometer in all selected damaged
scenarios.

However, for accelerometers 4 and 5, the ECDFs of α-values in DS1-2 are
above those in DS3-3, which means that in this case, damage is not ordered
correctly.

Finally, as already mentioned with the natural frequencies for DS3-3 and DS3-
4, the ECDFs of α-values for each accelerometer are well distinct. This echoes
with the remark mentioning the large temperature difference measured on the
faces of the beam always exposed to the sun and in the shadow.

Consequently, based on the “rule-of-the-diagonal”, the proposed method is
still able to detect damages but the temperature creates some inconsistencies.
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Figure 5.25: PSDs of the acceleration of accelerometer 5 for the reference
state, DS1-2, DS3-3, and DS3-4 for Test A.

Table 5.9: Natural frequency of the first bending mode for the reference
state, DS1-2, DS3-3, and DS3-4.

States Frequency ∆[%]
REF 4.08 0

DS1-2 4.12 0.98
DS3-3 3.92 −3.92
DS3-4 3.87 −5.15

Table 5.10: Average of α-values for accelerometers 4, 5, 6, 14, 15 and 16
in DS1-2, DS3-3, and DS3-4.

Accelerometers
4 5 6 14 15 16

DS1-2 0.35 0.33 0.36 0.43 0.42 0.42
DS3-3 0.38 0.39 0.33 0.37 0.33 0.31
DS3-4 0.25 0.25 0.19 0.25 0.20 0.18



126 Chapter 5. Large-scale outdoor test

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

EC
D
F

DS1-2
DS3-3
DS3-4

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

EC
D
F

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

EC
D
F

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

EC
D
F

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

EC
D
F

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

EC
D
F

(a) (b)

(c) (d)

(e) (f )

Figure 5.26: ECDFs of α-values for accelerometers (a) 4, (b) 14, (c) 5,
(d) 15, (e) 6, and (f) 16 for Test A in DS1-2, DS3-3, and DS3-4 compared

to the reference scenario.
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5.4.2 With temperature compensation
As shown earlier, the temperature, and especially the temperature gradient, plays
in important role on natural frequencies and FPTs. These temperature effects are
impactful on the damage detection in SHM and new techniques must be developed
to tackle this challenge [137, 138]. Moreover, some previous experiments were
performed on the beam under investigation and showed the effects of temperature
on static and quasi-static measurements [139]. The impact of temperature is of
the same order magnitude as damages.

Therefore, temperature compensation can significantly improve the results,
which are, in this case, the ranking of damaged states, from DS1 to DS4. Indeed,
damage detection, based on the “rule-of-the-diagonal, is already working.

The University of Luxembourg developed a method to compensate tempera-
ture effects [138]. Thanks to the collaboration between the Univeristy of Liège
and the University of Luxembourg for this project, temperature compensation
has been applied to the FPT-approach. This method hinges on the linear fitting
of the natural frequencies identified under different temperatures. More advanced
details and results about temperature compensation will be presented in the twin
PhD thesis being currently developed at the University of Luxembourg [136].

The same method is used in this section to correct natural frequencies based
on measured temperatures during the tests. Based on the recommendations from
the University of Luxembourg, the reference temperature sensor selected for tem-
perature compensation is the sensor T5, which measures the temperature of the
asphalt layer. Indeed, it has been shown that the asphalt layer, bonded to the
beam, whose stiffness greatly varies with temperature, influences the stiffness of
the whole structure [140].

In Figure 5.27, the linear fitting is shown. Compared to the original fitting, the
optimal slope is imposed to be the same for each damaged scenario. This decision
is motivated by the fact that, at early damage stage, the behaviour of a structure
remains similar. Moreover, the fitting curves are ranked in order from top to
bottom. Indeed, with the increase of damage from DS1 to DS4, the stiffness of
the beam diminishes, which results in a decrease of natural frequencies. Finally,
the optimal slope of the linear fitting in each damaged state is negative. This is
related to material properties. When the asphalt layer and the concrete heat up,
their stiffness decreases and, therefore, the natural frequency is also reduced.

