
European Journal of Operational Research 151 (2003) 280–295

www.elsevier.com/locate/dsw
A tabu search algorithm for self-healing ring network design

Bernard Fortz a, Patrick Soriano b, Christelle Wynants c,*

a Institut d’Administration et de Gestion, Universit�ee Catholique de Louvain, Louvain-la-Neuve, Belgium
b Service des m�eethodes quantitatives de gestion, �EEcole des Hautes �EEtudes Commerciales, Centre de recherches sur les transports,

Universit�ee de Montr�eeal, Montr�eeal, Canada
c Electrabel––Risk Asset Liability Management, Quantitative Analysis, 8, Boulevard du Regent, Brussels 1000, Belgium
Abstract

We consider the problem of designing self-healing rings in order to protect the transmission of telecommunication

demands in a zonal network. This problem stems from a real application with operational constraints such as dual

homing and hop limit per ring. A modeling approach taking into account ring interactions is proposed as well as a tabu

search heuristic for solving it. Computational results for a comprehensive set of real and randomly generated instances

are presented.

� 2003 Elsevier B.V. All rights reserved.

Keywords: Telecommunications; Network design; Survivability; Self-healing rings; Tabu search
1. Introduction

A network is said to be survivable if traffic in-

terrupted by the failure of some of its elements can

be rerouted via spare or excess capacity specifically

placed in the network for that purpose. In addi-
tion, if that rerouting process can be automated

and the network can reconfigure itself to cope with

failures without human intervention, then the

network is said to be self-healing. Of course, de-

signing a network to survive any type of failures

including those involving several elements at the

same time would result in designs of prohibitive

cost. However, since it is generally considered that
* Corresponding author.

E-mail addresses: fortz@poms.ucl.ac.be (B. Fortz), pat-

rick@crt.umontreal.ca (P. Soriano), christelle.wynants@electr-

abel.com (C. Wynants).

0377-2217/$ - see front matter � 2003 Elsevier B.V. All rights reserv

doi:10.1016/S0377-2217(02)00826-3
failures affecting more than one element at a time

are extremely improbable, operators instead define

a restricted set of realistic failure scenarios for

which the network needs to be survivable. This set

usually includes all single link and node failures

and, possibly some multilink or node failure sce-
narios considered critical. The design process then

proceeds under the fundamental hypothesis that

only one failure needs to be handled at any given

time and produces a network that has the topology

and spare capacity required to route all the af-

fected traffic ‘‘around’’ these failures (see [6]).

With the advent of SDH/SONET networks and

of add–drop multiplexers (ADMs), a new protec-
tion technique, known as self-healing ring (SHR),

was introduced which maintains very fast recon-

figuration times while achieving lower redundant

capacity requirements (see [28,34]). Demand nodes

are grouped together forming a closed loop or

cycle in the network. They are then connected by
ed.

mail to: fortz@poms.ucl.ac.be


B. Fortz et al. / European Journal of Operational Research 151 (2003) 280–295 281
using two (eventually more) separate fibers, each

carrying signals in opposite directions. At each

node connected to the ring, an ADM having an

appropriate transmission speed or capacity is in-

stalled allowing signals to access or leave the ring.
Hence, within such a ring architecture, there al-

ways exist two link and node disjoint paths con-

necting any pair of nodes belonging to the ring. All

traffic flowing through a ring is therefore protected

against any single failure (as well as some multiple

failures) of the links or nodes forming it by pro-

viding enough spare capacity on the alternate path

of each demand. When a failure is detected within
a ring, the ADMs on the ring react and switch the

affected traffic to the protection path.

There are in fact several types of SHR de-

pending on the way the reconfiguration of the

traffic is performed and which type of protocol is

used. Note that all ADMs on a given ring have

identical capacities and this is referred to as the

ring capacity or size. This capacity must be suffi-
cient to accommodate the maximum edge flow

among the edges belonging to the ring. The

amount of spare capacity required is then simply

equal to the ring working capacity. However for

determining the appropriate ring capacity for a

given set of demands, SHRs are classified as be-

longing to one of two categories depending on the

way the working traffic may be routed on them
under normal conditions (see [4,35]).

In the first type, called unidirectional SHR, all

traffic is routed in the same direction along one
Fig. 1. Unidirectional or ded
fiber called the working fiber (e.g. clockwise). The

second fiber is set aside as spare to protect the

working fiber. Whenever a failure is detected,

the system automatically switches the affected

traffic from the working fiber onto the protection
one as illustrated in Fig. 1. For any communica-

tion between a pair of nodes (A, C), the signal

from A to C travels on one side of the working

fiber ring and the return signal form C to A travels

in the same direction but on the opposite side of

that ring. Hence, every traffic demand travels the

whole circumference and the maximum link flow

on the links of the ring is the sum of all demands
passing through the ring. Therefore the capacity

required for both the working and protection fi-

bers is the sum of all demands carried by the ring.

This type of ring is sometimes referred to as a

dedicated protection SHR since for each demand

there is a corresponding amount of spare capacity

set aside (i.e. dedicated) specifically to protect it.

In the second type of SHR, known as bi-direc-
tional SHR, not all working demands need to be

routed in the same direction. In a two fiber im-

plementation of such a ring, the bandwidth of each

fiber is divided into two equal parts: one serving as

working capacity and the other as spare. Both fi-

bers may therefore be used to carry working traf-

fic. For instance, in Fig. 2, both channels of the

demand A–C travel on the two fibers along the
upper side of the ring, while those of A–D travel

along the lower side. Hence, each demand only

uses up capacity on the links on which it is routed,
icated protection SHR.



Fig. 2. Bi-directional or shared protection SHR.

282 B. Fortz et al. / European Journal of Operational Research 151 (2003) 280–295
leaving the capacity on the rest of the links avail-

able for other demands. The capacity is therefore

shared among the different demands carried by the

ring, which is why it is also referred to as shared

protection SHR. In the case of a failure, the af-

fected traffic is switched to the spare capacity as

illustrated in Fig. 2.

Because of the division into working and pro-
tection bandwidth, the overall capacity require-

ment for each fiber is two times the maximum flow

passing through any of its links. By routing the

demands along the ring so as to minimize this

maximum flow, one may therefore achieve reduc-

tions in capacity requirements when compared with

the unidirectional SHR. Indeed, if the traffic pat-

tern is relatively uniform between the nodes of the
ring then a bi-directional SHRwill be more efficient

capacity-wise. However, if the traffic is essentially

hubbed, then there will be no advantage over the

unidirectional SHR. This subproblem of balancing

the flow among the edges of a bidirectional SHR is

in itself a very difficult problem. For more details

the reader is referred to the following: [5,7,20,23].

Planning the introduction of SHRs in trans-
mission networks is a complex matter that is being

studied by a growing number of researchers. This

planning problem has been approached from

various angles giving rise to quite different design

problems depending on the simplifying assump-

tions considered and what characteristics the re-

sulting survivable architecture should have.

One of the simplest versions of the prob-
lem addresses a situation where the network is
composed of a single cycle (or topological ring)

passing through all the nodes and on which several

stacked SHRs must be defined. The network con-

tains a single designated hub node where all SHRs

interconnect, allowing demands to flow from one

ring to another. Each node can be connected to

several SHRs, requiring the placement of an ADM

each time. In this stacked ring network design
problem, one needs to determine which nodes

should be connected to each SHR and how to route

the traffic through the rings in order to minimize

costs (see [3,30]).

