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Given a graph with nonnegative edge weights and node pairs Q, we study the problem of construct-
ing a minimum weight set of edges so that the induced subgraph contains at least K edge-disjoint
paths containing at most L edges between each pair in Q. Using the layered representation intro-
duced by Gouveia (1998), we present a formulation for the problem valid for any K,L ≥ 1. We
use a Benders decomposition method to efficiently handle the big number of variables and con-
straints. We show that our Benders cuts contain the constraints used by Huygens et al. to formulate
the problem for L = 2, 3, 4, as well as new inequalities when L ≥ 5. While some recent works on
Benders decomposition study the impact of the normalization constraint in the dual subproblem,
we focus here on when to generate the Benders cuts. We present a thorough computational study
of various branch-and-cut algorithms on a large set of instances including the real based instances
from SNDlib. Our best branch-and-cut algorithm combined with an efficient heuristic is able to
solve the instances significantly faster than CPLEX 12 on the extended formulation.

Key words: survivable network; edge-disjoint paths; hop-constrained paths; Benders decomposi-
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1. Introduction

1.1 Problem motivation

Our worldwide society is largely dependent on the performance of huge information systems which

are often organized in large-scale, complex and costly networks. With time, the equipment (routers,

fiber optic cables, ...) deteriorates and the risk of failure must be controlled as well as possible

by the network managers in order to guarantee the best service to users. As a consequence, the

development of survivable networks became a crucial field of research and investigation. In this
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paper, we define a survivable network as a network in which the various demands can be routed

without loss of service quality even in case of network failure (link or node failure).

For each demand, we impose that at least K different paths exist for each origin-destination

pair. These K paths can, for instance, be “edge-disjoint”, i.e. if a particular edge belongs to one

path, this particular edge cannot be used by the other K − 1 paths. This guarantees that if K − 1

edges break down, it is always possible to reroute all the demands by the K-th path which does not

use the broken arcs. Another form of survivability considers the node-disjoint case. More formally

consider an undirected graph G = (V,E), where V represents the vertex set, and E the set of

edges. We also associate an installation cost cij to each edge ij and introduce an auxiliary arc set

A which is obtained from each edge ij of E by creating two arcs (i, j) and (j, i) with the same

cost as the original edge. In order to incorporate the survivability considerations into the problem

definition, we need to introduce the following graph theoretical concepts with elements from the

sets V and A. Given two distinct nodes o (the origin vertex of demand) and d (the destination vertex

of demand) of V , an od-path is a sequence of node-arcs P = (v0, (v0, v1), v1, ..., (vl−1, vl), vl),

where l ≥ 1, v0, v1, ..., vl are distinct vertices, v0 = o, vl = d, and (vi−1, vi) is an arc connecting

vi−1 and vi (for i = 1, ..., l). A collection P1, P2, ..., Pk of od-paths is called edge-disjoint if any arc

(i, j) and its symmetric arc (j, i) appears in at most one path. It is called node-disjoint if any node

except for o and d appears in at most one path. A subgraph H of G is called K-edge-survivable

(respectively, K-node-survivable) if for any o, d ∈ V , H contains at least a specified number

K of edge-disjoint (respectively, node-disjoint) od-paths. Then, the K-edge-survivable network

design problem, denoted by ESNDP , consists of finding a K-edge-survivable subgraph of G with

minimum total cost, where the cost of a subgraph is the sum of the costs of its edges. Similarly, the

node-survivable network-design problem, denoted by NSNDP , consists of finding a minimum-

cost node-survivable subgraph of G. A polyhedral study of the problem for the K-ESNDP with

K = 2 can be found in Stoer (1993) while the node variant is, among others, addressed in Grötschel

et al. (1992) and reviewed in Fortz (2000). The reader is also referred to Raghavan (1995) for a

discussion on flow-based models and projection from flow based models to original arc variables

and to Magnanti and Raghavan (2005) for enhancements on standard flow based models.

