
Digital Object Identifier (DOI) 10.1007/s10107-005-0576-5

Math. Program., Ser. A 105, 85–111 (2006)

B. Fortz ·A. R. Mahjoub · S. T. McCormick · P. Pesneau

Two-edge connected subgraphs with bounded rings:
Polyhedral results and Branch-and-Cut

Received: July 11, 2003 / Accepted: January 18, 2005
Published online: March 14, 2005 – © Springer-Verlag 2005

Abstract. We consider the network design problem which consists in determining at minimum cost a 2-edge
connected network such that the shortest cycle (a “ring”) to which each edge belongs, does not exceed a
given length K . We identify a class of inequalities, called cycle inequalities, valid for the problem and show
that these inequalities together with the so-called cut inequalities yield an integer programming formulation
of the problem in the space of the natural design variables. We then study the polytope associated with that
problem and describe further classes of valid inequalities. We give necessary and sufficient conditions for
these inequalities to be facet defining. We study the separation problem associated with these inequalities. In
particular, we show that the cycle inequalities can be separated in polynomial time when K ≤ 4. We develop
a Branch-and-Cut algorithm based on these results and present extensive computational results.

1. Introduction

A graph G = (V , E) is said to be k-edge connected if between every pair of nodes
of G, there are at least k edge-disjoint paths. Given a graph G = (V , E), with edge
costs ce ≥ 0, for all e ∈ E, and an integer K ≥ 3, the 2-edge connected subgraph
with bounded rings problem (2ECSBR) is to find a minimum cost 2-edge connected
subgraph H = (V , F) such that each edge of F belongs to a cycle of length less than
or equal to K . Such a cycle is called a feasible cycle. This problem has applications
in the design of survivable telecommunication networks. The bound on the length of
the cycles comes from limitations of the routing equipment in some networks such as
SDH/SONET networks and WDM ring technologies [23].

Fortz et al. [8] consider the node version of 2ECSBR, that is the problem of finding a
minimum cost 2-node connected spanning subgraph where every edge belongs to a cycle
of length less than or equal to K . They derive valid and facet defining inequalities for the
associated polytope, and devise separation procedures. They also present a cutting plane
algorithm along with experimental results. In [9], Fortz and Labbé give a formulation

B. Fortz: Institut d’Administration et de Gestion, Université Catholique de Louvain, Louvain-la-Neuve,
Belgique. e-mail: fortz@poms.ucl.ac.be

A. R. Mahjoub: LIMOS CNRS, Université Blaise Pascal, Clermont-Ferrand, France.
e-mail: Ridha.Mahjoub@math.univ-bpclermont.fr

S. T. McCormick: Sauder School of Business, University of British Columbia, Vancouver, Canada.
e-mail: stmv@adk.commerce.ubc.ca

P. Pesneau: LIMOS CNRS, Université Blaise Pascal, Clermont-Ferrand, France and IAG, Université Cath-
olique de Louvain, Louvain-la-Neuve, Belgique. e-mail: pesneau@poms.ucl.ac.be

Mathematics Subject Classification (1991): 90B10, 90C27, 90C57

Used Distiller 5.0.x Job Options
This report was created automatically with help of the Adobe Acrobat Distiller addition "Distiller Secrets v1.0.5" from IMPRESSED GmbH.
You can download this startup file for Distiller versions 4.0.5 and 5.0.x for free from http://www.impressed.de.

GENERAL --
File Options:
 Compatibility: PDF 1.2
 Optimize For Fast Web View: Yes
 Embed Thumbnails: Yes
 Auto-Rotate Pages: No
 Distill From Page: 1
 Distill To Page: All Pages
 Binding: Left
 Resolution: [600 600] dpi
 Paper Size: [595 842] Point

COMPRESSION --
Color Images:
 Downsampling: Yes
 Downsample Type: Bicubic Downsampling
 Downsample Resolution: 150 dpi
 Downsampling For Images Above: 225 dpi
 Compression: Yes
 Automatic Selection of Compression Type: Yes
 JPEG Quality: Medium
 Bits Per Pixel: As Original Bit
Grayscale Images:
 Downsampling: Yes
 Downsample Type: Bicubic Downsampling
 Downsample Resolution: 150 dpi
 Downsampling For Images Above: 225 dpi
 Compression: Yes
 Automatic Selection of Compression Type: Yes
 JPEG Quality: Medium
 Bits Per Pixel: As Original Bit
Monochrome Images:
 Downsampling: Yes
 Downsample Type: Bicubic Downsampling
 Downsample Resolution: 600 dpi
 Downsampling For Images Above: 900 dpi
 Compression: Yes
 Compression Type: CCITT
 CCITT Group: 4
 Anti-Alias To Gray: No

 Compress Text and Line Art: Yes

FONTS --
 Embed All Fonts: Yes
 Subset Embedded Fonts: No
 When Embedding Fails: Warn and Continue
Embedding:
 Always Embed: []
 Never Embed: []

COLOR --
Color Management Policies:
 Color Conversion Strategy: Convert All Colors to sRGB
 Intent: Default
Working Spaces:
 Grayscale ICC Profile:
 RGB ICC Profile: sRGB IEC61966-2.1
 CMYK ICC Profile: U.S. Web Coated (SWOP) v2
Device-Dependent Data:
 Preserve Overprint Settings: Yes
 Preserve Under Color Removal and Black Generation: Yes
 Transfer Functions: Apply
 Preserve Halftone Information: Yes

ADVANCED --
Options:
 Use Prologue.ps and Epilogue.ps: No
 Allow PostScript File To Override Job Options: Yes
 Preserve Level 2 copypage Semantics: Yes
 Save Portable Job Ticket Inside PDF File: No
 Illustrator Overprint Mode: Yes
 Convert Gradients To Smooth Shades: No
 ASCII Format: No
Document Structuring Conventions (DSC):
 Process DSC Comments: No

OTHERS --
 Distiller Core Version: 5000
 Use ZIP Compression: Yes
 Deactivate Optimization: No
 Image Memory: 524288 Byte
 Anti-Alias Color Images: No
 Anti-Alias Grayscale Images: No
 Convert Images (< 257 Colors) To Indexed Color Space: Yes
 sRGB ICC Profile: sRGB IEC61966-2.1

END OF REPORT --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Job Option File
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments false
 /DoThumbnails true
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize true
 /ParseDSCCommentsForDocInfo false
 /EmitDSCWarnings false
 /CalGrayProfile ()
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue false
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.2
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends false
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo false
 /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /sRGB
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 150
 /EndPage -1
 /AutoPositionEPSFiles false
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 600
 /AutoFilterGrayImages true
 /AlwaysEmbed []
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 150
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [576.0 792.0]
 /HWResolution [600 600]
>> setpagedevice

86 B. Fortz, A. R. Mahjoub, S. T. McCormick and P. Pesneau

for the problem based on a set covering approach. They provide further classes of facets
and discuss the associated separation problems. They also report computational results
with a cutting plane algorithm. Related work can also be found in [11]. For an extensive
survey of this problem, see Fortz [7].

In this paper we study the 2ECSBR. We identify a class of valid inequalities, called
cycle inequalities, and we show that these inequalities together with the cut and the inte-
grality constraints yield a 0−1 integer programming formulation for the problem in the
space of the natural design variables. We show that some facet defining inequalities for
the 2-node connected polytope with bounded rings are also facet defining inequalities
for the 2ECSBR polytope. We describe new classes of valid inequalities for the 2ECSBR
polytope and give necessary and sufficient conditions for most of these inequalities to
be facet defining. We show that the separation problem for the cycle inequalities when
K ≤ 4 can be reduced to solving a max-flow problem and then can be solved in poly-
nomial time, and we give a heuristic for solving this problem for K ≥ 5. We also devise
separation procedures for the other classes of inequalities. These are used in a Branch-
and-Cut algorithm for which we report computational results on random and real-world
problems.

In addition to the fact that we study here the edge connectivity version of the prob-
lem, which is also of practical interest, we bring several contributions that were not
part of the previous work of Fortz et al. on the node connectivity version. The major
new contribution is the introduction of cycle inequalities that are sufficient, with cut con-
straints, to formulate the problem as a 0−1 integer program. Cycle partition inequalities
are also new. The characterization of facet defining cyclomatic inequalities extend the
work in [11] to the full class of inequalities, while only a special case was considered
in [11]. Another major difference is the fact that we consider the polytope associated to
the problem and not its dominant as in [9, 11].

The 2ECSBR problem is a generalization of the classical minimum 2-edge con-
nected subgraph problem. In fact, the latter is nothing but the 2ECSBR when K ≥ |V |.
The minimum 2-edge connected subgraph problem has been the subject of extensive
research in the last ten years. In [21] Mahjoub gave a complete description of the 2-edge
connected polytope when the underlying graph is series-parallel. In [3] Barahona and
Mahjoub characterized this polytope in the class of Halin graphs. Further polyhedral
results related to k-edge (k-node) connected graphs and more general survivable net-
work design problems can be found in [4] [6] [15] [19].

The paper is organized as follows. In the following section we give a 0 − 1 integer
programming formulation for the 2ECSBR and study the dimension of the associated
polytope. In Sections 3 and 4 we describe various classes of valid inequalities for this
polytope and give necessary and sufficient conditions for these inequalities to be facet
defining. We also discuss separation algorithms for these inequalities. In section 5 we
devise a Branch-and-Cut algorithm based on these results for the 2ECSBR. In Section
6 we present some computational results and in Section 7 we give some concluding
remarks.

The rest of this section is devoted to more definitions and notations. The graphs we
consider are undirected and loopless. We denote a graph by G = (V , E) where V is the
node set and E the edge set. Throughout this paper, n := |V | and m := |E| will denote
the number of nodes and edges of G.

Two-edge connected subgraphs with bounded rings: Polyhedral results and Branch-and-Cut 87

Cπ

Tπ

Vi

V1

V0

Vp

Fig. 1. Cπ and Tπ

Given a graph G = (V , E) and W ⊂ V , the edge set

δ(W) := {ij ∈ E | i ∈ W, j ∈ V \W }
is called the cut induced by W . If V0, . . . , Vp are pairwise disjoint node subsets of V , then
δ(V0, . . . , Vp)denotes the set of edges having one node inVi and the other inVj for i �= j .

If π = (V0, . . . , Vp) is a partition of V , then we let Cπ = ∪p−1
i=0 δ(Vi, Vi+1)∪ δ(V0, Vp)

and Tπ = δ(V0, . . . , Vp) \ Cπ (see Figure 1).
The degree of a node v is the cardinality of δ(v). Given a node subset W of V ,

we denote by E(W) the set of edges having both endnodes in W . If F ⊆ E is an
edge subset, we denote by V (F) the set of nodes incident to edges of F . We denote by
G(W) = (W, E(W)) the subgraph induced by edges having both endnodes in W.G/W

is the graph obtained from G by contracting the nodes in W to a new node w (retaining
parallel edges). Contracting an edge set F consists in contracting the nodes of V (F).

We denote by V − z := V \ {z} and E − e := E \ {e} the subsets obtained by
removing one node or one edge from the set of nodes or edges, and G − z denotes the
graph G(V − z), i.e. the graph obtained by removing a node z and its incident edges
from G.

If x ∈ IRm, the support graph of x, denoted by Gx , is the graph with vertex set V

and edge set {e | xe > 0}.