A second class of design problems arises when

one requires that the architecture of the resulting

network contains multiple rings corresponding to

several different topological cycles. This class of
problems is further divided depending on whether

the different cycles or clusters are required to be

disjoint with respect to the demand nodes they

connect or not, the former being considered as the

‘‘simpler’’ version (see [1,2,8,12,16,22,29]).

In this paper, we consider a real application

belonging to the latter type of multiple SHR net-

work design problems. It deals with networks in
which the node clusters defining rings are not re-

quired to be disjoint (i.e. nodes can be connected

to more than one ring) and the resulting archi-

tecture is not hierarchical by definition (i.e. inter-

ring traffic is routed on the SHRs defining the

network). Some of the earlier and better known

work on this topic was carried out at Bellcore and

resulted in the planning software package known
as SONET Toolkit (see [5,6,32,33]). It is essentially



B. Fortz et al. / European Journal of Operational Research 151 (2003) 280–295 283
a ‘‘greedy’’ approach that sequentially constructs a

survivable network design. It is based on a three

level decomposition of the overall planning prob-

lem that can be described as follows. In the first

stage, clusters of nodes that would make ‘‘good’’
SHRs are identified. These clusters are made up of

nodes that share a significant amount of traffic

between them and are geographically close to-

gether (i.e. thus defining a community of interests).

Then, a heuristic procedure determines if the net-

work contains an admissible cycle connecting the

cluster nodes to form a SHR [31]. If such a cycle

exists then the ‘‘ring’’ is included in the final de-
sign, otherwise the cluster is rejected. While there

are still demands to protect, the procedure tries to

identify other interesting clusters and so on. If

some demands are left unprotected after complet-

ing the ring selection phase (i.e. their origins and

destinations do not belong to the same ring), then

the software tries to protect them by routing them

on (up to three) interconnected rings or, as a last
recourse, by assigning them to a diverse protection

mechanism. Once all demands have been protected

with such structures, the last step of the approach

determines the required size for the different SHRs

and eventual protection mechanisms that were

selected.

Within this same class, Laguna [18] considers the

clustering part of the problem that is grouping de-
mand nodes to form individual SHRs. Each node

may be connected to several rings. The resulting

SHRs are only ‘‘logical’’ structures since no steps

are taken in the procedure to guarantee that there

exists a feasible cycle connecting the nodes of the

ring. All demands must be protected either by being

routed within a single ring or, when no ring contains

both their end-nodes, by routing them on two dif-
ferent rings, each containing one of the end-nodes.

No assumption or restriction is made regarding

inter-ring traffic, but a linear cost is associated to it

which makes this equivalent to considering that all

traffic between any two SHRs pass through a des-

ignated hub node. Finally, only unidirectional

SHRs (of different capacities) are considered. The

objective is to find a set of logical SHRs that opti-
mizes the tradeoffs between ADM placement and

inter-ring traffic costs. The author proposes a tabu

search heuristic to find feasible solutions.
In this paper, we consider the same design

problem but in which inter-ring traffic has to be

accounted for explicitly and routed on the SHR

network being designed. As in Laguna [18], we

also consider unidirectional SHRs of different sizes
but in addition we include in our model hop con-

straints and dual homing constraints––i.e. con-

straints forcing each SHR to have at least two

different interconnection nodes with other SHRs

so that all inter-ring traffic is protected from in-

termediate node failures. We propose a tabu

search algorithm to find good feasible solutions.

To complete this overview, note that contrary
to the preceding contributions which were gener-

ally intended for application at the local or re-

gional level and used unidirectional rings, some

papers deal with variants of the multiple SHR

network design problem that are more related to

backbone transmission network applications and

the use of bi-directional SHRs (see [15,17,19,

21,24]). We refer the reader to Soriano et al. [27]
for a more detailed overview.

The remainder of this paper is organized as

follows. In the next section, we present the spe-

cifics of the problem at hand and a mathematical

model for the logical design. The solution ap-

proach is described in Section 3 and computa-

tional results are presented in Section 4. Finally, to

simplify the presentation and given our European
industrial partner, we will use only SDH termi-

nology. However, everything translates directly

into SONET context.
2. Model and solution approach

The SHR network design problem (or RNDP in
short) can be stated as follows: given a set of de-

mand nodes N , a two-connected (meshed) network

G ¼ ðN ;EÞ connecting these nodes via a set of

edges (fiber optic links) E, an O–D demand matrix

F ¼ ðf kÞk2K , where k ¼ ði; jÞ and f k is the traffic

demand between the origin i ¼ oðkÞ and destina-

tion j ¼ dðkÞ nodes of commodity k, with i; j 2 N ,

one wants to determine a set of feasible SHRs that
protects all demands at minimal cost. Let us now

characterize more precisely the RNDP variant

studied here.



284 B. Fortz et al. / European Journal of Operational Research 151 (2003) 280–295
• We consider only unidirectional SHRs but of

several capacities. To simplify the model formu-

lation, we will denote by R ¼ f1; . . . ;Rmaxg the
index set of all possible ring types where Rmax

is an upper bound on the number of rings to in-

stall. By ring type, we mean the pair of intercon-

nection nodes that are connected to the ring and

its nominal capacity. Note that several indices

may correspond to the same features since the

solution might require different rings that share

common interconnection nodes and have iden-

tical capacity specifications. This index set can
be trivially bounded above by considering that

each demand is protected individually by as

many rings as required (for every combination

of interconnection node pair and capacity).

• Nodes can be connected to more than one ring.

A node is connected to a ring r 2 R by the in-

stallation of an ADM. This induces a fixed cost

cr depending on the ring size.
• Hub constraints: all traffic between any two

SHRs has to pass through a hub node (or inter-

connection node or zonal center) belonging to

both SHRs. We denote by Z the subset of these

nodes.

• A demand between nodes i and j can be either

routed on a ring containing both nodes i and
j, or through 2 or more rings inducing then in-
ter-ring traffic costs. In practice, this cost is a

step function depending on the capacity of the

interfaces required at the interconnection node

but it can be reasonably approximated by a lin-

ear function with unit cost b.
• A demand can be split among several paths (i.e.

multirouting is allowed) and there is no arbi-

trary upper limit on the number of rings used
by any given demand path.

• Each SHR is required to contain at least two

different interconnection nodes (dual homing

constraints).

• There are no more than a pre-determined num-

ber Q of different nodes connected to any given

ring (hop count limit).

In addition, the application considered here

deals with transmission networks at the regional

level. In such contexts, there are generally no really

stringent restrictions with respect to fiber avail-
ability or ring layout within the cable network.