Once the fitting has been done, a corrected frequency is calculated based on
the raw frequency and the slope of the fitting curves. The corrected frequency is
given by

fcorr = m (Tref − Tmeas) + fraw (5.1)



128 Chapter 5. Large-scale outdoor test

0 5 10 15 20 25 30 35 40
T5 [°C]

3.5

3.6

3.7

3.8

3.9

4

4.1

4.2

4.3

4.4
REF
DS1
DS2
DS3
DS4

Fr
eq

ue
nc

y 
[H

z]

Figure 5.27: Temperatures of sensor T5 versus frequencies of the first
bending mode: linear fitting for each damaged state by imposing the same

slope.

where m is the slope from the fitting, Tref is the average over the entire test of
the measured temperature T5 of the asphalt layer and is equal to 23.4 °C, Tmeas
corresponds to the average of the measured temperature during the test and fraw
is the measured frequency.

In Table 5.11, the raw and corrected frequencies are reported for DS1-2, DS3-3
and DS3-4. It can be observed that all corrected frequencies are smaller than the
raw frequencies.

As mentioned earlier, the temperature effect impacts the results for these dam-
aged states. Therefore, it has been decided to perform temperature compensation
to see if it improves the results for the FPT method.

To apply temperature compensation to the FPTs, the ratio between the raw
and corrected natural frequencies is used. By multiplying the FPTs by this ratio,
a stretch or a contraction of the time axis is performed. If the corrected frequency
is smaller than the raw frequency, as it is the case here, the ratio is greater than
1. Therefore, the FPT values are increased, resulting in a stretching of the time
axis.

In Figure 5.28, the ECDFs of α-values are depicted with (plain lines) and
without (dashed lines) temperature compensation.

Invoking the “rule-of-the-diagonal”, the damage detection is still correctly
performed. Indeed, all ECDFs of α-values are located inside the upper half of the
map.
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Table 5.11: Raw and corrected natural frequencies of the first bending
mode for DS1-2, DS3-3 and DS3-4.

fraw [Hz] fcorr [Hz] fraw
fcorr [-]

DS1-2 4.12 3.96 1.03
DS3-3 3.92 3.73 1.05
DS3-4 3.87 3.83 1.01

Table 5.12: Average of α-values for accelerometers 4, 5, 6, 14, 15 and 16
in DS1-2, DS3-3, and DS3-4 with temperature compensation.

Accelerometers
4 5 6 14 15 16

DS1-2 0.35 0.34 0.37 0.43 0.43 0.44
DS3-3 0.35 0.35 0.33 0.37 0.34 0.33
DS3-4 0.25 0.25 0.19 0.25 0.21 0.19

Furthermore, it can be observed that for DS3-4, the results are similar. Indeed,
the asphalt layer temperatures in DS3-4 and in the reference state are close to
each other, resulting in ratios fraw

fcorr close to 1.
For DS1-2 and DS3-3, the results are slightly improved, especially for ac-

celerometers 4 and 5, the ECDFs of α-values are closer. For these two damaged
states, this results in really close averages of α-values for these two accelerometers,
see Table 5.12.

However, even with temperature compensation, the results between DS3-3
and DS3-4 are only slightly improved. A distinct discrepancy is still observable
between these two tests while they were performed on the same day. Some hy-
potheses can be formulated as the humidity in the beam that varies during the
day, especially sunny day, or the temperature gradient that makes temperature
compensation more difficult. To reduce environmental effects on the measure-
ments, two solutions can be proposed:

1. Perform the test during cloudy days [139]

2. Perform a longer test campaign only dedicated to study the temperature
effects on natural frequencies of the structure. Having a larger amount of
frequencies versus temperatures data allows the use of more sophisticated
methods such as Principal Component Analysis [137] or artificial intelli-
gence algorithms that can find patterns in the collected data [141], which,
in turn, results in more reliable temperature compensations.
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5.4.3 Influence of loading amplitude at shaker
The results obtained from Test C are similar to those shown for Test A and
Test B. However, the amplitude of the force varies with the considered test, see
Figure 5.16. Dealing with concrete structures means that cracks already exist in
the structure. The beam structure studied in this Chapter has aged for almost
50 years, submitted to environmental conditions as well as chemical agents from
the bridge usage and, finally, moved from site to the laboratory. Therefore, the
number of cracks is higher than freshly cast concrete structures.

The softening, associated with a wider opening of these existing cracks [142] is
observable by increasing the force amplitude. Indeed, the apparent stiffness of the
structure decreases, resulting in a decrease of natural frequencies. The discrep-
ancy observed between natural frequencies from small or large force amplitudes
can reach 2 to 3% [143, 142].