2. Formulation and associated polyhedron

In this section, we formulate 2ECSBR as a 0 − 1 integer program in the space of the
natural variables x. We also determine the dimension of the associated polyhedron. To
this end, we first introduce some notation and a family of valid inequalities for 2ECSBR.

We denote by F(G) the set of edge-sets that induce feasible solutions of 2ECSBR.
Given an edge subsetF ⊂ E, we denote byxF ∈ IRm the incidence vector ofF , given by:

xF
e =

{
1 if e ∈ F,

0 otherwise.

88 B. Fortz, A. R. Mahjoub, S. T. McCormick and P. Pesneau

Conversely, each vector x ∈ {0, 1}m induces a subset

Fx := {e ∈ E | xe = 1}.
The convex hull of the incidence vectors of all the solutions of 2ECSBR is

P(G, K) := conv
{
x ∈ {0, 1}m | Fx ∈ F(G)

}
.

Finally, for any subset of edges F ⊆ E we define x(F) :=∑
e∈F xe.

Now let G = (V , E) be a graph and K ≥ 3. Let π = (V0, . . . , Vp) be a partition of
V such that p ≥ K and let e ∈ δ(V0, Vp). Consider the following inequality

x(T e
π) ≥ xe, (2.1)

with T e
π := Tπ ∪ (δ(V0, Vp) \ {e}). We have the following.

Theorem 1. Let F ⊆ E be an edge subset inducing a 2-edge connected subgraph. Then
(V (F), F) is a solution of 2ECSBR if and only if for any partition π = (V0, . . . , Vp),
with p ≥ K , and edge e ∈ δ(V0, Vp), inequality (2.1), associated with π and e, is
satisfied by xF .

Proof. Suppose that (V (F), F) is a solution of the 2ECSBR. Suppose there are a par-
tition π = (V0, . . . , Vp) and an edge e ∈ δ(V0, Vp) such that the associated inequality
(2.1) is violated by xF . Then e ∈ F and F ∩ (T e

π) = ∅. By the definition of T e
π , any

cycle in F using e is completely included in Cπ , and is therefore of length greater than
p. As p ≥ K, e does not belong to a feasible cycle, which leads to a contradiction since
F induces a solution and e ∈ F .

Conversely, suppose there is an edge e := uv ∈ F that does not belong to a feasible
cycle of (V (F), F), that is every cycle of (V (F), F) containing e is of length≥ K + 1.
Let d(u, i) denote the distance from u to i in F \{e}. Then d(u, v) ≥ K and the inequality
(2.1) associated with the partition

Vi = {w ∈ V | d(u, w) = i} i = 0, . . . , K − 1,

VK = {w ∈ V | d(u, w) ≥ K}
together with edge e is violated by xF , which ends the proof of the theorem.
�

From Theorem 1, it follows that inequalities (2.1) are valid for P(G, K). These
inequalities will be called cycle inequalities. An immediate consequence of Theorem 1,
is the following.

Corollary 1. Let G = (V , E) be a graph and K ≥ 3. 2ECSBR is equivalent to the
following integer programming problem:

Min
∑
e∈E

cexe

s.t. x(δ(W)) ≥ 2, for all W ⊂ V, ∅ �= W �= V, (2.2)

x(T e
π) ≥ xe, for all partition π=(V0, . . . , Vp)

with p≥K and e ∈ δ(V0, VK),

0 ≤ xe ≤ 1, for all e ∈ E, (2.3)

xe ∈ {0, 1}, for all e ∈ E. (2.4)

Two-edge connected subgraphs with bounded rings: Polyhedral results and Branch-and-Cut 89

Inequalities (2.2) are called cut inequalities, and inequalities (2.3) are called trivial
inequalities.

Note that, by replacing in the formulation given by Corollary 1 the constraints (2.2) by

x(δG−v(W)) ≥ 1, W ⊂ V \ {v}, v ∈ V,

we obtain a formulation for the 2-node connected subgraph with bounded rings problem.
By Corollary 1, it follows that

P(G, K) = conv{x ∈ IRm | x verifies (2.1)–(2.4)}.
We now study the dimension of P(G, K). To this aim, we need the following con-

cepts. Given a graph G = (V , E), a constant K ≥ 3, and a subset of edges F ⊆ E, the
restriction of F to bounded rings (Fortz and Labbé [9]) is defined as

FK := {
e ∈ F | e belongs to at least one feasible cycle in F

}
.

By extension, the subgraph GK = (V , EK) is called the restriction of G to bounded
rings. Remark that an edge e ∈ E \ EK will never belong to a feasible solution of
2ECSBR and is called an infeasible edge.

Given two edges e, f ∈ EK , (e �= f), we say that e depends on f , denoted by
e ≺ f , if and only if

e ∈ F ⇒ f ∈ F, for all F ∈ F(G),

or equivalently,

xF
e ≤ xF

f , for all F ∈ F(G).

Note that the dependence relation ≺ is transitive and reflexive, and therefore defines a
semiorder on the edges of E. We also define �(e) as the set of edges that depend on e,
i.e.

�(e) = {f ∈ E | f ≺ e}.
If e ≺ f and f ≺ e, then e and f are equivalent and xF

e = xF
f for all F ∈ F(G).

A maximal subset T (with respect to inclusion) of equivalent edges is an equivalence
class for the semiorder≺, and≺ induces a partition of any set of edges into equivalence
classes. As �(e) = �(f) if e and f are equivalent, we extend the notation to a subset
of equivalent edges T by setting �(T) := �(e), e ∈ T . Given two equivalence classes
Ti and Tj , we say that Ti depends on Tj if there are two edges ei ∈ Ti and ej ∈ Tj such
that ei depends on ej . Finally, an edge e ∈ E is essential if e belongs to every solution
F ∈ F(G).

The dimension of P(G, K) is stated in the following theorem.

Theorem 2. Let G = (V , E) be a graph. Let E∗ be the set of essential edges. Suppose
≺ induces a partition of EK \ E∗ into l equivalence classes. Then

dim(P(G, K)) = l.

90 B. Fortz, A. R. Mahjoub, S. T. McCormick and P. Pesneau

Proof. First of all, if EK �∈ F(G), then P(G, K) = ∅ and dim(P(G, K)) = l = 0. So
suppose that EK is a solution of F(G). Suppose the l equivalence classes of EK \ E∗
are Ti := {ei

1, . . . , e
i
ki
} of cardinality ki for i = 1, . . . , l. Since the sets Ti, i = 1, . . . , l,

form a partition of EK \ E∗,

l∑
i=1

ki = |EK | − |E∗|.

Let x be the incidence vector of a feasible solution of 2ECSBR. From the definition of
EK, E∗ and ≺, it is easy to see that x is a solution of the system

(
S
)



xe = 0 e ∈ E \ EK,

xe = 1 e ∈ E∗,
x(ei

j)− x(ei
j+1) = 0 j = 1, . . . , ki − 1, i = 1, . . . , l.

As E \ EK, E∗ and Ti, i = 1, . . . , l are obviously pairwise disjoint, the equalities
in (S) are linearly independent and

dim(P(G, K)) ≤ |EK | − |E∗| −
l∑

i=1

(ki − 1) = l.

Now consider the l + 1 subsets F0 := EK and Fi := EK \ �(Ti), i = 1, . . . , l.
We claim that Fi ∈ F(G) for i = 1, . . . , l. Assume, by contradiction, this is not the

case. Then, there is some i ∈ {1, . . . , l} such that, in the graph induced by Fi , either
there exists a cut inequality which is not satisfied, or there is an edge which does not
belong to a cycle of length ≤ K . Suppose there is a cut in G(Fi) with |δ(W)∩ Fi | ≤ 1.
Since EK ∈ F(G), �(Ti) must intersect δ(W). Hence Ti must be contained in every
solution of F(G). But this implies that the edges of Ti are essential, a contradiction.
Now suppose there is an edge f ∈ Fi that does not belong to any cycle of G(Fi) of
length ≤ K . As EK ∈ F(G), any cycle of length ≤ K in G(EK) containing f must
intersect �(Ti). Hence any solution of F(G) that contains f , intersects �(Ti). It follows
that any solution of F(G) containing f , also contains the edges of Ti . But this implies
that f ∈ �(Ti), which is impossible.

Claim. There exists a permutation σ of 1, . . . , l such that for all i = 1, . . . , l −
1, Tσ(i) ∩ �(Tσ(j)) = ∅ for j = i + 1, . . . , l.

Proof. First we show that there is a Ti that does not depend on any other Tj , j ∈
{1, . . . , l} \ {i}. Indeed, suppose this is not the case. Then T1 must depend on a set, say
Ti1 , with i1 ∈ {2, . . . , l}. As T1 and Ti1 are two different equivalence classes, there must
exist i2 ∈ {1, . . . , l} \ {1, i1} such that Ti1 depends on Ti2 . Now by iterating the process
we get an infinite sequence of different sets T1 = Ti0 , Ti1 , . . . , Tis , . . . such that Tij

depends on Tij+1 for j = 0, . . . , s, As l is finite, this is impossible.
So we may suppose that T1 does not depend on any other Ti, i = 2, . . . , l. Let σ(1) = 1.
Now suppose, by induction, that we have constructed the desired permutation up to σ(k).
Consider ≺ restricted to E′ = EK \ (E∗ ∪⋃k

i=1 Tσ(i)). The sets Tj , j ∈ {1, . . . , l} \
{σ(1), . . . , σ (k)} are the equivalence classes for ≺ on E′. By applying the reasoning

Two-edge connected subgraphs with bounded rings: Polyhedral results and Branch-and-Cut 91

above on E′, we obtain a set Tr, r ∈ {1, . . . , l}\{σ(1), . . . , σ (k)} that does not depend
on any set Tj , j ∈ {1, . . . , l} \ {σ(1), . . . , σ (k), r}. We can then set σ(k + 1) = r . �

By the Claim above, there exists a permutation σ of 1, . . . , l such that for all
i = 1, . . . , l − 1, there exists e ∈ Tσ(i) such that e �∈ �(Tσ(j)), for j = i + 1, . . . , l.

Therefore the incidence vectors x�(Ti) are linearly independent for i = 1, . . . , l.
Noting that x�(Ti) = xF0 − xFi , it follows that the incidence vectors of F0, . . . , Fl are
affinely independent, which implies that dim(P(G, K)) ≥ l.
�

Corollary 2. If G = (V , E) is a complete graph with |V | ≥ 4, then P(G, K) is full
dimensional.

Proof. It is easy to see that E and E − e, for all e ∈ E, induce feasible solutions of
2ECSBR. Therefore, E = EK, E∗ = ∅ and no edge depends on another edge. It follows
that there are no equivalent edges, and EK \ E∗ = E is partitioned in m equivalence
classes. The result follows by Theorem 2.
�

In the remainder of the paper, we assume that G = (V , E) is a complete graph. This
assumption is not restrictive, since the problem in an incomplete graph can be reduced
to the problem in a complete graph by giving a sufficiently high cost to non-existent
edges.

3. Cycle and cycle partition inequalities

In this section, we introduce a second class of valid inequalities for P(G, K).We describe
necessary and sufficient conditions for these inequalities as well as the cycle inequal-
ities to be facet defining. We also discuss separation routines. Further classes of valid
inequalities for P(G, K) will be presented in the next section.

3.1. Cycle inequalities

The next theorem characterizes which cycle inequalities are facet defining.