Therefore, the physical realization of a given

‘‘logical’’ SHR, as defined by the subset of demand

nodes to be connected, is very often determined a

posteriori, once the decision of which nodes to
interconnect with that particular ring has been

taken (see [6,18,19]). The following model also

uses this simplifying assumption. We will therefore

concentrate on the logical design (LD) aspect of

the problem, that is determining which nodes

should be connected by which SHR and how each

individual demand flowing on the network is to be

protected. The problem can then be formulated as
an integer program. Let xir ¼ 1 if an ADM is

placed at node i connecting it to ring r and 0

otherwise, yr ¼ 1 if ring r is used and 0 otherwise,

vkir (respectively vkrj) be the integer flow variables

representing the amount of traffic of commodity k
that accesses (respectively leaves) ring r at node

i ¼ oðkÞ (respectively j ¼ dðkÞÞ, wkz
rs the amount of

inter-ring traffic of commodity k that passes from
ring r to ring s at interconnection node z, and ur be
the capacity of ring r. The logical design of SHRs

can be formulated as:

Formulation (LD)
z�LD ¼ min
X
r2R

cr
X
i2N

xir þ b
X
r2R

X
s2R:s 6¼r

X
k2K

X
z2Z

wkz
rs :

ð1Þ

Flow constraintsX
r2R

vkir ¼ f k; k 2 K; i ¼ oðkÞ; ð2Þ

X
r2R

vkrj ¼ f k; k 2 K; j ¼ dðkÞ; ð3Þ

vkir þ
X

s2R:s 6¼r

X
z2Z \ r\ s

wkz
sr ¼ vkrj þ

X
s2R:s 6¼r

X
z2Z \ r\ s

wkz
rs ;

r 2 R; k 2 K : i ¼ oðkÞ; j ¼ dðkÞ: ð4Þ

Capacity constraints

X
k2K

vkoðkÞr

 
þ
X

s2R:s 6¼r

X
z2Z \ r\ s

wkz
sr

!
6 ur; r 2 R: ð5Þ



B. Fortz et al. / European Journal of Operational Research 151 (2003) 280–295 285
Design constraintsX
k2K:oðkÞ¼i

vkir þ
X

k2K:dðkÞ¼i
vkri 6

X
k2K:oðkÞ¼i or dðkÞ¼i

f kxir;

i 2 N ; r 2 R; ð6Þ
X
i2Z

xir P 2yr; r 2 R; ð7Þ

X
i2N

xir 6Qyr; r 2 R; ð8Þ

xir; yr 2 f0; 1g; r 2 R; i 2 N ; ð9Þ

ur 2 C; r 2 R; ð10Þ

vkir;v
k
rjP0 integer; r 2 R; k 2 K : i¼ oðkÞ; j¼ dðkÞ;

ð11Þ
wkz

rs P 0 integer; r; s 2 R : r 6¼ s; k 2 K and

z 2 Z \ r \ s: ð12Þ

The objective (1) consists in minimizing the sum

of ADM and inter-ring traffic costs. Constraints
(2)–(4) are demand satisfaction and flow conser-

vation constraints, constraints (5) are capacity

constraints for the SHRs, and finally, constraints

(6)–(8) are design constraints. Constraints (6) en-

sure that no demand accesses or leaves a given

SHR at an origin or destination node if that node

is not connected to that particular SHR, while (7)

impose that each ring contains at least two inter-
connection nodes. Furthermore, constraints (8)

ensure that there are no more than Q different

nodes connected to any given ring (also termed hop

limit). Finally, it should be stressed that the dif-

ferent flow variables are constrained to take inte-

ger values because they represent high order

multiplexed signals that cannot be split into non-

integer fractions for transmission. For instance,
STM-4 signals can be split into several STM-1 but

the STM-1 individual signals must stay whole.

For realistic sized instances, this model results

in a huge integer program that is clearly not

amenable to exact solution approaches. Indeed,

there are OðjN jRmax þ jKjR2
maxÞ integer variables

and OððjN j þ jKjÞRmaxÞ constraints.
This logical design problem induces two inter-

dependent decision problems: (P1) which deals

with assigning demand nodes to the rings and (P2)
which performs the routing of the resulting inter-

ring traffic. Indeed, once the ADM connections are

chosen, the problem reduces to a minimum cost

multicommodity flow problem.

Our solution approach exploits this natural
decomposition of the problem in an iterative pro-

cedure. The solution of P1 will define the data of

P2, then the solution of P2 will allow us to modify

the data of P1, and so on. We will therefore suc-

cessively evaluate multiple node assignments to the

rings by solving multicommodity flow problems.

In this context, a tabu search algorithm that ex-

plores the space of possible assignments (xir vari-
ables) seems to hold good potential.

3. A tabu search heuristic

In this section, we present a tabu search heu-

ristic developed to solve LD. We first detail the

initialization step that builds a feasible solution.

Then, we describe how inter-ring traffic is deter-

mined once the topology is fixed. We approximate

the optimal routing cost by solving a multicom-

modity flow problem on some auxiliary graph.
Finally, we present the neighbourhood structure,

the solution attributes and the diversification

mechanism used in our tabu search algorithm.

In the following, we will restrict ourselves to

two ring sizes, namely STM-4 and STM-16. In the

context of our industry partner, this was sufficient.

However, considering more than two ring sizes

(STM-64, etc.) does not present a challenge within
our methodology, it only increases the overall size

of the problem and therefore computing times. In

these applications, larger equipments present

economies of scale: STM-16 rings have four times

the capacity of an STM-4 ring while STM-16

ADMs cost less than 2 times the cost of an STM-4

ADM. In addition, inter-ring traffic requires the

installation of interfaces on both rings at the in-
terconnection nodes, but the cost of such inter-

faces is much smaller than that of ADMs (i.e.

roughly 25 times smaller than an STM-4 ADM).

3.1. Initialization step

The initialization procedure consists in a greedy

heuristic that constructs a feasible solution of LD



286 B. Fortz et al. / European Journal of Operational Research 151 (2003) 280–295
one ring at a time. For simplicity, we decided to

build a solution without inter-ring traffic. How-

ever, to provide some free capacity in anticipation

of the inter-ring traffic that will appear during the

tabu search, we decided to limit the flow on a ring
to a proportion a of its nominal capacity. In ad-

dition, since each ring contains at least two inter-

connection nodes, one is assured that demands

between these nodes can be split over several rings,

thus adding flexibility in view of the tabu search

phase. The initialization step is outlined below.
Algorithm 1 (Initialization)

While there remain unassigned demands do
1. Create a new ring and assign some unas-

signed demands to it.

2. Fill residual capacity of that ring by adding

new nodes and demands while the used ca-

pacity stays below a proportion a of the ca-

pacity of the ring and the number of nodes
does not exceed Q.

3. If the used capacity is below a times the ca-

pacity of the ring, add some unassigned de-

mands between the interconnection nodes

of the ring (if any) up to a times the capac-

ity.

End while

We now describe in detail the different steps of

this algorithm.

1. Creation of a new ring
We first determine the node having the maxi-

mum total demand for any pair of interconnection

nodes. Then, we build a ring containing these three

nodes and we assign it the corresponding de-

mands. If there is no more unassigned demand

between a node and an interconnection node, we

create a ring with the origin and the destination of

the highest unassigned demand, and two randomly
chosen interconnection nodes. If the sum of de-

mands not yet assigned is ‘‘large enough’’ (i.e.

greater than a proportion b of an STM-16), the

ring constructed is an STM-16, otherwise it is an

STM-4.

We denote by demði; jÞ the portion of the de-

mand between i and j that is not yet assigned to a
ring, and by demRði; rÞ the total amount of traffic

between i and the other nodes in ring r that is not
yet assigned to a ring. Given a ring r, nðrÞ is the

number of nodes connected to r and usedcapðrÞ is
the capacity of ring r already used for routing. The
first step of the initialization phase can be sum-

marized as follows.