In Figure 5.29, the PSDs of the acceleration of the first bending mode during
DS2-2 is depicted for each test. The force amplitude decreases from Test A to
Test C, which were performed within an hour, resulting in a decrease of natural
frequencies as mentioned already. As seen in Figure 5.16, the frequency content
in the neighbourhood of the natural frequency drops by one order of magnitude
from Test A to Test B, and then again by one order of magnitude from Test B
to Test C.

Therefore, for the proposed method in Chapter 3, which hinges on the fre-
quency content adjustment, it is mandatory that the force amplitude remains
constant for each test. Indeed, this frequency content adjustment relies on the
hypothesis that the structural response is linear in each state considered sepa-
rately.

Hence, to improve the robustness of the entire process, it is important to work
with controlled excitation if possible, relying on a closed loop control system for
the shaker.
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Figure 5.29: PSDs of the acceleration of accelerometer 5 for DS2-2.
Softening in the concrete beam due to different shaker amplitudes for the

natural frequency of the first bending mode.

5.4.4 Sensitivity of the results due to passage of trains
As shown in Figure 5.1, railways were close to the experimental setup. Therefore,
it may happen that during a test, a train passes. Due to the proximity with the
experimental setup, the influence of the train is directly visible by comparing Fig-
ures 5.30(a) and (b). These figures represent the acceleration of the beam during
DS1-3 for the accelerometer 5 and for Test A. For an even clearer representa-
tion of the influence of the train on the signal, the wavelet of the acceleration is
performed in Figure 5.30(c). It can be seen that the train mainly impacts the
frequency range [13; 22]Hz.

Therefore, by considering the first bending mode whose natural frequency
is located around 4 Hz and filtering around this frequency, the influence of the
train can be completely discarded. In Figure 5.31, the ECDFs of α-values of the
proposed statistical test are shown. It can be seen that the ECDFs with and
without the influence of the train are close to each other for all accelerometers.
Therefore, it can be concluded that the train effect on the damage detection was
neutralised thanks to the bandpass filter.
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Figure 5.31: ECDFs of α-values for accelerometers (a) 4, (b) 14, (c) 5,
(d) 15, (e) 6, and (f) 16 for Test A in DS1-3 compared to the reference

scenario with and without passage of train.
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5.5 Conclusion
In this last Chapter, damage detection, based on the proposed method, was
performed on a concrete beam from a demolished prestressed concrete bridge.
Five different scenarios were considered: 1 reference state and 4 damaged states.

It has been shown that a strategy based on natural frequencies only struggles
with damage detection. However, with the ECDFs of both α-values from the
proposed statistical test and distances from the 2-sample tests provided sufficient
discrepancies between each damaged scenario, even in the early damage stages
(DS1 and DS2), before the occurrence of cracks.

The proposed statistical test performed better than the 2-sample tests and
has been chosen as the best test for damage detection. In addition, as proposed
in Chapter 4, the “rule-of-the-diagonal” was successful in a straightforward ob-
servation of damage. Once again, its efficacy has been demonstrated to perform
damage detection, which adds even more weight to the use of the proposed sta-
tistical test.

Moreover, with the proposed method, damaged scenarios could generally be
ordered correctly from DS1 to DS4. This means that, in addition to damage
detection, by comparing the ECDFs of α-values or distances for each damaged
scenario, the proposed method can evaluate the damage level qualitatively.

The influence of temperature effects has also been studied. It has been seen
that the proposed method can still detect a damage but the order of damaged
scenarios can be inverted. To reduce the temperature influence, temperature com-
pensation has been performed. Nevertheless, the results only slightly improved
with temperature compensation.

The non-linear behaviour of the beam has also been highlighted. In this
case, the apparent stiffness of the beam is influenced by the amplitude of the
force injected by the shaker in the structure. Therefore, keeping the same force
amplitude is mandatory for the proposed method because it relies notably on the
frequency content adjustment. Using a closed loop control system for the shaker
could prevent this issue and improve the robustness of the entire process.

Finally, additive unmeasured noise might not corrupt at all the proposed
methodology, especially when the frequency content of the additional source of
excitation lies outside the range of natural frequencies. This has been demon-
strated by processing data with and without passing trains.
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Chapter 6

Conclusion

This thesis presents a new methodology based on First Passage Times for the
Structural Health Monitoring in civil engineering. This method has been applied
to two experimental setups, demonstrating its efficacy in damage detection at
early stage.