Theorem 3. Let G = (V , E) be a complete graph and K ≥ 3. Let π = (V0, . . . , Vp)

be a partition of V such that p ≥ K . Let e := uv be an edge of δ(V0, Vp). Then the
cycle inequality x(T e

π) ≥ xe associated with π and e defines a facet of P(G, K) if and
only if

1. p = K ,
2. |V0| = |Vp| = 1,
3. |Vi | + |Vi+1| ≥ 3 for i = 0, . . . , p − 1.

Proof. Suppose that p > K . Consider the partition π ′ = (V ′0, . . . , V
′
K) defined by

V ′i = Vi for i = 0, . . . , K − 1 and VK =
⋃p

j=K Vj . It is easy to see that the cycle
inequality associated with π and e is dominated by that associated with π ′ and e. Hence
x(T e

π) ≥ xe does not define a facet.

92 B. Fortz, A. R. Mahjoub, S. T. McCormick and P. Pesneau

Now suppose that p = K and assume that |V0| > 1 (the case |Vp| > 1 is similar).
Let π ′ = (V ′0, . . . , V

′
K) be the partition defined by

V ′0 = {u},
V ′1 = V1 ∪ (V0 \ {u}),
V ′i = Vi for i = 2, . . . , K.

Again, the cycle inequality associated with π and e is dominated by that associated with
π ′ and e.

Finally, suppose that there exists i ∈ {0, . . . , p − 1} such that |Vi | + |Vi+1| < 3.
Since the subsets defining the partition are nonempty, it follows that |Vi | = |Vi+1| = 1,
and that δ(Vi, Vi+1) contains a single edge f . If x(T e

π) ≥ xe defines a facet, then there
exists a feasible solution F such that xF (T e

π) = xF
e = 0. Otherwise, the face defined by

x(T e
π) ≥ xe is included in the face defined by xe ≤ 1. But then,

δ(

i⋃
j=0

Vj) ∩ F = δ(Vi, Vi+1) = {f },

and F is not 2-edge connected, thus not feasible, which leads to a contradiction.
The three conditions are thus necessary for x(T e

π) ≥ xe to define a facet. Suppose
they are all satisfied, and let us denote the cycle inequality by aT x ≥ 0. Let bT x ≥ β

be a facet defining inequality such that the face Fa induced by aT x ≥ 0 in P(G, K) is
contained in the face Fb induced by bT x ≥ β.

We first show that Ē = E \ (T e
π ∪ {e}) induces a feasible solution of 2ECSBR, and

therefore its incidence vector lies in Fa . To do so, we show that every edge of Ē belongs
to a cycle of length 3, and then we show that Ē induces a 2-edge connected subgraph.

Consider an edge g = v1v2 ∈ Ē. If g belongs to E(Vi) for some i ∈ {1, . . . , K−1},
then for any w ∈ Vi−1, the cycle composed of g, v1w and v2w is included in Ē. Now
consider the case g ∈ δ(Vi, Vi+1) for some i ∈ {0, . . . , K − 1}. By the third condition,
the graph induced by Vi ∪ Vi+1, with edge set E(Vi) ∪ E(Vi+1) ∪ δ(Vi, Vi+1), is a
complete graph on at least 3 nodes. Therefore g belongs to a cycle of length 3.

As Ē induces a connected graph, each cut contains at least one edge. Since each edge
belongs to a cycle, it follows that each cut contains at least two edges, and Ē induces a
2-edge connected subgraph.

Now, consider the edge set Ef = Ē ∪ {f, e}, with f ∈ T e
π . Clearly, Ef is 2-edge

connected as Ē is. To show that Ef induces a feasible solution, it is thus sufficient to
show that e and f belong to a ring of length ≤ K . Suppose f = vivj ∈ δ(Vi, Vj) with
i < j . As f ∈ T e

π , j ≥ i+2. For k = 0, . . . , i−1, j +1, . . . , K , select a node vk ∈ Vk .
As e = v0vK ∈ Ef and vkvk+1 ∈ Ef for k = 0, . . . , i−1, j, . . . , K−1, the edges e, f

and vkvk+1 for k = 0, . . . , i−1, j, . . . , K−1 form a cycle of length 2+ i+K−j ≤ K

since j ≥ i + 2. Therefore, the incidence vector of Ef lies in Fa , thus also in Fb, and

bxĒ = bxEf . It follows immediately that bf = −be for all f ∈ T e
π .

It remains to show that bg = 0 for all g ∈ Ē. First suppose g ∈ E(Vi) for some
i ∈ {1, . . . , K − 1}. Let g = u1u2, and consider two nodes w1 ∈ Vi−1 and w2 ∈ Vi+1.
Observe that w1w2 ∈ T e

π , and let Ẽ = (Ē \ {g})∪ {w1w2, e}. As Ẽ induces a connected
subgraph, to show that it induces a feasible solution, it is sufficient to show that every

Two-edge connected subgraphs with bounded rings: Polyhedral results and Branch-and-Cut 93

edge of Ẽ belongs to a feasible cycle. Let h = st ∈ Ē \ {g}. If h ∈ E(Vj) for some
j ∈ {1, . . . , K − 1}, then clearly, h belongs to a triangle, and hence to a feasible cycle.
So suppose that s ∈ Vj and t ∈ Vj+1 for some j ∈ {0, . . . , K − 1}. If j �= i − 1 and
j �= i, then by condition 3, we may assume w.l.o.g. that |Vj | ≥ 2. If s′ ∈ Vj \ {s}, then h

belongs to the triangle induced by {s, s′, t}. Now assume that j = i (the case j = i − 1
is similar). If |Vj+1| ≥ 2, then it is easy to show as before that h belongs to a triangle.
If |Vj+1| = 1, then w2 = t , and h belongs to the triangle induced by {s, t, w1}.

Moreover, edges e and w1w2 belong to a feasible cycle. Indeed, for k = 0, . . . , i −
2, i + 2, . . . , K , select a node vk ∈ Vk . Then, e, w1w2, vi−2w1, w2vi+2 and vkvk+1 for
k = 0, . . . i−3, i+2, . . . , K−1 form a cycle of length 4+ (i−2)+ (K− i−2) = K .
In consequence, the incidence vector of Ẽ lies in Fa , thus also in Fb, and bxĒ = bxẼ .
It follows immediately that be + bw1w2 − bg = 0. As we have shown that bw1w2 = −be,
it follows that bg = 0 for all g ∈ E(Vi), i = 1, . . . , K − 1.

A similar proof leads to bg = 0 for g ∈ δ(Vi, Vi+1), i ∈ {0, . . . , K − 1}, and as a

direct consequence, β = bxĒ = 0.
We have proved that b = γ a with γ = −be. In consequence we have β = 0 and

γ �= 0. Since the complete graph defines a feasible solution whose incidence vector
does not lie in Fb, bxE = (|T e

π | − 1)γ > 0. As |T e
π | ≥ 2, it follows that γ > 0. Thus

aT x ≥ 0 and bT x ≥ β define the same facet Fa = Fb.
�
In the following, we discuss the separation problem for the cycle inequalities. In

particular, we show that these inequalities can be separated in polynomial time when
K ≤ 4. Note that, based on the proof of Theorem 1, it can be shown that the separa-
tion problem for inequalities (2.1) can be easily solved in polynomial time for a 0 − 1
solution x̄.

Suppose instead that the solution contains fractional values. Let G = (V , E) be a
graph and s, t two nodes of V . Given a positive integer B, we define an (s, t)-B-path
cut to be any edge set C of E that intersects every (s, t)-path of G with at most B edges.
Given a weight vector w ∈ IRm+, the minimum (s, t)-B-path cut problem (BPCP) is to
find an (s, t)-B-path cut of minimum weight. We now show that BPCP is equivalent to
the separation problem for inequalities (2.1).

Lemma 1. Given a solution x̄ of IRm+, the separation problem for inequalities (2.1)
reduces to solving BPCP for every edge e = st ∈ E and B = K − 1 with respect to the
weight vector x̄.

Proof. Suppose that x̄(Ce) < x̄e where Ce is a minimum (s, t)-B-path cut with respect
to x̄. Since there is no cycle of length ≤ K in E \Ce containing e, by Theorem 1, there
exists a partition π = (V0, . . . , Vp) of V with e ∈ δ(V0, Vp) such that T e

π ⊆ Ce. As
x̄f ≥ 0 for all f ∈ E, we then have

x̄(Tπ)− x̄e ≤ x̄(Ce)− x̄e < 0,

which implies that inequalities (2.1) associated with the partition (V0, . . . , Vp) and e is
violated.

Now suppose that for every edge e = st ∈ E, x̄(Ce) ≥ x̄e where Ce is a minimum
(s, t)-(K−1)-path cut with respect to x̄. We claim that no inequality of type (2.1) is vio-
lated by x̄. In fact, suppose that for an edge e = st , there is a partition π = (V0, . . . , Vp)

94 B. Fortz, A. R. Mahjoub, S. T. McCormick and P. Pesneau

with e ∈ δ(V0, Vp) and p ≥ K such that x̄(T e
π) − x̄e < 0. Since T e

π is an (s, t)-
(K − 1)-path cut, and hence a solution of BPCP, one should have x̄(Ce) ≤ x̄(T e

π), a
contradiction.
�

If B = 2, finding a minimum (s, t)-2-path cut reduces to finding a minimum cut
separating s and t in the graph induced by s, t and the nodes adjacent to both s and t .

In what follows, we shall show that, for B = 3, the minimum (s, t)-B-path cut
problem reduces to a maximum flow problem, and can then be solved in polynomial
time. For this, we shall use ideas similar to those developed by Itai, Perl, and Shiloach
[18] for solving a closely related problem.

First, note that any node u of V which is not adjacent neither to s nor to t cannot
belong to an (s, t)-path of length at most 3 and so can be deleted. So we may assume
that G does not contain such nodes.

We will now construct a directed graph G̃ = (Ñ, Ã) from the original one. Let
N = V \ {s, t}. Let N ′ be a disjoint copy of N (where we denote the copy of u ∈ N that
is in N ′ by u′), and set Ñ = {s} ∪ {t} ∪N ∪N ′. For each edge su ∈ E with weight wsu

make arc (s, u) ∈ Ã with capacity wsu, for each edge vt ∈ E make arc (v′, t) ∈ Ã with
capacity wvt , and for each edge uv ∈ E with u, v �∈ {s, t}, make arcs (u, v′) and (v, u′),
both with capacity wuv . For each u ∈ N with u �= s, t make an arc (u, u′) ∈ Ã with an
infinite capacity (see Figure 2 for an illustration). Note that there is a 1-1 correspondence
between the (s, t)-paths of length≤3 in G and the (s, t)-directed paths of length 3 in G̃.

The following lemmas describe the correspondence between the (s, t)-cuts in G̃ and
the (s, t)-3-path cuts in G.

wsz

u

v

wuv

wzt

N

G

s

t

wsu

wvt

z

s

N

N ′

∞

t

G̃

wsu

u

∞

z′

∞

wzt

wsz

wuv

z

v′

v

wvt

u′

wuv

Fig. 2. Construction of G̃

Two-edge connected subgraphs with bounded rings: Polyhedral results and Branch-and-Cut 95

Lemma 2. To each finite capacity cut separating s and t in G̃ corresponds a (s, t)-3-path
cut of the same weight in G.

Proof. Let C̃ be a finite capacity cut separating s and t . Then C̃ does not contain any
(u, u′) arc. Also C̃ cannot contain two arcs of the form (u, v′) and (v, u′). For otherwise
arcs (u, u′) and (v, v′) would be in C̃. Let C be the edge set that contains each edge su

with (s, u) ∈ C̃, each edge vt with (v′, t) ∈ C̃, and each edge uv such that one of the
arcs (u, v′) and (v, u′) is in C̃. We have that C is a (s, t)-3-path cut with weight w(C̃).