• Let z1, z2 2 Z, and i 2 N n Z be the nodes such

that

D� :¼ demði; z1Þ þ demði; z2Þ
:¼ maxfdemða; zÞ þ demða; z0Þ : z; z0 2 Z;

a 2 N n Zg:

• If D� 6¼ 0,

� create a ring r containing z1, z2 and iðnðrÞ :¼
3Þ; if Total unassigned demandP b cap
(STM-16), r is an STM-16, otherwise it is

an STM-4,
� route demands ði; z1Þ and ði; z2Þ on r without

exceeding the maximal proportion a.
• If D� ¼ 0,

� let k be the highest demand not yet assigned,

� choose randomly two interconnection nodes

z1 and z2,
� create a ring r containing z1, z2, oðkÞ and dðkÞ
ðnðrÞ :¼ 4Þ, and choose the capacity of r as
above,

� route demand k on r without exceeding max-

imal proportion a.
• Update demð:; :Þ, demRð:; :Þ and usedcapðrÞ.

2. Filling capacity by adding new nodes
Given the ring just created, we determine the

node maximizing the total demand with nodes al-
ready in this ring, and we add it if we do not ex-

ceed the proportion a of capacity.

While (usedcapðrÞ < aur and nðrÞ < Q), do
• If S :¼ fi : usedcapðrÞþdemRði; rÞ6aurg 6¼ ;,

then let j :¼ argmaxfdemRði; rÞ : i 2 Sg. Add

j to r and assign the corresponding demands

to r.
• Otherwise, fill the ring with interconnection

node traffic as in Step 3. If no interconnec-

tion node traffic can be routed in r, if r is



Fig. 3. Auxiliary graph G�.

B. Fortz et al. / European Journal of Operational Research 151 (2003) 280–295 287
an STM-4, change it to an STM-16 and re-

start the whole procedure.

• If all the above fails, select the maximal unas-

signed demand k between two nodes not in r
such that usedcapðrÞ þ f k

6 aur, and assign it

to r. If no such demand exists, start with a

new ring.

• Update demð:; :Þ, demRð:; :Þ, nðrÞ and

usedcapðrÞ.
End while

3. Filling capacity with interconnection node traffic
If the previous operation does not fill the ca-

pacity up to a proportion a, and if there is some

unassigned demand between the interconnection

nodes that belong to the ring, we route this de-

mand up to a times the capacity of the ring.

3.2. Routing and cost evaluation

Once subproblem P1 is solved, rings are deter-

mined and demand nodes are assigned to these

rings. Subproblem P2 then consists in routing de-

mands through these rings, verifying maximum

ring capacity constraints and minimizing the inter-

ring traffic cost. This problem reduces to a mini-

mum cost multicommodity flow problem in an

auxiliary graph presented in this section.
Recall that a demand between nodes i and j can

be either routed on a ring containing both nodes i
and j, or through 2 or more rings inducing then

linear inter-ring traffic costs with unit cost b.
The auxiliary graph G� ¼ ðN �;A�Þ is defined as

follows. The set N � contains two types of nodes:

• for each node i 2 N , we define two nodes in N �,
the first one i will play the role of an ‘‘origin’’

point and the second one i0 will correspond to

a ‘‘destination’’;

• for each ring r, we define two nodes in N � and
we denote them by r and r0.

As illustrated in Fig. 3, we consider three types

of arcs.

• Node-ring arcs: ði; rÞ and ðr0; i0Þ if node i 2 N is

connected to ring r, which allow demands to ac-

cess rings and exit from them at their end nodes.
• Ring arcs: ðr; r0Þ, for each ring, with a maximum

capacity ur (bold arcs in Fig. 3). All the traffic

routed on ring r will pass through this arc.

• Inter-ring arcs: ðs0; rÞ and ðr0; sÞ if rings r and s
have a common interconnection node (doted

arcs in Fig. 3), which allow inter-ring traffic to
flow through the network.

Note that the maximum capacity of node-ring

and inter-ring arcs is unlimited. For every traffic

requirement between nodes i and j in N , we define

an equivalent demand between nodes i and j0 in
N �. Therefore, given an assignment of nodes to

rings, subproblem P2 reduces to a minimum cost
multicommodity flow problem in G�, where the

unit routing cost is zero for node-ring and ring

arcs, while it is equal to b for inter-ring arcs.

However, the existence of a feasible solution de-

pends on the given node-ring assignment. There-

fore, we add an infinite cost arc between each o–d
pair with an unlimited maximum capacity. If such

an arc appears in the solution to the multicom-
modity flow problem, it means that the given

node-ring assignment is not feasible. When per-

forming the neighbourhood evaluation of the TS

procedure, such a solution will be rejected.



288 B. Fortz et al. / European Journal of Operational Research 151 (2003) 280–295
3.3. Basic tabu search algorithm

First introduced by Glover [9] (and indepen-

dently by Hansen [14]), tabu search is a general
iterative search method that has been very suc-

cessful in solving numerous types of hard combi-

natorial optimization problems (cf. [10,11,26]). It

is often referred to as a meta-heuristic since it uses
a set of rules to control an internal local search

mechanism or neighbourhood search. The princi-

ple of the method is to continue the search for

better solutions even if this produces a degradation
of the objective function, thus preventing the

method from getting trapped in local optima.

Since this can lead to cycling, tabu search uses the

concept of ‘‘memory’’ to record the recent history

of the search process and guide it away from

previously visited solutions.

3.3.1. Solution space

A solution S of the RNDP problem is charac-

terized by:

• a ring list RðSÞ :¼ frS1 ; . . . ; rSnðSÞg, where rSj is the
set of nodes connected to ring j by an ADM,

• a list of demand assignments to the rings DAðSÞ,
to each demand corresponds a list of rings on

which it is routed.

The total cost cðSÞ of a solution is the sum of

fixed cost fcðSÞ (ADM installation) and inter-ring

traffic cost tcðSÞ.

3.3.2. Neighbourhood definition

To define a neighbourhood NðSÞ of such a so-

lution S, we consider standard ADD/DROP

moves of the ring list RðSÞ, namely:

(1) remove node i from ring rSj (i.e. remove the

ADM installed at i to connect it to rSj ),
(2) add node i to ring rSj (i.e. place an ADM to

connect i to rSj ).

Moreover, when adding a node to a ring, we

need to verify that we do not exceed the maximum

number of nodes per ring, and when suppressing

the last node which is not an interconnection node,

the ring is destroyed.
3.3.3. Evaluation of a move

We have to evaluate the effect of a move on the

traffic. An optimal routing can be obtained by

solving a minimum cost integer multicommodity
flow problem on the auxiliary graph induced by

the new node-ring assignment. However, this is an

NP-hard problem; solving it at optimality would

take too much time. Therefore, we do not perform

the routing of all the demands, but concentrate

instead on the subset of demands directly affected

by the move.

If we add node i to a ring, we only modify the
routing of demands whose origin or destination is

equal to i. The routing evaluation is then per-

formed by solving a minimum cost transshipment

problem with one origin and multiple destina-

tions––one for each affected demand––in the aux-

iliary graph described in the previous section.

If we drop node i from a ring, in order to use

the residual capacity more efficiently, it is often
useful to reroute the interconnection node traffic

as well as the demands affected by the removal. To

solve approximately this multicommodity flow

problem, we use a greedy heuristic that sequen-

tially solves a series of minimum cost transship-

ment problems corresponding to each node

involved (origin or destination).
3.3.4. Neighbourhood evaluation

Given a current solution S, the basic step of our

tabu search algorithm consists in finding the best

feasible neighbour, that is:

S� :¼ argminfcðS0Þ : S0 2 NðSÞg:
However, a complete evaluation of the neigh-

bourhood is too time consuming. We therefore

developed some criteria to reduce the size of the

neighbourhood, to speed up its evaluation, as well
as to improve the quality of solutions by intro-

ducing more flexibility.