Firstly, a novel algorithm has been developed to efficiently compute First
Passage Times from both synthetic and experimental signals. Indeed, First Pas-
sage Times are the keystone of the proposed method for damage detection. The
necessity to process data efficiently enables the measurement of longer time se-
ries. In addition, large structures are frequently equipped with multiple sensors.
Therefore, the quantity of data to be processed is considerable and the proposed
algorithm is also suitable for this type of application. Indeed, it has been demon-
strated that the proposed algorithm is 400 times faster than the direct approach
used until recently. Furthermore, the algorithm has also been validated by com-
paring the computed and theoretical First Passage Times statistical moments
and distributions for the Ornstein-Uhlenbeck process. A very good agreement
has been observed between the analytical and numerical results.

Secondly, a novel methodology for Structural Health Monitoring has been
developed. This methodology is based on two main steps: the pre-processing of
measured data and the comparison of First Passage Time histograms between
the healthy and current states of a structure. The aforementioned methodology
hinges on 3 different steps: a bandpass filter, a frequency content adjustment filter
and the envelope of the measured signal obtained with the Hilbert transform. This
helps to enhance the robustness of the proposed methodology by minimising some
of the negative aspects associated with utilising the raw input signal, which could
potentially compromise damage detection. The latter is made of 2-sample tests,
coming from the literature, and a new proposed statistical test that are employed
to compare First Passage Time histograms in the healthy and current states. The
First Passage Time histograms demonstrate superior capability to detect slight
changes compared to the centred statistical moments of First Passage Time maps,
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rendering them the optimal choice for the proposed Structural Health Monitoring
method. If discrepancies between First Passage Time histograms are highlighted,
it can be concluded that the structure is significantly different from its healthy
state, and that the current state is therefore identified as damaged state. Finally,
the sensitivity of the proposed methodology has been assessed, showing a high
degree of robustness for damage detection in the presence of unmeasured forces
or additive measurement noise.

Thirdly, the proposed methodology is applied to two experimental setups: a
small-scale laboratory test and a large-scale outdoor test. The former has been
employed to perform damage detection and localisation. It has been demon-
strated that the proposed method, based on First Passage Times, is capable of
detecting changes between the healthy and current states, while the relative dif-
ference on natural frequencies is as small as 0.15%. This illustrates the sensitivity
of the method to identify damage at early stage.

Moreover, the “rule-of-the-diagonal” has been introduced and used for straight-
forward damage detection. If the Empirical Cumulative Density Function of α-
values is above the main diagonal, then damage is detected. In order to localise
the damage, a digital twin model has been employed. For each combination of
the twin model parameters, a unique map of First Passage Time histograms is
generated. The aforementioned parameters are then modified until a good match
is observed between the maps from the experimental setup and those from the
digital twin model, indicating that the model parameters correspond to those of
the experimental setup. It has been demonstrated that this methodology is able
to highlight regions on a structure where damage is most likely to have occurred,
even at early stage.
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In the context of the large-scale outdoor test submitted to environmental ef-
fects, it has been shown that a strategy based on natural frequencies only is
unable to effectively detect damage. Nevertheless, the First Passage Time his-
tograms were able to identify discrepancies between the healthy and damaged
states, even in the presence of early-stage damage that did not exhibit visible
cracks. In addition, the damaged states could also be ordered correctly from low
to high damage. The proposed statistical test demonstrated higher performances
than the 2-sample tests from the literature, rendering it the optimal method for
damage detection. Furthermore, the application of the “rule-of-the-diagonal” was
once again successful. Finally, the efficacy of the proposed method in detecting
damage was evaluated in the presence of temperature effects and unmeasured
noise. In both cases, the method was able to successfully identify damage.

Therefore, the proposed method based on First Passage Times has demon-
strated good performances in the detection of damage at early stage.

Future Perspectives
On large structures, many sensors are typically deployed at the same location.
This is the case for continuous monitoring. Therefore, by comparing two signals
at different locations, a spatial dependency could be highlighted for damage lo-
calisation, thereby negating the necessity for numerical models. An extension to
the First Passage Time algorithm could be implemented in order to accept two
different signals as input, instead of accepting one single signal currently. The
generated maps, based on two input signals, could be called cross-First Passage
Time maps. One signal is employed for the levels X0, while the other is used for
the levels Xf . This approach could also be extended to the computation of two
measured signals at different moments in time, in the healthy and current states.