�

If C is a mininal (s, t)-3-path cut in G, then we say that uv is gone if either uv ∈ C

or uv �∈ E. We have the following.

Lemma 3. Let C be a minimal (s, t)-3-path cut in G. If uv ∈ C with u, v �∈ {s, t}, then
either su and vt are gone or sv and ut are gone but not both.

Proof. First of all, note that if edges su, vt, sv and ut are all gone then C \ {uv} is still
a (s, t)-3-path cut, contradicting the minimality of C. Now suppose, for instance, that
su is not gone. Hence su ∈ E \ C, and in consequence, ut is gone. For otherwise, we
would have a path of length 2 between s and t going through u and not intersecting C,
a contradiction. If sv is not gone, then similarly we obtain that vt is gone. But here, we
can remove vt from C, and still have a (s, t)-3-path cut which contradicts again the fact
that C is minimal. Consequently, both edges ut and sv are gone. The claim follows by
symmetry.
�

Lemma 4. To each minimal (s, t)-3-path cut in G corresponds a minimal (s, t)-cut of
the same weight in G̃.

Proof. Let C be a minimal (s, t)-3-path cut in G and C̃ ⊆ Ã be the arc set constructed
as follows: if su (resp. vt) is in C, add arc (s, u) (resp. (v′, t)) to C̃. For uv ∈ C with
u, v �∈ {s, t}, if su and vt are gone, then add (v, u′) to C̃, else by Lemma 3, sv and ut

are gone and then add (u, v′) to C̃.
We have that C̃ is a cut in G̃ separating s and t . In fact, if not then there must exist

a directed path P̃ from s to t such that P̃ ∩ C̃ = ∅. Hence P̃ is of the form (s, u, v′, t)
where u ∈ N and v′ ∈ N ′. From the definition of C̃, it follows that edges su and vt do
not belong to C and hence are not gone. If u = v then (su, vt) is a path in G that does not
intersect C, a contradiction. Therefore u �= v. As (u, v′) ∈ Ã, edge uv ∈ E. If uv ∈ C,
as su and vt are not gone, by construction of C̃ we have (u, v′) ∈ C̃, a contradiction.
Thus uv �∈ C and in consequence, (su, uv, vt) is a path in G not intersecting C. But this
is impossible. Hence C̃ is a cut. Clearly C̃ is of capacity w(C).

The cut C̃ is also minimal. In fact, suppose this is not the case, and let (u, v) ∈ C̃

such that C̃′ = C̃ \ {(u, v)} is a cut separating s and t . Let C′ be the (s, t)-3-path cut
obtained from C̃′ using the procedure of Lemma 2. It is easily seen that C′ is nothing
but the edge set obtained from C by deleting the (unique) edge corresponding to the arc
(u, v). But this contradicts the minimality of C.
�

Theorem 4. The BPCP can be solved in polynomial time if B = 3.

96 B. Fortz, A. R. Mahjoub, S. T. McCormick and P. Pesneau

Proof. We will prove that there is a correspondence between the minimal feasible (s, t)-
3-path cuts in G and the minimal finite capacity cuts in G̃ separating s and t , that
preserves objective value. Once this fact is established, it will follow that we can solve
the BPCP for B = 3 in G by solving a maximum flow problem in G̃.

By Lemma 4, to each minimal (s, t)-3-path cut in G corresponds a minimal cut of
the same weight separating s and t in G̃. In what follows, we will show that the con-
verse also holds, that is, for each finite minimal (s, t)-cut in G̃, there exists a minimal
(s, t)-3-path cut in G with the same weight.

Suppose that C̃ is a minimal finite capacity cut in G̃, separating s and t . Let C be the
(s, t)-3-path cut constructed from C̃ using the procedure of Lemma 2. First note that C

has a weight equal to w(C̃). We claim that C is minimal. In fact, suppose not, and let
D ⊂ C be a nonempty edge subset of C such that C′ = C \D is a minimal (s, t)-3-path
cut. Let C̃′ be the minimal (s, t)-cut in G̃ obtained from C′ using the procedure of
Lemma 4. We then have that C̃′ ⊆ C̃. If D contains an edge su (vt), then (s, u) ((v′, t))
belongs to C̃ \ C̃′, but this contradicts the minimality of C̃. If D contains an edge uv

with u, v �∈ {s, t}, then one of the arcs (u, v′) and (v, u′) belongs to C̃ \ C̃′, contradicting
again the minimality of C̃.

In consequence, C is minimal and the proof of the theorem is complete.
�
Unfortunately, McCormick [22] shows that BPCP is NP-hard for B ≥ 12. Hence we

use a straightforward application of the primal-dual method [24] to get an approxima-
tion algorithm for BPCP that we use as a heuristic for separating (2.1). This algorithm,
described in Algorithm 3.1, works as follows. It considers the linear programming relax-
ation of the BPCP and its dual. It first constructs an (s, t)-B-path cut C (i.e. a feasible
solution of BPCP), and a dual solution y = (yP , P ∈ P(B)) where P(B) is the set
of (s, t)-path of length ≤ B, that satisfy the primal complementary slackness condi-
tions, that is for all e ∈ C,

∑
P :e∈P yP = ce. After that, the algorithm tries to delete the

unnecessary edges of C in order to get a solution with lower weight.
It is easy to see that this algorithm returns an (s, t)-B-path cut and runs in O(|E|2)

time. Also from [24] it can be easily shown that this algorithm is a B-approximation
algorithm. If x̄ is a fractional solution, we can use this algorithm to separate inequali-
ties (2.1) when K ≥ 5 as follows. Using this algorithm, for an edge e = st , compute
an (s, t)-(K − 1)-path cut C′ in G − e. If x̄(C′) < x̄e, then it gives a violated cycle
inequality. The partition that induces the inequality can be determined by a breadth-first
search of the graph (V , E \ ({e} ∪ C′)) from either s or t .

Algorithm 3.1 Primal-Dual algorithm for BPCP
Data: a graph G = (V , E), two nodes s, t ∈ V , a weight function w and a bound B.

l← 0; y ← 0; C ← ∅;
while C is not an (s, t)-B-path cut do

l← l + 1;
Find a path P ∈ P(B) such that P ∩ C = ∅;
Increase yP until some edge el ∈ P satisfies

∑
Q:e∈Q yQ = wel

;
C ← C ∪ {el};

C′ ← C;
for j ← l down to 1 do

if C′ \ {ej } is still an (s, t)-B-path cut then
C′ ← C′ \ {ej };

Return C′;

Two-edge connected subgraphs with bounded rings: Polyhedral results and Branch-and-Cut 97

3.2. Cycle partition inequalities

We present here our second class of valid inequalities for P(G, K), called cycle partition
inequalities.

Theorem 5. Let G = (V , E) be a graph and π = (V0, V1, . . . , Vp) be a partition of V

with p ≥ K . Then, the inequality
(

p + 1−
⌈

p

K − 1

⌉)
x(Tπ)+ x(Cπ) ≥ 2p (3.1)

is valid for P(G, K).

Proof. Let F be an edge set inducing a feasible solution of 2ECSBR. If F ∩ Tπ = ∅, as
p ≥ K, F must contain at least 2p edges of Cπ , and hence the incidence vector of F, xF

satisfies (3.3). So let us assume that F ∩ Tπ �= ∅. Note that the cyclomatic inequality
(4.4) can be rewritten as

x(Tπ)+ x(Cπ) ≥ p +
⌈

p

K − 1

⌉
. (3.2)

Using this and the fact that xF (Tπ) ≥ 1, it follows that
(

p + 1−
⌈

p

K − 1

⌉)
xF (Tπ)+ xF (Cπ) =

(
p −

⌈
p

K − 1

⌉)
xF (Tπ)

+xF (Tπ)+ xF (Cπ)

≥ p −
⌈

p

K − 1

⌉
+ p +

⌈
p

K − 1

⌉
= 2p,

and the inequality is valid.
�
Inequalities (3.1) are called cycle partition inequalities. The next lemmas show that

the only cycle partition inequalities of interest are those for which p = K .

Lemma 5. Let F be a solution to 2ECSBR. If |F ∩ Tπ | ≥ 2 then xF , the incidence
vector of F , does not satisfy (3.1) with equality.

Proof. If |F ∩ Tπ | ≥ 2, then xF (Tπ) ≥ 2. Combining this and (3.2), we get
(

p + 1−
⌈

p

K − 1

⌉)
xF (Tπ)+ xF (Cπ) =

(
p − 1−

⌈
p

K − 1

⌉)
xF (Tπ)

+xF (Tπ)+ xF (Cπ)

≥ 2

(
p −

⌈
p

K − 1

⌉)
+ p +

⌈
p

K − 1

⌉

= 3p −
⌈

p

K − 1

⌉
> 2p,

where the last relation holds since p ≥ K ≥ 3.
�

98 B. Fortz, A. R. Mahjoub, S. T. McCormick and P. Pesneau

Lemma 6. If p > K , then (3.1) does not define a facet of P(G, K).

Proof. Suppose that p > K , and consider an edge f ∈ δ(V1, Vp). If (3.1) defines a
facet of P(G, K), as it is different from a trivial inequality, there must exist a feasible
solution F containing f whose incidence vector lies in the face defined by (3.1). By
Lemma 5 it follows that (F ∩ Tπ) \ {f } = ∅. Suppose first that F ∩ δ(Vi, Vi+1) = ∅
for some i ∈ {1, . . . , p − 1}. For F to be 2-edge connected, one should then have
|F ∩ δ(Vj , Vj+1)| ≥ 2 for j ∈ {1, . . . , p − 1} \ {i}. This yields to

(
p + 1−

⌈
p

K − 1

⌉)
xF (Tπ)+ xF (Cπ) ≥

(
p + 1−

⌈
p

K − 1

⌉)
+ 2+ 2(p − 2)

= 3p − 1−
⌈

p

K − 1

⌉
> 2p,

since p > K ≥ 3, which leads to a contradiction.
In consequence, F ∩ δ(Vi, Vi+1) �= ∅, for i = 1, . . . , p− 1. Furthermore, it follows

from the development above that for some i ∈ {1, . . . , p − 1}, F contains exactly one
edge, say g, from δ(Vi, Vi+1). But the shortest cycle in F containing g must go through
V1, . . . , Vp, V1 and hence, it is of length at least p > K , a contradiction.
�

Following this result, we restrict our attention to partitions π = (V0, . . . , VK) and
the cycle partition inequality can be written as

(K − 1)x(Tπ)+ x(Cπ) ≥ 2K. (3.3)

In what follows, we present necessary and sufficient conditions for these inequalities
to define facets of P(G, K).

Theorem 6. Let G = (V , E) be a complete graph and π = (V0, V1, . . . , VK) a par-
tition of V . For notational convenience, let VK+1 := V0. Then, the cycle partition
inequality

(K − 1)x(Tπ)+ x(Cπ) ≥ 2K

defines a facet for P(G, K) if and only if

1. |Vi | + |Vi+1| + |Vj | + |Vj+1| ≥ 5 for all i, j ∈ {0, . . . , K}, i �= j ,
2. |Vi | �= 2 for i = 0, . . . , K .