As fixed costs are large compared to inter-ring

traffic costs, removing a node often leads to a de-

crease in total cost, while adding one generally

results in increased total cost. Hence, given a fea-

sible solution S, we distinguish the neighbourhood

N�ðSÞ obtained by removing a node from a ring
and the neighbourhood NþðSÞ obtained by adding

a node to a ring. Instead of evaluating the global



B. Fortz et al. / European Journal of Operational Research 151 (2003) 280–295 289
neighbourhood NðSÞ ¼ N�ðSÞ [ NþðSÞ, we first

search neighbourhood N� until no feasible solu-

tion is found. We then evaluate neighbourhood Nþ

until feasibility is restored.

To speed up the evaluation of N�, we decided to
focus first on the more profitable moves a priori

and to adopt a first improvement strategy. Hence,

we first examine if it is possible to obtain a feasible

solution by removing an STM-16 ADM without

creating inter-ring traffic. If such a neighbour ex-

ists, we implement it right away since it is certainly

one of the best solutions in the neighbourhood.

Then we look for STM-16 removals that create
inter-ring traffic, and implement the best one if

such a feasible move exists. Otherwise, we evaluate

if a feasible solution can be found by removing an

STM-4 ADM without creating inter-ring traffic.

Again, we stop as soon as we find one. If no such

solutions are found, we then select the best re-

moval among those that generated inter-ring

traffic.
Infeasible solutions obtained while evaluating

N� are not considered. Moreover, when searching

neighbourhood N�, if removing a node from a ring

leads to an infeasible solution, it is highly probable

that this modification will stay infeasible while

moves are restricted to removals. Therefore, these

moves are stored in an unlimited tabu list until the

end of this phase. When a new node is added, the
list is emptied. We denote by TL2 this tabu list.

During the second phase of the neighbourhood

evaluation process (i.e. for Nþ), the best choice for
adding a node is always an STM-4 ADM since it is

more economical than an STM-16. Nevertheless, it

turns out that this kind of move generally keeps

the search within the same region of the solution

space. To avoid this drawback and speed up the
search, we perform a partial evaluation of Nþ: for
STM-16 all possible locations are tested while for

STM-4 each node is added into only one randomly

selected ring (instead of all possible rings).

3.3.5. Tabu mechanism

To prevent the procedure from cycling, the

move, characterized by a pair ði; rSj Þ, leading to the
best neighbour is declared tabu for a number T of

iterations. We denote by TL1 this tabu list.
3.3.6. Stopping criterion

We use two stopping criteria: a maximum

number of iterations and a maximum computing

time.
3.3.7. Tabu search algorithm

The tabu search algorithm is outlined below.

Algorithm 2

1. Initialization
• Let S0 be the feasible solution obtained with

Algorithm 1.

• Let t :¼ 0, S� :¼ S0, TL1 :¼ ; and TL2 :¼ ;.
2. Neighbourhood evaluation

While the stopping criterion is not satisfied,
do
• Phase 1

� Evaluate neighbourhood N 1ðStÞ (except

moves in TL2), stop if a move does not cre-

ate inter-ring traffic.

� If any solution is infeasible, update TL2.
� If no feasible solution was found, empty

TL2 and go to Phase 2. Otherwise, apply

Procedure 1 UPDATE(N 1ðStÞ, t, TL1, S�)
and go to Phase 1.

• Phase 2
� Evaluate neighbourhood N 2ðStÞ.
� Apply Procedure 1 UPDATE(N 2ðStÞ,t,

TL1,S�) and go to Phase 1.

End while

Procedure 1 (UPDATEðN ; t; TL1;S�Þ)
• Let Stþ1 be the best feasible solution in N which

is not tabu.

• If cðStþ1Þ < cðS�Þ then S�  Stþ1.

• Update TL1.
• t t þ 1.
3.4. Diversification phase

An important ingredient for local search effi-

ciency is diversification. The aim of diversification

is to guide the search process away from regions

that have already been explored and into unex-



290 B. Fortz et al. / European Journal of Operational Research 151 (2003) 280–295
plored and hopefully promising areas of the solu-

tion space (see [11,25] for more details).

In our particular case, the basic search mecha-

nism used by the tabu search algorithm just des-

cribed cannot easily modify the number of rings
present in a solution (i.e. it has to either empty a ring

one node at a time or create a new ring having a

single demand node and two interconnection nodes

which is generally not a very attractive move cost-

wise) and does not consider possible changes in the

capacity of a given ring. The diversification proce-

dure we propose enables the overall procedure to

circumvent those limitations by evaluating the
possible merger of two existing rings (possibly in-

creasing the capacity of the resulting ring) or the

splitting of an existing ring into two new rings (again

possibly changing the capacity). These types of

more radical moves should in turn help the search

process reach new regions of the solution space.

The main ideas that drive these modifications

are the following:

1. If for a given ring r, a subset r1 of its nodes has
only a small amount of traffic demand in com-

mon with the nodes in r2 :¼ r n r1, then split-

ting the ring into two smaller rings r1 and r2
may lead to a solution where the overall capacity

required is smaller, therefore reducing the fixed

cost without significantly increasing inter-ring
traffic.

2. On the other hand, if two rings generate a large

amount of inter-ring traffic, it could then be

more economical to merge these rings into a sin-

gle larger ring to prevent unnecessary inter-ring

traffic to use up too much of the available ca-

pacity on the network.

The objective in splitting a ring in two is to

minimize the inter-ring traffic generated. It is easy

to see that this corresponds to solving a minimum-

cut problem in a complete graph where the nodes

correspond to demand nodes in the ring and each

edge has a capacity equal to the demand between

the nodes routed in the ring. However, it often

turns out that the global minimum cut in this
graph is given by a set containing only one node,

while we would prefer to have a more balanced
split. To avoid this drawback, we use the following

heuristic: a minimum cut is computed for each pair

of nodes using Gomory and Hu�s algorithm [13],

and we select the minimum cut corresponding to

an edge not incident to a leaf in the Gomory–Hu
tree. If no such cut exists however (meaning the

Gomory–Hu tree is a star), the global minimum

cut is chosen. We replace the ring by two new rings

formed with the nodes on each side of the cut to-

gether with the interconnection nodes of the orig-

inal ring. If it is feasible, we choose the two rings to

be STM-4. Otherwise, we select the best combi-

nation of an STM-4 and an STM-16, and if none is
feasible, both new rings are STM-16.

For merging, we select a pair of rings such that

the sum of used capacities in both rings does not

exceed an STM-16, the number of different nodes

belonging to the pair does not exceed the threshold

Q, and the interconnection nodes are the same in

both rings. We then replace the original rings by a

new one connecting all their nodes and we reroute
on it all the corresponding demands and inter-ring

flow. If the resulting flow is less than the capacity

of an STM-4, the new ring is an STM-4, otherwise

it is an STM-16.

The complete diversification procedure is sum-

marized hereafter and can be seen as an additional

last step within the While loop in Algorithm 2.