The quantity of information provided by the maps of First Passage Time his-
tograms is considerable, as they can be regarded as 3-D matrices. Consequently,
artificial intelligence can play a major role in the analysis of this type of data, es-
pecially in the field of pattern recognition. Indeed, it has been demonstrated that
First Passage Time histograms are sufficiently sensitive to detect damage at early
stage. However, this could make them susceptible to detecting changes from any
source other than damage. The shape of the histograms of First Passage Times or
histograms of First Passage Times at specific combinations (X0, Xf ) may conceal
certain patterns that are characteristic of damage or other sources, such as en-
vironmental conditions. Once trained, pattern recognition could be employed to
discard the undesired effects from the histograms of First Passage Times, thereby
enhancing the ability to detect damage and localise it at early stage.
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It has been demonstrated that the method based on First Passage Times
outperforms those based on natural frequencies only. Therefore, the proposed
method could be employed in parallel with static methods, such as those based
on the stiffness matrix, to improve damage detection.
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Appendix A

Ornstein-Uhlenbeck process

The Ornstein-Uhlenbeck process is defined as

dXt = β(α−Xt)dt+ σdWt (A.1)
where α is a constant drift, β > 0, σ > 0 and Wt is a Wiener process.

The average FPT and STD of FPT values are given in [144]:

average FPT (Xf |X0) = t1 (Xf |X0) (A.2)

STD of FPT (Xf |X0) =
√
t2 (Xf |X0)− t21 (Xf |X0) (A.3)

where

t1 (Xf |X0) = θ

{
√
π

[
ϕ1

(
Xf

σ
√
θ

)
− ϕ1

(
X0

σ
√
θ

)]
+ ψ1

(
Xf

σ
√
θ

)
− ψ1

(
X0

σ
√
θ

)}
(A.4)

t2 (Xf |X0) = 2θt1 (Xf |X0)
[
√
πϕ1

(
Xf

σ
√
θ

)
+ ψ1

(
Xf

σ
√
θ

)]

+ 2θ2
{
√
πln (2)

[
ϕ1

(
Xf

σ
√
θ

)
− ϕ1

(
X0

σ
√
θ

)]

−
√
π

[
ϕ2

(
Xf

σ
√
θ

)
− ϕ2

(
X0

σ
√
θ

)]
− ψ2

(
Xf

σ
√
θ

)
+ ψ2

(
X0

σ
√
θ

)}
(A.5)

ϕ1 (z) = Erfi (z) =
∫ z

0
exp(t2)dt (A.6)

ϕ2 (z) =
∞∑

n=0

z2n+3

(n+ 1) ! (2n+ 3)

n∑
k=0

1
2k + 1 (A.7)
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ψ1 (z) =
∞∑

n=0

2n

(n+ 1) (2n+ 1)! !z
2n+2 (A.8)

ψ2 (z) =
∞∑

n=0

2nz2n+4

(2n+ 3) ! ! (n+ 2)

n∑
k=0

1
k + 1 (A.9)

with θ = 1
β
.

The theoretical values for the PDF of FPT are given in [111] by solving the
backward problem. Firstly Equation (A.1) is rewritten as follows:

dX̄t̄ = −X̄t̄dt̄+ dWt̄ (A.10)

where t̄ = βt, X̄ =
√

β

σ
(X − α), X̄0 =

√
β

σ
(X0 − α) and X̄f =

√
β

σ
(Xf − α).

The backward equation for the cumulative hitting probability G
(
t̄, X̄0

)
reads

Gt

(
t̄, X̄0

)
= −X̄0GX̄0

(
t̄, X̄0

)
+ 1

2GX̄0X̄0

(
t̄, X̄0

)
(A.11)

with G
(
0, X̄0

)
= 0 and G

(
t̄, X̄f

)
= 1.