Proof. If the first condition does not hold, then there are two edges f, g ∈ Cπ such that
{f, g} induces a 2-edge cutset of the graph G − Tπ . All the cycles using f in G − Tπ

also use g and are included in Cπ , thus are of length K + 1. It follows that G − Tπ

does not contain any feasible solution, and x(Tπ) ≥ 1 is a valid subset inequality. As by
Lemma 5, any solution F whose incidence vector xF lies in the face defined by (3.3)
contains at most one edge of Tπ , it follows that xF (Tπ) = 1 and the face defined by
(3.3) is included in the face defined by x(Tπ) ≥ 1, thus (3.3) cannot define a facet of
P(G, K).

Two-edge connected subgraphs with bounded rings: Polyhedral results and Branch-and-Cut 99

If the second condition is not satisfied, there exists some i ∈ {0, . . . , K} such that
Vi = {u, v}. Let us assume w.l.o.g. that i = 0 and let ax := (K−1)x(Tπ)+x(Cπ) ≥ 2K

be the inequality (3.3). Consider first the case p = K ≥ 4. If ax ≥ 2K defines
a facet there must exist a solution F ∈ F(G) containing an edge of δ(V1, V3) such
that axF = 2K . If there exists i ∈ {0, 3, 4, . . . , K} such that δ(Vi, Vi+1) ∩ F = ∅
then by inequalities (2.2) and Lemma 5 it follows that |δ(Vj , Vj+1) ∩ F | ≥ 2 for all
j ∈ {0, 3, 4, . . . , K} \ {i} and |δ(V2)∩Cπ ∩F | ≥ 2. Hence axF ≥ K − 1+ 2K − 2.
As K > 3, we have axF > 2K , a contradiction. Thus |δ(Vi, Vi+1) ∩ F | ≥ 1 for
all i ∈ {0, 3, 4, . . . , K}. In a similar way, we can show that |δ(Vi, Vi+1) ∩ F | = 1
for all i ∈ {0, 3, 4, . . . , K}. Let f0 = F ∩ δ(V0, V1) and fK = F ∩ δ(VK, V0). As
the shortest cycle of F containing f0 and also containing fK , goes through the sets
V1, V3, V4, . . . , VK, V0 and must be of length ≤ K, f0 and fK must be incident to the
same node of V0, say u. This implies that |F ∩ δ(v)| ≤ 1, contradicting the fact that F

induces a 2-edge connected spanning subgraph.
Now let us assume that p = K = 3. As ax ≥ 2K is not a trivial inequality, there

exists a solution F ∈ F(G) which does not contains uv and such that axF = 2K . Con-
sider first the case where F ∩ Tπ = ∅. Thus any cycle of F of length 3 containing edges
of Cπ intersects exactly two elements of the partition. By the cut constraints this implies
that for W = {u} (W = {v}, W = V2), at least one of the following statements holds:
|F ∩ δ(W, V1)| ≥ 2 and |F ∩ δ(W, V3)| ≥ 2. Therefore |F ∩Cπ | ≥ 6. If |F ∩Cπ | = 6
it is not hard to see that there is a node set W ′ ⊂ V where δ(W ′) ∩ F = ∅, which
is impossible. Consequently |F ∩ Cπ | > 6. But this implies that xF does not satify
ax ≥ 2K with equality, a contradiction. If F ∩Tπ �= ∅, then by Lemma 5, |F ∩Tπ | = 1.
We can show along the same line that in this case, |F ∩ Cπ | ≥ 5. But this implies that
axF > α, which yields again a contradiction.

Conversely, suppose that both conditions are satisfied for some inequality aT x :=
(K − 1)x(Tπ) + x(Cπ) ≥ 2K . Let bT x ≥ β be a facet defining inequality such that
the face Fa induced by aT x ≥ 2K in P(G, K) is contained in the face Fb induced by
bT x ≥ β.

We first show that be = be′ for every e, e′ ∈ Cπ . Consider an edge set δ(Vj , Vj+1)

where |δ(Vj , Vj+1)| ≥ 3. By the two conditions, there is at most one i ∈ {0, . . . K}
such that |δ(Vi, Vi+1)| = 1. Therefore, we may suppose w.l.o.g., that |δ(Vi, Vi+1)| ≥ 3
for i = 1, . . . , K and thus j �= 0. Note that we can have |V0| = |V1| = 1. Let f 1

i , f 2
i

be two fixed edges of δ(Vi, Vi+1) for i = 1, . . . , K , and f 1
0 ∈ δ(V0, V1). As G is com-

plete, we may suppose that f 1
i and f 2

i (f 1
i and f 1

i+1) are adjacent for i = 1, . . . , K . Let

Ē = ⋃K
i=0 E(Vi). By the second condition, we may assume that |Vj+1| ≥ 3. We may

also suppose w.l.o.g., that f 1
j and f 2

j are incident to a node, say w, of Vj . Consider the
edge sets

E1 = {f 1
1 , f 2

1 , f 1
2 , f 2

2 , . . . , f 1
K, f 2

K} ∪ Ē,

E2 = (E1 \ {f 1
j }) ∪ {f },

where f ∈ δ(w, Vj+1) \ {f 1
j , f 2

j }. As both graphs G(E1) and G(E2) are 2-edge con-
nected and every edge of E1 (E2) belongs to a cycle of length 3, we have that E1, E2 are
feasible and belong to the face defined by ax = 2K . Thus bxE1 = bxE2 and bf 1

j
= bf .

Therefore, be = be′ for all e, e′ ∈ δ(w, Vj+1).

100 B. Fortz, A. R. Mahjoub, S. T. McCormick and P. Pesneau

If |Vj | = 1, then we are done. If not, then by symmetry, we also obtain that be = be′
for all e, e′ ∈ δ(Vj , w

′), w′ ∈ Vj+1. It follows that be = be′ for all e, e′ ∈ δ(Vj , Vj+1).
Now let i ∈ {1, . . . , K} and g be an edge of δ(Vi, Vi+2) adjacent to edges f 1

i−1 and
f 1

i+2. Note that the edges g, f 1
i+2, . . . , f

1
i+K form a cycle of length K . Let us examine

the sets

E3 = {f 1
0 , f 1

1 , . . . , f 1
K, g} ∪ Ē,

E4 = (E3 \ {f 1
i+1}) ∪ {f 2

i }.

Clearly, E3 and E4 are feasible and belong to the face defined by ax = 2K . Therefore
bxE3 = bxE4 and bf 1

i+1
= bf 2

i
. This implies that be = be′ for all e ∈ δ(Vi, Vi+1), e

′ ∈
δ(Vi+1, Vi+2), i ∈ {1, . . . , K}.

It follows that be = γ for all e ∈ Cπ .
Since E1 and E3 lie in the face defined by ax = 2K, bxE1 = bxE3 and

∑K
i=1 bf 2

i
=

bg . It follows that bg = (K − 1)γ .
As G is complete, for any edge h of Tπ , there exist a cycle, say Ch of length K + 1

going through the sets V0, . . . , VK and having h as a chord. Note that Ch ∩ E(Vi) = ∅
for i = 0, . . . , K . Let

Eh = Ch ∪ {h} ∪ Ē, for all h ∈ Tπ .

Clearly, Eh lies in the face defined by ax = 2K for all h ∈ Tπ . If h and h′ are two edges
of Tπ , we therefore have bxEh = bxEh′ . Since bxCh = bxCh′ , it follows that bh = bh′ .
Thus be = (K − 1)γ for all e ∈ Tπ .

Next we show that be = 0 for all e ∈ E(Vi), i = 0, . . . , K . Let i ∈ {0, . . . , K} such
that |Vi | �= 1. By 2. it follows that |Vi | ≥ 3. Let e := uv ∈ E(Vi). Consider first the
case where |Vi | ≥ 4. W.l.o.g., we may assume that at least one edge among {f 1

i−1, f
2
i−1}

({f 1
i , f 2

i }) is not incident neither to u nor to v. Let E′1 = E1 \ {e}. It is not hard to see

that E′1 ∈ F(G). As axE′1 = axE1 , we have be = 0. Suppose now that |Vi | = 3. Let
w be the node in Vi \ {u, v}, z ∈ Vi−1 and z′ ∈ Vi+1. We can assume, w.l.o.g. that
f 1

i−2, f 2
i−2 are incident to z and f 1

i+1, f 2
i+1 are incident to z′. It is not hard to see that

E4 =
K⋃

j=0
E(Vj) ∪


 ⋃

j ∈ {1, . . . , K}
j �= i − 1, j �= i

{f 1
j , f 2

j }


 ∪ {zv, zw, z′u, z′w},

E′4 = E4 \ {e}.

define solutions of 2ECSBR that lie in the face defined by ax ≥ 2K and thus be = 0.
Altogether we have shown that

be =



γ for all e ∈ Cπ,

(K − 1)γ for all e ∈ Tπ ,

0 for all e ∈ Ē,

thus b = γ a. As we did before, we have that γ > 0, which completes the proof.
�

Two-edge connected subgraphs with bounded rings: Polyhedral results and Branch-and-Cut 101

To separate the cycle partition inequalities, we developed a heuristic which works
in two phases. First, we contract edges with high values until a graph on K + 1 nodes
is obtained. Each node of this graph corresponds to an element of the partition inducing
the inequality. In the second phase, we order the elements of the partition in order to get
a partition that provides a minimum left hand side in (3.3). For this, we fix a node say
v0, which will correspond to V0, we determine a node v1 such that x̄(δ(v0, v1)) is maxi-
mum. Node v1 corresponds to V1. After that, a node v2, where x̄(δ(v1, v2)) is maximum
is computed and so on until a partition V0, . . . , VK is obtained. This is repeated K + 1
times by changing v0. We then consider the partition giving the minimum left hand side.
If this is less than 2K , then a violated cycle partition inequality is found.

4. Further valid inequalities

In this section we present some classes of valid inequalities of P(G, K) related to the
node-case studied by Fortz and Labbé [11]. As we did in the previous section, we also
discuss necessary and sufficient conditions for facet defining and devise separation algo-
rithms.

4.1. Cut inequalities

We now provide a characterization of facet defining cut inequalities (2.2).

Theorem 7. Let G = (V , E) be a complete graph, K ≥ 3 a given constant, and W ⊆ V

a subset of nodes, ∅ �= W �= V . The inequality

x(δ(W)) ≥ 2

defines a facet of P(G, K) if and only if

– either K ≥ 4, |W | �= 2 and |V \W | �= 2,
– or K = 3, |W | /∈ {2, 3} and |V \W | /∈ {2, 3}.

Proof. See [10].
�
The separation of cut constraints can be carried out by computing a minimum cut

in the graph, with capacities given by the current LP solution. This can be done in
polynomial time, e.g. by the Hao-Orlin algorithm [17] that requires one maximum flow
computation. But this algorithm does not output the Gomory-Hu tree [13] that provides
the minimum cut between all the pairs of nodes. For this we use Gomory-Hu algorithm
[13] for separating these inequalities.

To speed up the computation, we have also developed a simple heuristic to separate
the cut inequalities. This works as follow: we repeatedly contract edges with high values
until we obtain either a graph of weight less than p, where p is the number of nodes, or
a graph on two nodes. If the former case holds, then at least one of the cuts induced by
the nodes of the graph is violated. If the latter case holds, we just check whether the cut
yielded by the graph is violated.