Algorithm 3 (Diversification procedure)

If best solution unimproved for iter_div iterations
then do
1. Try splitting each STM-16 ring in best solution

and select best move, even if it results in a dete-

rioration of solution quality (in order to have a

minimal diversifying effect).
2. Repeat splitting step as long as it produces im-

provements (descent towards a local minimum

with respect to the splitting neighbourhood).

3. Evaluate all ring pair mergers (as described

above) and select best merge move. Implement

the move if it improves the solution.

4. Repeat merge step as long as it produces im-

provements.
5. This final solution is set as the current solution

and the basic tabu search resumes from it.



B. Fortz et al. / European Journal of Operational Research 151 (2003) 280–295 291
4. Computational results

In this section we present and discuss the nu-

merical experiments that were performed to cali-
brate and evaluate the TS algorithm presented in

Section 3. We first describe the problem instances

and then the specific experiments. All programs

were implemented using the C++ computing lan-

guage and were run on a PC with a Pentium III

466 MHz processor running under Linux.

The set of test problems we considered contains

real as well as randomly generated instances. Our
industry partner provided a set of ‘‘slightly per-

turbed’’ real instances. These 35 instances are

grouped into 3 families according to the number of

demand nodes (n ¼ 18, 32, 48). All have exactly

two interconnection nodes ðzc ¼ 2Þ. They are

identified in Table 1 by the indicator realðn; zcÞ.
In addition, we developed a generator that

produces realistic random instances. Recall that in
our context the physical realization of the rings is

not considered to be restrictive, hence the data

required to describe an instance simply consists in

a symmetric demand requirement matrix. In real

instances, there are usually three rather distinct

levels for demand values: the largest values corre-

spond to demands between interconnection nodes

(i.e. zonal centers); the middle level corresponds to
requirements between interconnection and normal
demand nodes; the lowest demands are those be-

tween pairs of normal demand nodes with even-

tually several of them equal to zero.

To generate realistic random instances, we first

specify the three parameters characterizing the

network to be generated, that is the number of

demand nodes n, the number of interconnection
nodes zc, and the proportion p of all possible pairs

of normal demand nodes for which there will be a

nonzero demand. Note that it is considered here
Table 1

Test problem characteristics

Series n zc p

realð18; 2Þ 18 2

realð32; 2Þ 32 2

realð48; 2Þ 48 2

dataðn; zc; pÞ 20, 30, 40 2, 3 0
that the only demands that can be zero are those

between normal demand nodes. All other possible

demands (i.e. between pairs of interconnec-

tion nodes and interconnection and normal de-

mand nodes) are nonzero. Then we associate to
each node i an integer value Di 2 ½10; 15� if i is an
interconnection node, and Di 2 ½5; 10� otherwise.
The demand between nodes i and j is then set

equal to Di � Dj=rij rounded to the nearest integer

and where rij is randomly generated between 2 and

10. We considered the different parameter combi-

nations obtained with: n ¼ 20, 30, 40; zc ¼ 2 or 3;

and p ¼ 0:1, 0.3 and 0.5. For each combination,
five different instances were generated thus pro-

viding us with 18 series of 5 instances each for a

total of 90 random test problems.

The whole set of instances is summarized in

Table 1. For each series of instances, we first give

its identificator and then list the number of nodes,

the number of interconnection nodes, the propor-

tion of nonzero demands of the third type, the
number of instances and the problem type (real or
random).

A preliminary set of experiments was carried

out to determine appropriate values for the dif-

ferent parameters of the procedure:

• the proportion threshold b which determines if

a ring is an STM-16 or STM-4 in the initial so-
lution,

• the proportion a which limits the flow on a ring

in the initial solution,

• the tabu list size T ,
• the maximum number iter_div of iterations

without improvement before calling the diversi-

fication procedure.

The greedy heuristic (i.e. Algorithm 1) con-

structs a feasible solution without any inter-ring
# Instances Type

11 Real

18 Real

6 Real

.1, 0.3, 0.5 18 � 5 Random



Table 2

Adjustment of parameters T and a (improvement %)

ðT ; aÞ ð5; 0:5Þ ð5; 0:7Þ ð5; 0:9Þ ð5; 0:95Þ
realð18; 2Þ )13,64 )15,91 )6,82 )4,55
realð32; 2Þ )0,47 2,16 2,80 2,61

realð48; 2Þ 11,42 15,93 16,33 17,60

Real )2,57 )1,16 2,10 2,93

datað20Þ 23,41 23,60 24,27 24,16

datað30Þ 30,68 32,51 32,21 31,36

datað40Þ 36,79 39,20 38,51 38,46

Random 30,29 31,77 31,66 31,33

Average 21,09 22,55 23,39 23,38

ðT ; aÞ ð7; 0:5Þ ð7; 0:7Þ ð7; 0:9Þ ð7; 0:95Þ
realð18; 2Þ )13,64 )13,64 )4,55 )4,55
realð32; 2Þ )1,00 1,26 2,67 2,53

realð48; 2Þ 13,68 14,79 16,43 17,87

Real )2,45 )1,10 2,76 2,94

datað20Þ 22,34 22,73 24,17 23,82

datað30Þ 29,52 32,60 32,19 30,90

datað40Þ 36,74 38,22 38,55 38,62

Random 29,53 31,18 31,64 31,11

Average 20,58 22,14 23,55 23,22

ðT ; aÞ ð10; 0:5Þ ð10; 0:7Þ ð10; 0:9Þ ð10; 0:95Þ
realð18; 2Þ )16,48 )11,36 )2,27 0,00

realð32; 2Þ )0,95 1,53 2,73 2,35

realð48; 2Þ 10,09 14,54 15,88 17,69

Real )3,94 )0,29 3,41 4,24

datað20Þ 21,41 22,21 22,86 23,76

datað30Þ 30,53 32,33 31,40 30,55

datað40Þ 37,49 38,68 38,19 38,20

Random 29,81 31,07 30,82 30,84

Average 20,36 22,29 23,14 23,39

ðT ; aÞ ð15; 0:5Þ ð15; 0:7Þ ð15; 0:9Þ ð15; 0:95Þ
realð18; 2Þ )15,07 )13,64 )6,82 )4,55
realð32; 2Þ )2,41 1,47 2,52 2,55

realð48; 2Þ 11,71 14,60 16,26 17,18

Real )3,97 )1,03 1,94 2,83

datað20Þ 20,26 21,36 22,69 21,60

datað30Þ 30,30 31,53 30,84 29,87

datað40Þ 36,38 38,21 38,27 37,49

Random 28,98 30,37 30,60 29,65

Average 19,75 21,58 22,58 22,14

292 B. Fortz et al. / European Journal of Operational Research 151 (2003) 280–295
traffic. When considering the greedy heuristic in

isolation, the best results are of course obtained by

setting a to 1 so that no portion of the ring ca-

pacity is set aside for possible inter-ring traffic (i.e.

rings are filled as much as possible). As for the
proportion threshold b controlling the size of the

ring being created, several values were tested. Low

proportions (i.e. 0.3 or 0.5) tend to create more

STM-16 rings, however these cannot be ade-

quately filled afterwards with the simple con-

structive steps of the heuristic. Higher values of b
(i.e. 0.7, 0.9 or 1) on the other hand, reduce the

number of STM-16 rings and provide better ca-
pacity utilization in general. The best combination

was clearly a ¼ 1 and b ¼ 0:9.
In the context of the tabu search procedure, the

initial solution needs to have some unused capac-

ity in order to accommodate the inter-ring traffic

that will be generated when exploring different

alternate solutions. Setting b ¼ 0:7 seemed to

provide the required flexibility and this was then
fixed for the rest of our experiments. We then

tested several strategies for setting parameters a
and T . Two stopping criteria were used simulta-

neously: a maximum number of iterations (1000)

and a maximum computing time (1 hour) which

was never reached. In fact, even the largest in-

stances ran within 30 minutes of CPU time.