Finally, the first hitting density is given by g
(
t̄, X̄0

)
= Gt

(
t̄, X̄0

)
.
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Appendix B

Numerical Model

Stiffness and mass matrices of the elements of the numeri-
cal model
In this Appendix, the stiffness, consistent-mass and consistent geometric-stiffness
are written for a given element of length L [80]. Each beam element contains 2
nodes with two displacements allowed for each node: the transversal displacement
v and the in-plane rotation θ. The parameters E and I are respectively the
Young’s modulus and the inertia of the element. The parameter m̄ takes into
account the uniformly distributed mass of the element and the parameter N is
the constant prestressing force applied to the element.

Stiffness matrix

This matrix takes into account the stiffness of the elements at their nodes. For
the special case of a uniform beam segment, the stiffness matrix can be expressed
by 

fS1
fS2
fS3
fS4

 = 2EI
L3


6 −6 3L 3L
−6 6 −3L −3L
3L −3L 2L2 L2

3L −3L L2 2L2



v1
v2
θ1
θ2


Consistent-mass matrix

This matrix takes into account the mass distribution of the elements. In the
special case of a beam with uniformly distributed mass the consistent-mass matrix
can be written as

fI1
fI2
fI3
fI4

 = m̄L
420


156 54 22L −13L
54 156 13L −22L

22L 13L 4L2 −3L2

−13L −22L −3L2 4L2



v̈1
v̈2
θ̈1
θ̈2
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Consistent geometric-stiffness matrix

This matrix takes into account the prestressing force within the elements due to
the pre-stress mass. In the particular case where the axial force is constant along
the length of the element, the consistent geometric-matrix is

fG1
fG2
fG3
fG4

 = N
30L


36 −36 3L 3L
−36 36 −3L −3L
3L −3L 4L2 −L2

3L −3L −L2 4L2



v1
v2
θ1
θ2


Updated numerical model parameters

In addition to parameter values given in Tables 4.1 and 4.2, the parameter values
used for the updated numerical model are listed in Table B.1.

Table B.1: Parameter values of the updated numerical model.

Parameter Value Units
Supports rotational stiffness 10000 [kg/s2]

Prestress mass 1.707 [kg]
Shaker head mass 0.03 [kg]
Stinger stiffness 4.617 · 106 [kg/s2]

Shaker moving mass 0.015 [kg]
Shaker suspension stiffness 4000 [kg/s2]

Shaker mass 1.7 [kg]
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Appendix C

Empirical CDFs of distances from
Chapter 5

C.1 Without temperature compensation

C.1.1 Test A: First bending mode
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Figure C.1: ECDFs of the AD distances for accelerometers (a) 4, (b) 14,
(c) 5, (d) 15, (e) 6, and (f) 16 for Test A in DS1-3, DS1-4, DS2-2, DS3-4,

and DS4-2.
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Figure C.2: ECDFs of the CVM distances for accelerometers (a) 4, (b)
14, (c) 5, (d) 15, (e) 6, and (f) 16 for Test A in DS1-3, DS1-4, DS2-2,

DS3-4, and DS4-2.
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Figure C.3: ECDFs of the K distances for accelerometers (a) 4, (b) 14,
(c) 5, (d) 15, (e) 6, and (f) 16 for Test A in DS1-3, DS1-4, DS2-2, DS3-4,

and DS4-2.
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Figure C.4: ECDFs of the W distances for accelerometers (a) 4, (b) 14,
(c) 5, (d) 15, (e) 6, and (f) 16 for Test A in DS1-3, DS1-4, DS2-2, DS3-4,

and DS4-2.
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C.1.2 Test B: First bending and torsional modes
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Figure C.5: ECDFs of the AD distances for accelerometers (a) 4, (b) 14,
(c) 5, (d) 15, (e) 6, and (f) 16 for Test B in DS1-2, DS2-5, DS3-3, and

DS4-4.
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Figure C.6: ECDFs of the CVM distances for accelerometers (a) 4, (b)
14, (c) 5, (d) 15, (e) 6, and (f) 16 for Test B in DS1-2, DS2-5, DS3-3, and

DS4-4.
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Figure C.7: ECDFs of the KS distances for accelerometers (a) 4, (b) 14,
(c) 5, (d) 15, (e) 6, and (f) 16 for Test B in DS1-2, DS2-5, DS3-3, and

DS4-4.
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Figure C.8: ECDFs of the K distances for accelerometers (a) 4, (b) 14,
(c) 5, (d) 15, (e) 6, and (f) 16 for Test B in DS1-2, DS2-5, DS3-3, and

DS4-4.
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Figure C.9: ECDFs of the WAD distances for accelerometers (a) 4, (b)
14, (c) 5, (d) 15, (e) 6, and (f) 16 for Test B in DS1-2, DS2-5, DS3-3, and

DS4-4.
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Figure C.10: ECDFs of the W distances for accelerometers (a) 4, (b)
14, (c) 5, (d) 15, (e) 6, and (f) 16 for Test B in DS1-2, DS2-5, DS3-3, and

DS4-4.