102 B. Fortz, A. R. Mahjoub, S. T. McCormick and P. Pesneau

4.2. Subset inequalities

Fortz et al. have introduced in [9] a general class of inequalities that are valid for the
2-node connected version as follows. Let S be a set of edges such that the graph G′ =
(V , E \ S) does not contain a solution of 2ECSBR. The inequality

x(S) ≥ 1 (4.1)

is called a subset inequality. These constraints are also valid for P(G, K).
This class of inequalities is very generic. Actually, if a feasible solution of a given

combinatorial optimization problem has to contain at least one element of a given set S,
then inequality (4.1) is valid for the associated polytope.

In what follows, we describe a subclass of inequalities (4.1) which will be used in
the framework of a Branch-and-Cut algorithm for the problem that will be introduced
in the next section.

Given a partition π = (V0, . . . , VK) with |V0| = |VK | = 1, if there exists i ∈
{0, . . . , K − 1} such that |Vi | = |Vi+1| = 1, then the set Tπ induce a subset inequal-
ity. We can notice that this inequality dominates the cycle inequality associated to the
partition V0, . . . , VK and the edge between V0 and VK .

To separate these subset inequalities we try to compute for every edge e := st a
minimum (s, t)-(K − 1)-path cut Ce. If x̄(Ce) < 1, then we compute a partition π =
(V0, . . . , VK) with V0 = {s} by a breadth-first search of the graph (V , E \ (Ce ∪ {e}))
from s. Note that t ∈ VK . If |VK | ≥ 2, then we consider the partition π ′ = (V ′0, . . . , V ′K)

where V ′j = Vj for j = 0, . . . , K − 2, V ′K−1 = VK−1 ∪ (VK \ {t}) and V ′K = {t}.
If there is some i ∈ {0, . . . , K − 1} where |V ′i | = |V ′i+1| = 1 then x(Tπ ′) ≥ 1 is a
violated subset inequality.

4.3. Metric inequalities

Metric inequalities were introduced by Fortz et al. [8] for the 2-node connected version
of our problem with general edge lengths. As their result depends only on the fact that
any edge in a solution belongs to a feasible cycle, metric inequalities are also valid for
P(G, K). Hence we have the following.

Proposition 1. Consider an edge e := ij ∈ E and a set of node potentials (αk)k∈V
satisfying

αi − αj > K − 1.

Then ∑
f∈E−e

vf xf ≥ xe (4.2)

is a valid inequality for P(G, K) where

vf = min

(
1, max

(
0,
|αl − αk| − 1

αi − αj + 1−K

))
(4.3)

for all f := kl ∈ E − e.

Two-edge connected subgraphs with bounded rings: Polyhedral results and Branch-and-Cut 103

Inequalities 4.2 are called metric inequalities. The next proposition shows that facet-
inducing cycle inequalities form a subset of metric inequalities.

Proposition 2. Let G = (V , E) be a graph and K ≥ 3. Let π = (V0, . . . , Vp) be a
partition of V such that p ≥ K and let e := ij ∈ δ(V0, Vp). If p = K and T e

π :=
Tπ ∪ δ(V0, Vp) \ {e}, then the cycle inequality

x(T e
π) ≥ xe

is a metric inequality.
If p > K , the cycle inequality is dominated by a metric inequality.

Proof. If p = K , it is sufficient to show that there exist node potentials (αk)k∈V such that
vf defined by (4.3) satisfy vf = 1 for all f ∈ T e

π and vf = 0 for all f ∈ E \ (T e
π ∪{e}).

Let αk = −q if and only if k ∈ Vq . Then, αi = 0 and αj = −K , and it is easy to see
that (4.3) becomes

vf =
{

1 if |q − r| > 1,

0 otherwise,

for all f ∈ E − e, f ∈ δ(Vq, Vr), q, r ∈ {0, . . . , p}. The result follows immediately.
If p > K , the same definition of (αk)k∈V leads to αi = 0, αj = −p, and

vf =



1 if |q − r| > p −K + 1,
|q−r|−1
p−K+1 if 1 < |q − r| ≤ p −K + 1,

0 otherwise,

for all f ∈ E − e, f ∈ δ(Vq, Vr), q, r ∈ {0, . . . , p}. Therefore, the coefficient of an
edge f ∈ E−e is the same in the metric and the cycle inequality if |q− r| > p−K+1
or |q − r| ≤ 1, and it is smaller in the metric inequality if 1 < |q − r| ≤ p −K + 1. It
follows that the metric inequality dominates the cycle inequality.
�

To separate the metric inequalities, we use the heuristic developed by Fortz et al. [8]
for the 2-node connected case. As the metric inequalities are independent from the con-
nectivity type (edge or node connectivity), this algorithm is also valid for our problem.

4.4. Cyclomatic inequalities

Cyclomatic inequalities were introduced by Fortz and Labbé [11] for the 2-node con-
nected version of the problem. These inequalities are not valid for P(G, K), but can
easily be adapted to 2-edge connectivity. The following proposition describes these
inequalities for P(G, K). It is stated without proof because the proof is similar to that
given in [11] for the node-case.

Proposition 3. Let G = (V , E) be a graph, K ≥ 3 a given constant, and V0, V1, . . . , Vp

a partition of V . Then

x(δ(V0, . . . , Vp)) ≥ M(p, K) :=
⌈

Kp

K − 1

⌉
(4.4)

is a valid inequality for P(G, K).

104 B. Fortz, A. R. Mahjoub, S. T. McCormick and P. Pesneau

The following theorem gives necessary and sufficient conditions for the cyclomatic
inequalities to be facet defining.

Theorem 8. Let G = (V , E) be a complete graph, K ≥ 3 a given constant and
V0, V1, . . . , Vp, p ≥ 2, a partition of V . The inequality

x(δ(V0, . . . , Vp)) ≥ M(p, K) :=
⌈

Kp

K − 1

⌉
(4.5)

defines a facet of P(G, K) if and only if the following conditions hold:

– p ≥ K ,
– |Vi | �= 2 for i = 0, . . . , p,
– either |Vi | �= 3 for i = 0, . . . , p, or (p + 1) mod (K − 1) ≥ 2.

Proof. See [10].
�
To separate the cyclomatic inequalities, we developed a heuristic based on Barah-

ona’s algorithm [2] (see also [1]) for separating the so-called partition inequalities

x(δ(V0, . . . , Vp)) ≥ p. (4.6)

A first separation algorithm for these inequalities has been devised by Cunningham [5]
and requires |E| Minimum-Cut computations. Barahona [2] reduced this computing
time to |V |Minimum-Cut computations. Both Cunningham and Barahona’s algorithms
give the most violated inequality.

Consider the following inequalities obtained from the cyclomatic inequalities by
deleting the upper integral part from the right hand side.

x(δ(V0, . . . , Vp)) ≥ Kp

K − 1
. (4.7)

Clearly inequalities (4.7) are of type (4.6) (it suffices to set x′ = K−1
K

x). Moreover, if
(4.7) is violated, then (4.4) is so. However, it may that all the inequalities of type (4.7)
are satisfied whereas some cyclomatic inequalities are violated. In order to strengthen
inequalities (4.7), we consider the inequalities

x(δ(V0, . . . , Vp)) ≥ Kp

K − 1
+ ε (4.8)

and we choose ε = p
100n

. Note that ε ≤ 0.01 and the right hand side of (4.8) is lin-
ear in p. So inequalities (4.8) can be separated using, for instance, Barahona’s algo-
rithm. Here inequalities (4.8) can be transformed to inequalities of type (4.6) by setting
x′ = (100nK+K−1

100n(K−1)
)x. As it is pointed out in the next section, the value we considered

for ε gave the best results.
A second and faster heuristic that we have developed for separating the cyclomatic

inequalities consists in contracting edges with high values (in particular edges with value
1) until we get either a graph on p + 1 nodes, with p ≥ K and whose weight is less
than � Kp

K−1� or a graph on less than K + 1 nodes. Note that, as given in Theorem 8,
cyclomatic inequalities define facets only if p ≥ K . If the former case holds, then a
violated cyclomatic inequality is found. The partition associated to this inequality is
given by the resulting graph where each node corresponds to an element of the partition.
This heuristic runs in O(n3) time.

Two-edge connected subgraphs with bounded rings: Polyhedral results and Branch-and-Cut 105

5. A Branch-and-Cut algorithm

In this section, we present a Branch-and-Cut algorithm for the 2-edge connected sub-
graph problem with bounded rings. Our aim is to address the algorithmic applications
of the theoretical results presented in the previous sections and describe some strategic
choices made in order to solve that problem.

To start the optimization we consider the following linear program given by the
cut inequalities associated with the vertices of the graph together with the cyclomatic
inequality induced by the trivial partition (where the elements of the partition correspond
to the nodes of the graph) and the trivial inequalities, that is

Min
∑

e∈E cexe

s.t. x(δ(v)) ≥ 2, for all v ∈ V,

x(E) ≥
⌈

nK
K−1

⌉
,

0 ≤ xe ≤ 1, for all e ∈ E.

An important task in the Branch-and-Cut algorithm is to determine whether or not
an optimal solution of the relaxation of the 2ECSBR is feasible. An optimal solution x̄

of the relaxation is feasible for the 2ECSBR if it is an integer vector that satisfies the
cut inequalities and such that every edge of Gx̄ is contained in a feasible cycle of Gx̄ .
Verifying if x̄ is feasible for 2ECSBR can be done in polynomial time. We first check
if each edge e with x̄e = 1 belongs to a feasible cycle of Gx̄ by computing a shortest
path between the endnodes of e. And then, by a breadth-first search, we verify if Gx̄ is
connected. If this is the case, as each edge belongs to a cycle, the cut inequalities are
also satisfied.

Another important issue in the effectiveness of the Branch-and-Cut algorithm is the
computation of a good upper bound. For this, we first try to transform each LP-solution
obtained in the Branch-and-Cut to a feasible solution by rounding up to 1 all the variables
with fractional value. Then we delete all the edges that do not belong to feasible cycles.
And in a final step, we try to reduce the resulting solution F by repeatedly removing
edges with high cost e such that F \ {e} still induces a solution of the 2ECSBR.

If an optimal solution x̄ of the linear relaxation of the 2ECSBR is not feasible, the
Branch-and-Cut algorithm generates further inequalities that are valid for P(G, K) and
violated by x̄. The separation of valid inequalities is performed in the following order:

– cut inequalities,
– metric inequalities,
– cycle and subset inequalities,
– cyclomatic inequalities,
– cycle partition inequalities.

We remark that all inequalities are global (i.e. valid in all the Branch-and-Cut tree)
and several constraints may be added at each iteration. Moreover, we go to the next class
of inequalities only if we do not find any violated inequalities in the current class.

To separate the different inequalities, we use the algorithms described in section 3.
All our separation algorithms are applied on the graph Gx̄ = (Vx̄, Ex̄) where x̄ is the
current LP-solution.

106 B. Fortz, A. R. Mahjoub, S. T. McCormick and P. Pesneau

The exact separation of cut constraints can be done using the Gomory-Hu algorithm
[13]. This algorithm produces the so-called Gomory-Hu tree with the property that for
all pairs of nodes s, t ∈ Vx̄ the minimum (s, t)-cut in the tree is also a minimum (s, t)-
cut in Gx̄ . Actually, we use the algorithm developed by Gusfield [16] which requires
|Vx̄ | − 1 maximum flow computations. The maximum flow computations are handled
by the efficient Goldberg and Tarjan algorithm [12] that runs in O(mn log n2

m
) time. The

exact algorithm that permits to separate the cut inequalities is then implemented to run
in O(mn2 log n2

m
) time.