Results are summarized in Table 2. This table
reports mean improvements, in percentage points,

of solutions found by the basic tabu search pro-

cedure relative to the best solutions produced by

the greedy heuristic. All values in a line are aver-

ages over all instances in the corresponding series.

For example, the line data(20) contains averages

over all random instances with 20 nodes.

As can be seen from this table, the best results
were obtained with parameters ðT ; aÞ set to

ð7; 0:9Þ. It appears that, given a fixed value of a,
the procedure is rather robust with respect to the

tabu list size producing solutions of very similar

quality for the different tabu list lengths. When

analyzing the results in details, we observe that

T ¼ 7 is already sufficient to avoid cycling. Fur-

thermore, for the same number of iterations, T ¼ 7
allows to evaluate more solutions than T ¼ 15,

which explains why setting T ¼ 7 or 10 gives

slightly better results.



B. Fortz et al. / European Journal of Operational Research 151 (2003) 280–295 293
From Table 2, it is also clear that the value of a
has an important impact on solution quality. For

any given tabu list length, results are superior with

high values of a, that is when rings in the initial

solution are fuller. Clearly, the performance of the
basic tabu search heuristic depends rather signifi-

cantly on the initial solution. Moreover, for some

small sized real instances, the solution it produces

is inferior to the best solution found by the greedy

heuristic.

As described in the previous section, the ob-

servation that the basic tabu search neighbour-

hood did not allow for easy changes in the number
of rings composing a solution or to the capacity of

a given ring motivated the introduction of a di-

versification procedure. To evaluate the impact of

this procedure we carried out another set of ex-

periments in which we fixed T ¼ 7 (i.e. the best

value according to the previous results) and con-

sidered two settings a ¼ 0:7 and 0.9. For each

combination we then tested several values of
iter_div (i.e. 30, 50 and 70 iterations without im-

provement). The results are summarized in Table 3

which again reports mean improvements, in per-
Table 3

Solution quality for basic tabu search and diversification procedure fo

in %)

Tabu Diversification

a 0.7 0.9 0.7

iter_div 30 50

realð18; 2Þ )13.64 )4.55 0.00 0.0

realð32; 2Þ 1.26 2.67 7.95 6.8

realð48; 2Þ 14.79 16.43 11.83 11.6

Real )1.10 2.76 6.11 5.5

datað20Þ 22.73 24.17 26.77 26.5

datað30Þ 32.60 32.19 35.90 35.9

datað40Þ 38.22 38.55 41.93 41.5

dataðn; 2Þ 28.88 29.01 30.28 29.6

dataðn; 3Þ 33.49 34.27 39.46 39.7

dataðn; zc; 0:1Þ 24.85 26.89 17.47 17.2

dataðn; zc; 0:3Þ 35.27 35.01 38.96 39.0

dataðn; zc; 0:5Þ 33.43 33.02 48.16 47.8

Random 31.18 31.64 34.87 34.6

Average 22.14 23.55 26.82 26.5
centage points, relative to the best greedy heuristic

solutions. All values in a line are averages over all

instances in the corresponding series. Note that to

keep the table to a reasonable size, we do not re-

port the individual results for each of the 18
dataðn; zc; pÞ series but present instead averages for

each network parameter value over all series hav-

ing that value in common. For example, the line

dataðn; zc; 0:1Þ contains the averages over all ran-

dom instances having a proportion p ¼ 0:1 of

nonzero demands of the third type. The two col-

umns under the heading Tabu reproduce the re-

sults obtained by the basic tabu search algorithm
(i.e. without the diversification procedure) for

a ¼ 0:7 and 0.9 as they appear in Table 2.

From Table 3, one can see that introducing the

diversification mechanism significantly improves

performance qualitywise. Even though for the se-

ries of larger real instances (i.e. real(48,2)) and

those of randomly generated instances with the

sparsest demand requirement matrices (i.e. with
p ¼ 0:1) the diversification did not improve the

average solution quality and even resulted in in-

ferior solutions for some instances, its overall im-
r various parameter settings (improvement over greedy heuristic

0.9

70 30 50 70

0 0.00 0.00 0.00 0.00

7 7.65 7.56 7.29 7.60

8 12.61 12.23 12.26 12.30

4 6.09 5.98 5.85 6.02

5 27.08 26.53 27.33 26.30

1 35.94 36.09 35.65 35.92

6 41.43 41.88 41.20 40.91

6 30.03 30.08 30.16 29.56

0 39.60 39.59 39.30 39.19

2 17.59 17.66 17.47 17.07

0 38.99 38.92 38.97 38.72

1 47.87 47.92 47.75 47.33

8 34.82 34.83 34.73 34.38

2 26.77 26.76 26.64 26.43



294 B. Fortz et al. / European Journal of Operational Research 151 (2003) 280–295
pact is still clearly positive generating significant

improvements in 90 out of 125 instances. More-

over, for the small sized real instances, it succeeds

in matching the results obtained by the best greedy

heuristic, something the basic tabu search proce-
dure could not accomplish on its own. The im-

provement in solution quality is more significant

for random instances with 3 interconnection nodes

and for those with the largest proportion of non-

zero demands ðp ¼ 0:5Þ which are the largest and

more difficult instances in our test set.

As for the different settings for parameters a
and iter_div, results are quite similar generating
improvements in solution quality of about 26% on

average over all instances. Again these results tend

to confirm the robustness of the overall approach

with respect to parameter settings. Nevertheless, it

seems that calling diversification at a higher fre-

quency leads to slightly better results.

Finally, as no lower bounding procedure is

currently available for this problem, it is not pos-
sible to assess exactly the quality of the solutions

found by the tabu search procedure. However,

attaining over 26% improvement on average over a

greedy constructive heuristic similar to the ones

found in the industry is very encouraging and was

deemed quite satisfactory by our industry partner.
5. Conclusion

In this paper, we propose a tabu search heu-

ristic for the design of SHRs in a zonal network.

The model studied comes from a real application

with operational constraints such as dual homing

and limited number of nodes per ring.

The algorithm is based on simple moves such as
adding or removing a single node from a ring.

Moreover, computational results presented on

both real and randomly generated instances show

the great benefit obtained by applying a diversifi-

cation phase that modifies the best solution found

using a more elaborate set of moves based on

splitting rings in two and on merging existing

rings.
This tabu search heuristic has demonstrated its

efficiency by improving significantly upon the best

solutions that could be found with a greedy con-
structive heuristic over a large set of real and

randomly generated instances.
Acknowledgements

The authors wish to thank two anonymous ref-

erees for their constructive comments. Financial

support and real instances for this research were

provided by the Belgian telecommunication soci-

ety, Belgacom. Additional financial support was

provided by the Natural Sciences and Engineering

Research Council of Canada (NSERC) and the
Fonds pour la Formation de Chercheurs et 1�Aide �aa
la Recherche (FCAR) under grants OGP0184121,

01-ER-3254, and 97-NC-1654. Their support is

hereby gratefully acknowledged.
References

[1] K. Altinkemer, Topological design of ring networks,

Computers and Operations Research 21 (1994) 421–431.