170 Appendix C. Empirical CDFs of distances from Chapter 5

C.1.3 Test A in another configuration: First bending mode
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Figure C.11: ECDFs of the AD distances for accelerometers (a) 4, (b)
14, (c) 5, (d) 15, (e) 6, and (f) 16 for Test A in DS1-2, DS3-3, and DS3-4.
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Figure C.12: ECDFs of the CVM distances for accelerometers (a) 4, (b)
14, (c) 5, (d) 15, (e) 6, and (f) 16 for Test A in DS1-2, DS3-3, and DS3-4.
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Figure C.13: ECDFs of the KS distances for accelerometers (a) 4, (b)
14, (c) 5, (d) 15, (e) 6, and (f) 16 for Test A in DS1-2, DS3-3, and DS3-4.
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Figure C.14: ECDFs of the K distances for accelerometers (a) 4, (b) 14,
(c) 5, (d) 15, (e) 6, and (f) 16 for Test A in DS1-2, DS3-3, and DS3-4.
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Figure C.15: ECDFs of the WAD distances for accelerometers (a) 4, (b)
14, (c) 5, (d) 15, (e) 6, and (f) 16 for Test A in DS1-2, DS3-3, and DS3-4.
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Figure C.16: ECDFs of the W distances for accelerometers (a) 4, (b) 14,
(c) 5, (d) 15, (e) 6, and (f) 16 for Test A in DS1-2, DS3-3, and DS3-4.
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C.2 With temperature compensation

0 0.02 0.04 0.06 0.08 0.1 0.12
Distances

0

0.2

0.4

0.6

0.8

1

EC
D
F

DS1-2
DS3-3
DS3-4

0 0.04 0.08 0.12 0.16
Distances

0

0.2

0.4

0.6

0.8

1

EC
D
F

0 0.05 0.1 0.15 0.2 0.25
Distances

0

0.2

0.4

0.6

0.8

1

EC
D
F

0 0.04 0.08 0.12 0.16
Distances

0

0.2

0.4

0.6

0.8

1

EC
D
F

0 0.05 0.1 0.15 0.2 0.25
Distances

0

0.2

0.4

0.6

0.8

1

EC
D
F

0 0.05 0.1 0.15 0.2 0.25 0.3
Distances

0

0.2

0.4

0.6

0.8

1

EC
D
F

(a) (b)

(c) (d)

(e) (f )

Figure C.17: ECDFs of the AD distances for accelerometers (a) 4, (b)
14, (c) 5, (d) 15, (e) 6, and (f) 16 for Test A in DS1-2, DS3-3, and DS3-4

with temperature compensation.
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Figure C.18: ECDFs of the CVM distances for accelerometers (a) 4, (b)
14, (c) 5, (d) 15, (e) 6, and (f) 16 for Test A in DS1-2, DS3-3, and DS3-4

with temperature compensation.
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Figure C.19: ECDFs of the KS distances for accelerometers (a) 4, (b)
14, (c) 5, (d) 15, (e) 6, and (f) 16 for Test A in DS1-2, DS3-3, and DS3-4

with temperature compensation.
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Figure C.20: ECDFs of the K distances for accelerometers (a) 4, (b) 14,
(c) 5, (d) 15, (e) 6, and (f) 16 for Test A in DS1-2, DS3-3, and DS3-4 with

temperature compensation.
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Figure C.21: ECDFs of the WAD distances for accelerometers (a) 4, (b)
14, (c) 5, (d) 15, (e) 6, and (f) 16 for Test A in DS1-2, DS3-3, and DS3-4

with temperature compensation.
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Figure C.22: ECDFs of the W distances for accelerometers (a) 4, (b) 14,
(c) 5, (d) 15, (e) 6, and (f) 16 for Test A in DS1-2, DS3-3, and DS3-4 with

temperature compensation.
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