The separations of the cycle and subset inequalities are performed simultaneously.We
first compute for an edge e = st a (minimum) (s, t)-(K−1)-path cut Ce using either the
exact algorithm if K ≤ 4 or the primal-dual algorithm if K ≥ 5. If x̄(Ce) < 1, we deter-
mine a partition π = (V0, . . . , VK) by a breadth-first search from s in the graph induced
by Ex̄ \(Ce∪{e}). If |VK | ≥ 2, then we consider the partition π ′ = (V ′0, . . . , V ′K) where
V ′j = Vj for j = 0, . . . , K − 2, V ′K−1 = VK−1 ∪ (VK \ {t}) and V ′K = {t}. The idea
behind this is to get a cycle inequality that, by Theorem 3, may define a facet. If there is
some i ∈ {0, . . . , K − 1} where |V ′i | = |V ′i+1| = 1 then x(Tπ ′) ≥ 1 is a violated subset
inequality. Note that this inequality dominates the cycle inequality x(T e

π ′) ≥ xe. If this
is not the case and we have x̄(T e

π ′) < x̄e, then the cycle inequality corresponding to π ′
and e is violated. Moreover, this inequality is facet defining. We consider this procedure
only for edges e with x̄e ≥ 0.5. If x̄e is small, there is little hope to get a violated cycle
inequality involving e. This procedure runs in O(n3) time if K ≤ 4 and in O(n4) time if
K ≥ 5.

To separate cyclomatic inequalities, we first use the heuristic based on the contraction
of edges. If no violated inequality is found, then we try to generate violated cyclomatic
inequalities using the procedure based on Barahona’s algorithm [2] for the multicut
problem. Both algorithms produce a partition π = (V0, . . . , Vp) with p ≥ K . For
every i ∈ {0, . . . , p} such that |Vi | = 2 (resp. |Vi | = 3 and either K = 3 or (p + 1)

mod (K − 1) ≤ 1) then we consider the partition obtained from π by expanding the set
Vi . By Theorem 8, The cyclomatic inequality given by this latter partition dominates the
one produced by partition π .

When solving instances of the 2ECSBR, we remarked that the separation of cut
inequalities using the exact Gusfield algorithm is time consuming. Therefore we adopted
the strategy to use that algorithm only if no constraints of any type could be found using
the separation routines presented before.

To store the generated inequalities, we created a pool whose size increases dynam-
ically. All the generated inequalities are put in the pool and are dynamic, i.e. they are
removed from the current LP when they are not active. We first separate inequalities
from the pool. If all the inequalities in the pool are satisfied by the current LP-solution,
we separate the classes of inequalities in the order given above.

6. Computational results

The Branch-and-Cut algorithm described in the previous section has been implemented
in C++, using BCP [20] to manage the Branch-and-Cut tree and CPLEX 7.1 as LP-solver.

Two-edge connected subgraphs with bounded rings: Polyhedral results and Branch-and-Cut 107

It was tested on a Pentium IV 1,7 GHz with 1 Gb RAM, running under Linux. We fixed
the maximum CPU time to 5 hours.

Results are presented here for instances coming from real applications and randomly
generated instances. The instances consist in complete graphs with edge costs equal to
rounded Euclidean distances. Tests were performed for K = 3, 4, 5, 6, 7, 10, 13, 16.
Usually in practice, the bound does not exceed 5 as arised from some discussion with
researchers from France Telecom [14]. The first set of instances come from the network
of the Belgian telecommunications operator Belgacom (52 nodes) and subsets of these
nodes. The random problems were generated with 10 to 50 nodes, and five instances of
each size were tested. Data on the randomly generated test problems are available at the
Web page http://www.poms.ucl.ac.be/fortz/2cnbm/data.html.

In the various tables, the entries are:
|V | : the number of nodes of the problem,
K : the bound on the cycles,
Cu : the number of generated cut inequalities,
Cy : the number of generated cycle inequalities,
Me : the number of generated metric inequalities,
Su : the number of generated subset inequalities,
Cc : the number of generated cyclomatic inequalities,
Cp : the number of generated cycle partition inequalities,
No : the number of generated nodes in the Branch-and-Cut tree,
o/p : the number of problems solved to optimality over the

number of instances tested (only for random instances),
Gap1 : the gap between the best upper bound (UB) and the lower

bound obtained at the root node of the Branch-and-Cut tree
without adding cycle and cycle partition inequalities.

Gap2 : the gap between UB and the lower bound obtained at the
root node of the Branch-and-Cut tree.

Gt : the gap between UB and the best lower bound found (LB),
CPU : the total time in second.

Table 1 reports results obtained for the real instances, while Table 2 presents the
average results for the randomly generated problems.

We remark that for 20 nodes or less, all problems could be solved to optimality.
Moreover for K = 3, all instances have been solved to optimality within the time limit.
Comparing these results to those in [11], it appears that the edge connectivity version
of the problem is much easier to solve than the node connectivity version for K = 3.
However for 4 ≤ K ≤ 7 and instances with 30 nodes and more, the problem seems
to be harder to solve. In fact only a few instances of this type have been solved in less
than 5 hours. For the real instances with 52 nodes and 4 ≤ K ≤ 7, we got an average
gap of 5.26%. For the random instances with 50 nodes, this average gap is 6.93%. A
similar increase can also be observed between real and random instances with 30 nodes.
Therefore, it seems that real instances are easier to solve.

In both tables, a significant number of cycle and cycle partition inequalities have
been generated for most of the instances with 30 nodes and more when K ≤ 6. In order
to evaluate the impact of these inequalities on the performance of the algorithm, Table 3

108 B. Fortz, A. R. Mahjoub, S. T. McCormick and P. Pesneau

Table 1. Results for Belgacom instances

|V | K Cu Cy Me Su Cc Cp No Gap1 Gap2 Gt CPU
12 3 2 4 6 2 1 1 1 0.38 0.00 0.00 0 : 00 : 00
17 3 13 43 41 15 11 6 7 0.94 0.51 0.00 0 : 00 : 01
30 3 30 91 50 18 49 17 41 0.93 0.58 0.00 0 : 00 : 10
52 3 101 681 426 84 895 124 3015 1.99 1.33 0.00 0 : 42 : 36
12 4 4 24 24 16 5 0 5 1.21 0.52 0.00 0 : 00 : 00
17 4 21 119 88 28 11 0 45 1.90 1.76 0.00 0 : 00 : 02
30 4 111 6676 3437 514 293 81 8723 5.66 3.67 0.00 0 : 55 : 07
52 4 141 6028 2325 251 796 117 4653 6.42 5.30 3.67 5 : 00 : 00
12 5 14 24 24 37 5 0 9 2.19 1.77 0.00 0 : 00 : 00
17 5 28 97 42 103 16 2 29 2.26 2.21 0.00 0 : 00 : 01
30 5 159 20487 5157 5597 525 140 32327 5.13 4.63 0.86 5 : 00 : 00
52 5 134 6151 1302 1144 619 49 4451 7.90 7.17 5.27 5 : 00 : 00
12 6 7 5 8 15 7 0 7 0.72 0.72 0.00 0 : 00 : 00
17 6 9 7 11 26 6 2 1 0.00 0.00 0.00 0 : 00 : 00
30 6 143 17670 3156 11446 331 65 25811 5.98 5.17 1.36 5 : 00 : 00
52 6 121 6712 791 1840 349 12 3035 7.79 7.32 5.69 5 : 00 : 00
12 7 22 23 43 142 9 0 29 1.84 1.84 0.00 0 : 00 : 00
17 7 30 102 78 228 12 0 39 2.86 2.81 0.00 0 : 00 : 02
30 7 108 3627 419 4333 93 0 2545 3.11 3.14 0.00 0 : 17 : 42
52 7 146 7745 644 4121 268 0 3113 8.08 8.08 6.39 5 : 00 : 00
12 10 4 0 20 0 6 0 11 0.83 0.83 0.00 0 : 00 : 00
17 10 2 0 0 0 2 0 1 0.00 0.00 0.00 0 : 00 : 00
30 10 81 606 209 1620 22 0 293 1.45 1.41 0.00 0 : 00 : 57
52 10 126 6058 211 11138 111 1 3701 6.54 6.49 4.99 5 : 00 : 00
17 13 2 0 0 0 3 1 1 0.00 0.00 0.00 0 : 00 : 00
30 13 62 227 143 1452 7 0 127 0.93 0.92 0.00 0 : 00 : 20
52 13 161 6364 228 26030 62 0 3229 5.16 6.66 3.60 5 : 00 : 00
17 16 2 0 0 0 3 0 1 0.00 0.00 0.00 0 : 00 : 00
30 16 89 490 964 4848 20 0 535 2.03 2.03 0.00 0 : 01 : 10
52 16 155 3724 183 20931 67 0 1747 2.22 2.44 1.14 5 : 00 : 00

reports results obtained for real instances with 30 and 52 nodes and K = 3, 4, 5, 6 with-
out the use of the cycle and the cycle partition inequalities. The instances with K = 3, 4
that were solved to optimality using the cycle and the cycle partition inequalities are
also solved to optimality without using these inequalities, but both the computing time
and the size of the branch-and-bound tree more than doubled. For the other instances,
it can be seen from Tables 1 and 3 that the use of these inequalities allowed to reduce
the overall gap by about 13%. This improvement can also be observed for the Belgacom
instances and the random instances as well, by comparing the lower bound obtained
at the root node with (Gap2) and without (Gap1) these inequalities. It appears from
Table 1 that the use of the cycle and cycle partition inequalities decreases the gap at the
root by about 33%. A similar improvement also appears in Table 2 where the decrease
is about 27%. However for the instances with K ≥ 7, the gain is usually not significant.
In fact, for higher bounds, these inequalities may be mostly dominated by the subset
inequalities. We remark that for these problems, the number of generated subset inequal-
ities is significantly greater than that of the cycle inequalities. Hence our heuristic for
separating these inequalities seems to be quite efficient. Also, as the separation for cycle
inequalities is not exact for K ≥ 5, we may not add all the violated inequalities, and
hence, these inequalities may be less efficient in this case. However, for small bounds,
the cycle inequalities seem to play a central role in the resolution of the 2ECSBR.