[2] K. Altinkemer, B. Kim, Heuristics for ring network design,

Working paper, Krannert Graduate School of Manage-

ment, Purdue University, 1994.

[3] M. Armony, J.G. Klincewicz, H. Luss, M.B. Rosenwein,

Design of stacked self-healing rings using a genetic

algorithm, Journal of Heuristics 6 (1) (2000) 85–106.

[4] J. Baudron, A. Khadr, F. Kocsis, Availability and surviv-

ability of SDH networks. Alcatel Electrical Communica-

tions, 1993, 4th Quarter, pp. 339–348.

[5] S. Cosares, I. Saniee, An optimization problem related to

balancing loads on SONET rings, Telecommunication

Systems 3 (1994) 165–181.

[6] S. Cosares, D.N. Deutsch, I. Saniee, O.J. Wasem, SONET

toolkit: A decision support system for designing robust and

cost-effective fiber-optic networks, Interfaces 25 (1995) 20–

40.

[7] M. Dell�Amico, M. Labb�ee, F. Maffioli, Exact solution for

the sonet ring loading problem, Operations Research

Letters 25 (1999) 119–129.

[8] M. Di Lascio, A. Gambaro, U. Mocci. Protection Strat-

egies for SDH Networks. Proceedings of the 6th Interna-

tional Network Planning Symposium––Networks�94,
Budapest, Hungary, 1994, 4–9 September, pp. 387–392.

[9] F. Glover, Future paths for integer programming and links

to artificial intelligence, Computers and Operations Re-

search 5 (1986) 533–549.

[10] F. Glover, E. Taillard, D. de Werra, A user�s guide to tabu

search, Annals of Operations Research 41 (1993) 3–28.

[11] F. Glover, M. Laguna, Tabu Search, Kluwer, Norwell,

MA, 1997.



B. Fortz et al. / European Journal of Operational Research 151 (2003) 280–295 295
[12] O. Goldschmidt, A. Laugier, E.V. Olinick, SONET/SDH

ring assignment with capacity constraints. INFORMS

Meeting, Montreal, Canada, 1998, 26–29 April (also

working paper, Department of IE and OR, University of

California, Berkeley).

[13] R.E. Gomory, T.C Hu, Multi-terminal network flows,

SIAM Journal on Applied Mathematics 9 (1961) 551–

570.

[14] P. Hansen, The steepest ascent mildest descent heuristic

for combinatorial programming. Congress on Nu-

merical Methods in Combinatorial Optimization, Capri,

Italy, 1986.

[15] J.L. Kennington, V.S.S. Nair, M.H. Rahman, Optimiza-

tion based algorithms for finding minimal cost ring covers

in survivable networks. Report 97-CSE-12, Department of

Computer Science and Engineering, Southern Methodist

University, 1997.

[16] J.G. Klincewicz, H. Luss, D.C.K. Yan, Designing tributary

networks with multiple ring families. Working paper

AT&T Labs, Holmdel, NJ 07733, Computers and Oper-

ations Research 25 (12) (1997) 1145–1157.

[17] M. Labb�ee, G. Laporte, P. Soriano, Covering a graph with

cycles, Computers and Operations Research 25 (1998) 499–

504.

[18] M. Laguna, Clustering for the design of SONET rings in

interoffice telecommunications, Management Science 40

(1994) 1533–1541.

[19] H. Luss, M.B. Rosenwein, R.T. Wong, Topology network

design for SONET ring architecture, IEEE Transactions

on Systems, Man and Cybernetics 28 (06) (1998) 780–

790.

[20] Y.-S. Myung, H.-G. Kim, D.-W. Tcha, Optimal load

balancing on SONET bidirectional rings, Operations

Research 45 (1997) 148–152.

[21] G. Pesant, P. Soriano, An optimal strategy for the

constrained cycle cover problem. Research report CRT

98-51, Centre de recherche sur les transports, Universit�ee de

Montr�eeal, Annals of Mathematics and Artificial Intelli-

gence, in press.

[22] P. Semal, K. Wirl, Optimal clustering and ring creation in

the network planning system PHANET. Proceedings of the

6th International Network Planning Symposium-Net-

works�94. Budapest, Hungary, 4–9 September 1994, pp.

303–308.
[23] A. Schrijver, P.D. Seymour, P. Winkler, The ring loading

problem, SIAM Journal of Discrete Mathematics 11 (1)

(1998) 1–14.

[24] J.B. Slewinsky, W.D. Grover, M.H. MacGregor, An

algorithm for survivable network design employing multi-

ple self-healing rings, Proceedings of IEEE GLOBE-

COM�93, 1993, pp. 1568–1573.
[25] P. Soriano, M. Gendreau, Diversification strategies in tabu

search algorithms for the maximum clique problem,

Annals of Operations Research 63 (1996) 189–207.

[26] P. Soriano, M. Gendreau, Fondements et applications des

m�eethodes de recherche avec tabous, RAIRO 31 (2) (1997)

133–159.

[27] P. Soriano, C. Wynants, S. S�eeguin, M. Labb�ee, M.

Gendreau, B. Fortz, Design and dimensioning of surviv-

able SDK networks, in: B. Sans�oo, P. Soriano (Eds.),

Telecommunications Network Planning, Kluwer, Norwell,

MA, 1998, pp. 149–169.

[28] J. Sosnosky, T.H. Wu, SONET ring applications for

survivable fiber loop networks, IEEE Communications

Magazine (June) (1991) 51–58.

[29] A. Sutter, J.L. Fullsack. SDH network planning in a

changing environment, Proceedings of the 6th Interna-

tional Network Planning Symposium-Networks�94. Buda-
pest, Hungary, 4–9 September 1994, pp. 149–154.

[30] A. Sutter, F. Vanderbeck, L.A. Wolsey, Optimal placement

of add/drop multiplexers: Heuristic and exact algorithms,

Operations Research 46 (5) (1998) 719–728.

[31] O.J. Wasem, An algorithm for designing rings for surviv-

able fiber networks, IEEE Transactions on Reliability 40

(1991) 428–432.

[32] O.J. Wasem, R.H. Cardwell, T.H. Wu. Software for

designing survivable sonet networks using self-healing

rings. Proceedings of IEEE International Conference on

Communication (ICC�92), 1992, pp. 425–431.
[33] O.J. Wasem, T.H. Wu, R.H. Cardwell, Survivable SONET

networks––design methodologies, IEEE Journal on Se-

lected Areas in Communications 12 (1994) 205–212.

[34] T.H. Wu, D.J. Kolar, R.H. Cardwell, Survivable network

architectures for broad-band fiber optic networks: Models

and performance comparison, IEEE Journal of Lightwave

Technology 6 (1988) 1698–1709.

[35] T.H. Wu, Fiber Network Service Survivability, Artech

House, Boston, MA, 1992.


	A tabu search algorithm for self-healing ring network design
	Introduction
	Model and solution approach
	A tabu search heuristic
	Initialization step
	Routing and cost evaluation
	Basic tabu search algorithm
	Solution space
	Neighbourhood definition
	Evaluation of a move
	Neighbourhood evaluation
	Tabu mechanism
	Stopping criterion
	Tabu search algorithm

	Diversification phase

	Computational results
	Conclusion
	Acknowledgements
	References