Two-edge connected subgraphs with bounded rings: Polyhedral results and Branch-and-Cut 109

Table 2. Results for random instances

|V | K Cu Cy Me Su Cc Cp No o/p Gap1 Gap2 Gt CPU
10 3 3.8 9.0 9.8 6.0 4.2 2.8 3.0 5/5 1.32 0.44 0.00 0 : 00 : 00
20 3 13.0 27.4 19.8 11.0 9.0 7.0 3.4 5/5 1.39 0.15 0.00 0 : 00 : 00
30 3 28.2 98.2 59.8 20.6 33.4 14.8 36.6 5/5 1.80 0.83 0.00 0 : 00 : 08
40 3 53.4 311.0 175.8 40.0 192.4 53.6 1175.8 5/5 3.06 1.31 0.00 0 : 05 : 55
50 3 80.6 776.0 468.4 101.2 710.0 204.6 8053.8 5/5 3.01 1.88 0.00 1 : 28 : 13
10 4 6.6 16.2 18.0 12.2 5.8 2.6 9.4 5/5 1.71 1.26 0.00 0 : 00 : 00
20 4 40.8 1066.0 507.8 120.8 56.0 31.2 551.0 5/5 4.78 3.37 0.00 0 : 01 : 07
30 4 105.0 16707.6 7316.2 914.6 397.8 172.4 22925.4 1/5 7.19 5.72 1.14 4 : 49 : 59
40 4 126.2 10328.8 4098.6 616.2 568.2 168.0 13345.0 0/5 8.55 6.35 2.40 5 : 00 : 00
50 4 123.6 6585.6 2364.2 350.6 668.4 109.0 6466.6 0/5 10.43 7.87 5.06 5 : 00 : 00
10 5 5.0 6.6 9.0 17.2 3.6 0.4 6.2 5/5 1.16 0.89 0.00 0 : 00 : 00
20 5 49.4 2478.6 732.0 1101.8 77.8 28.8 2891.8 5/5 6.37 4.39 0.00 0 : 05 : 49
30 5 108.2 17383.6 3512.8 3949.6 368.6 75.6 18396.2 1/5 7.27 6.09 1.57 4 : 24 : 57
40 5 131.6 11380.0 2111.8 2156.2 457.2 65.4 9775.4 0/5 9.45 7.94 4.71 5 : 00 : 00
50 5 123.2 7240.8 1139.2 1206.8 474.8 55.8 4050.2 0/5 10.38 9.78 7.01 5 : 00 : 00
10 6 9.8 2.8 19.6 51.0 6.2 0.6 9.0 5/5 2.74 2.70 0.00 0 : 00 : 00
20 6 58.0 2413.6 507.2 2105.0 60.8 17.0 2472.6 5/5 5.33 4.46 0.00 0 : 06 : 33
30 6 110.0 17946.4 2536.2 9337.0 232.8 20.6 14776.6 1/5 7.48 6.88 2.37 4 : 43 : 21
40 6 127.0 12085.2 1317.0 4560.8 281.2 35.8 7021.0 0/5 9.99 9.15 5.85 5 : 00 : 00
50 6 121.8 7495.8 741.2 2395.8 270.6 19.8 2711.8 0/5 10.91 10.53 8.19 5 : 00 : 00
10 7 6.2 0.4 14.2 37.6 4.0 0.2 9.0 5/5 1.36 1.25 0.00 0 : 00 : 00
20 7 45.8 910.8 166.0 1049.0 34.2 8.4 625.4 5/5 3.73 3.38 0.00 0 : 01 : 04
30 7 119.6 16455.2 1953.2 16711.6 203.4 6.0 16300.6 0/5 6.19 5.64 1.69 5 : 00 : 00
40 7 137.0 13231.8 1035.8 8448.8 239.2 20.4 6652.6 0/5 7.67 7.61 4.24 5 : 00 : 00
50 7 127.6 8159.6 530.8 4238.0 206.8 12.2 2712.6 0/5 9.77 9.49 7.45 5 : 00 : 00
10 10 2.8 0.0 0.0 0.0 1.4 0.0 1.0 5/5 0.00 0.00 0.00 0 : 00 : 00
20 10 40.2 480.8 117.6 1944.4 25.2 1.4 601.0 5/5 2.30 2.50 0.00 0 : 00 : 45
30 10 122.2 9110.8 753.8 28861.8 113.4 0.8 7852.6 4/5 3.79 3.81 0.14 2 : 57 : 21
40 10 154.2 12217.8 673.8 21737.4 152.2 0.8 6181.8 1/5 4.16 6.24 3.11 4 : 41 : 58
50 10 152.8 10722.8 400.0 16278.2 120.0 1.6 3177.8 0/5 6.45 6.35 4.46 5 : 00 : 00
20 13 25.6 86.8 183.6 812.8 14.0 0.2 130.2 5/5 1.72 1.72 0.00 0 : 00 : 06
30 13 80.6 1427.6 220.6 7718.4 38.0 0.4 769.4 5/5 2.50 2.24 0.00 0 : 05 : 36
40 13 155.2 7688.4 515.6 32764.8 143.6 0.8 5373.4 2/5 4.63 4.61 2.19 4 : 00 : 09
50 13 175.0 10648.2 328.0 30746.6 105.4 0.4 3961.8 0/5 4.59 4.55 2.81 5 : 00 : 00
20 16 18.8 1.8 67.0 121.4 8.4 0.2 13.0 5/5 0.61 0.60 0.00 0 : 00 : 01
30 16 88.2 885.4 306.6 7535.8 56.0 0.4 610.2 5/5 2.57 2.41 0.00 0 : 03 : 52
40 16 141.8 3743.8 335.2 24970.8 100.4 0.2 2433.8 4/5 3.51 3.66 1.26 1 : 32 : 27
50 16 184.4 8520.6 266.8 43858.0 92.0 0.4 3611.0 0/5 3.23 3.24 1.57 5 : 00 : 00

Table 3. Results for Belgacom instances without cycle and cycle partition inequalities

|V | K Cu Cy Me Su Cc Cp No Gap1 Gt CPU
30 3 32 0 134 22 66 0 93 0.93 0.00 0 : 00 : 20
52 3 103 0 1187 104 1220 0 6505 1.99 0.00 1 : 28 : 12
30 4 119 0 9687 983 435 0 16183 5.66 0.00 1 : 45 : 07
53 4 146 0 5109 572 816 0 8555 7.31 5.48 5 : 00 : 00
30 5 152 0 14900 8797 670 0 37329 5.13 0.80 5 : 00 : 00
52 5 144 0 4156 2923 649 0 5975 9.02 6.73 5 : 00 : 00
30 6 171 0 8361 17601 287 0 33919 5.89 1.50 5 : 00 : 00
52 6 150 0 3163 5844 383 0 4385 7.93 6.13 5 : 00 : 00

When K ≥ 10, we notice that the problems are easier to solve. Most of the instances
on 30 nodes and some on 40 nodes have been solved to optimality. This is due to the
fact that for large value of K , the 2ECSBR is closer to the 2-edge connected subgraph

110 B. Fortz, A. R. Mahjoub, S. T. McCormick and P. Pesneau

Table 4. The average overall gap

Size K = 3 4 ≤ K ≤ 7 K ≥ 10
Belgacom 17 0.00 0.00 0.00
instances 30 0.00 1.20 0.00

52 0.00 5.25 3.24
20 0.00 0.00 0.00

Random 30 0.00 1.69 0.05
instances 40 0.00 4.30 2.19

50 0.00 6.93 2.95

problem which can be solved efficiently — for the graph sizes considered in this paper
— using the cut constraints only.

Table 4 summarizes the main results of our computational study. It reports the aver-
age overall gap for the two types of instances with respect to the size of the instances
and the bound on the cycles. As it appears, if the bound is 3, the problem seems to be
easy to solve, either for the real or the random instances. If the bound is high (≥10 for
instance), the problem remains relatively easy to solve. However, for bounds between 4
and 7 the problem gets harder, in particular for instances with 40 nodes and more, and
this for both real and random instances.

7. Concluding remarks

We studied the two-edge connected subgraph problem where every edge must belong to
a bounded cycle. We have given an integer programming formulation for this problem.
We have identified various classes of valid inequalities and discussed necessary and
sufficient conditions for these inequalities to be facet defining. We have provided sepa-
ration algorithms for these inequalities. In particular, we have shown that the separation
problem for the cycle inequalities can be reduced to a maximum flow problem when the
cycle bound is ≤4 and thus, can be solved in this case in polynomial time. Using these
results we have described a Branch-and-Cut algorithm for this problem. Our computa-
tional results have shown that the problem could be hard to solve for K between 4 and
7. We could estimate the effect of the cycle and the cycle partition inequalities in the
Branch-and-Cut algorithm. We could also measure the performance of our separation
techniques.

It would be interesting to extend the results given in this paper to the more general
survivable network design problem [15] with bounded rings.

Acknowledgements. The authors would like to thank the anonymous referees for their valuable comments
that permitted to improve the presentation of the paper.

References

1. Baı̈ou, M., Barahona, F., Mahjoub, A.R.: Separation of Partition Inequalities. Mathematics of Operations
Research 25 (2), 243–254, May 2000

2. Barahona, F.: Separating from the dominant of the spanning tree polytope. Op. Research Letters 12,
201–203 (1992)

Two-edge connected subgraphs with bounded rings: Polyhedral results and Branch-and-Cut 111

3. Barahona, F., Mahjoub, A.R.: On two-connected subgraph polytopes. Discrete Mathematics 147, 19–34
(1995)

4. Chopra, S.: The k-edge connected spanning subgraph polyhedron. SIAM Journal on Discrete Mathematics
7, 245–259 (1994)

5. Cunningham W.H.: Optimal attack and reinforcement of a network. Journal of ACM 32, 549–561 (1985)
6. Didi Biha, M., Mahjoub,A.R.: k-edge connected polyhedra on series-parallel graphs. Operations Research

Letters 19, 71–78 (1996)
7. Fortz B.: Design of Survivable Networks with Bounded Rings. Vol. 2 Network Theory and Applications.

Kluwer Academic Publishers, 2000
8. Fortz, B., Labbé, M., Maffioli, F.: Solving the Two-Connected Network with Bounded Meshes Problem.

Operations Research, 48 (6), 866–877 November-December 2000
9. Fortz B., Labbé M.: Polyhedral results for two-connected networks with bounded rings. Mathematical

Programming 93 (1), 27–54 2002
10. Fortz, B., Mahjoub, A.R., McCormick, S.T., Pesneau, P.: Two-edge connected subgraphs with bounded

rings: Polyhedral results and Branch-and-Cut. Working paper 98/03 Institut d’Administration et de Ges-
tion Universtié Catholique de Louvain, Belgique, 2003

11. Fortz, B., Labbé, M.: Two-connected networks with rings of bounded cardinality. Computational Opti-
mization and Applications 27, 123–148 2004

12. Goldberg,A.V., Tarjan, R.E.:A NewApproach to the Maximum-Flow Problem. Journal of theAssociation
for Computing Machinery 35 (4), 921–940, October 1988

13. Gomory, R.E., Hu, T.C.: Multi-Terminal Network Flows. SIAM Journal on Applied Mathematics 9 (4),
551–570, December 1961

14. Gourdin, E., Liau, B.: Personnal Communication 2003
15. Grötschel, M., Monma, C.L., Stoer, M.: Design of Survivable Networks. chapter 10, pp. 617–672. Hand-

books in Operations Research and Management Science. Elsevier, North-Holland Amsterdam. 1995
16. Gusfield, D.: Very Simple Methods for All Pairs Network Flow Analysis. SIAM Journal on Computing

19 (1), 143–155 February 1990
17. Hao, J., Orlin, J. B.: A faster algorithm for finding the minimum cut in a graph. Proc. of 3rd ACM-SIAM

Symp. on Discrete Algorithms 1992, pp. 165–174
18. Itai, A., Perl, Y., Shiloach, Y.: The Complexity of Finding Maximum Disjoint Paths with Length Con-

straints. Networks 12, 277–286 (1982)
19. Kerivin, H., Mahjoub, A.R.: Design of Survivable Networks: A Survey. To appear in Networks 2004
20. Ladányi, L., Ralphs, T.K., Trotter, L.E.: Computational Combinatorial Optimization: Optimal or Prov-

ably Near-Opimal Solutions. Branch Cut and Price: Sequential and Parallel 223–260. Lecture Notes in
Computer Science. Springer-Verlag, September 2001

21. Mahjoub, A.R.: Two-edge connected spanning subgraphs and polyhedra. Mathematical Programming 64,
199–208 1994

22. McCormick, S.T.: Personnal Communication 2001
23. Tsong-Ho Wu.: Fiber Network Service Survivability. Artech House Inc. 1992
24. Williamson, D.P.: Lecture Notes on Approximation Algorithms. IBM Research Division 1999