In general, the survivability constraints alone may not be sufficient to guarantee a cost effective

routing with a good quality of service. The reason for this is that the routing paths may be too

“long”, leading to unacceptable delays. Since in most of the routing technologies, delay is caused

at the nodes, it is usual to measure the delay in a path in terms of its number of intermediate nodes,

or equivalently, its number of arcs (or hops). Thus, to guarantee the required quality of service,

2



we impose a limit on the number of arcs of the routing paths. Hop-constraints were considered by

Balakrishnan and Altinkemer (1992) as a means of generating alternative base solutions for a net-

work design problem. Later on, Gouveia (1998) presented a layered network flow reformulation

whose linear programming bound proved to be quite tight. This reformulation has, then, been used

in several network design problems with hop-constraints (e.g, Pirkul and Soni (2003), Gouveia and

Magnanti (2003) and Gouveia et al. (2003)) and even some hop-constrained problems involving

survivability considerations (more on this below). It is also interesting to point out that the ap-

parently simple general network design problem with L = 2 already contains a complex structure

(see Dahl and Johannessen (2004) who also conduct a computational study of this variation of the

problem).

In this paper, we study a problem which incorporates the two requirements, survivability and

quality of service. More precisely, given a graph G and two parameters K and L, we consider an

extension of the ESNDP where each path is constrained to have at most L arcs. We note that this

is not the first time that the two types of constraints are considered together. As far as we know,

the earliest work that combined hop-constraints with the constraint that the required paths must

be node-disjoint is the bounded ring network design problem studied by Fortz and Labbé (2002,

2004); Fortz et al. (2006), among others. The problem we study was first studied by Huygens et al.

(2007) who only consider L ≤ 4 and K = 2. The node-disjoint variant was studied by Gouveia

et al. (2006) and later in Gouveia et al. (2008) who consider a more complicated version. The

reader is referred to the survey by Kerivin and Mahjoub (2005) who consider the disjoint path case

alone, network design problems only with hop constraints and the case where the two requirements

are considered together.

1.2 Model and method motivation

Relevant for obtaining the good computational results for the K-ESNDP is the fact that most of

the best methods rely on so-called natural models, that is, models that use only one variable for each

edge of the graph and an exponential sized set of constraints. However, for many of these inequal-

ities the associated separation problem is well solved and thus, they can be efficiently separated

leading to quite good cutting plane algorithms as shown for instance in Dahl and Stoer (1998). Un-

fortunately, finding a similar approach for the same type of problem with hop-constraints is much

more complicated. The reason is that it is not straightforward to obtain a valid natural formulation

for the particular case of finding a set of edges containing K edge-disjoint L-paths between the

two given nodes. Itaı́ et al. (1982) and later Bley (1997) study the complexity of this problem
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for the node-disjoint and the edge-disjoint cases. Recently, Bley and Neto (2010) also studied the

approximability of the problem for L = 3 and L = 4.

For K = 1, Dahl (1999) has provided such a formulation and shown that it describes the

corresponding convex hull for L ≤ 3. Later on, Dahl et al. (2004) have shown that finding such a

description for L ≥ 4 would be much more complicated. For K ≥ 2 the results are even worse.

Huygens et al. (2004) have extended Dahl’s result for K = 2 and L ≤ 3. For L ≥ 4, the only

interesting result for the moment is the one given in Huygens and Mahjoub (2007) for L = 4 and

K = 2 where a valid formulation has been given. However, in terms of valid inequalities and with

exception to the well known L-path cut inequalities, nothing is known for larger values of L. This

may also explain why the only cutting plane method for the more general problem with several

sources and several destinations by Huygens et al. (2007) only considers L ≤ 3.

Based on this history, it makes sense to look for alternative ways of formulating the problem.

The layered approach described previously appears to be a good candidate for formulating the

problem since it is easily generalized for the case with K disjoint paths. Furthermore, a similar

approach has already been used for the version of the problem with node disjoint paths (see Gou-

veia et al. (2006) and Gouveia et al. (2008) for a more complicated version) and the results in these

papers (although for a slightly more complicated variant) give a sort of motivation for the method

developed and tested in this paper:

(i) the linear programming bound given by the model (if it can be solved) is often very good;

(ii) however, the model is difficult to use in a straightforward way with CPLEX because it has

too many variables.

Thus, (i) and (ii) motivate the approach of using this kind of model within a decomposition algo-

rithm, such as Benders decomposition. Finally, another outcome of this research is that the Benders

cuts might give some relevant information for finding valid inequalities for the cases with L ≥ 5.

Based on these observations, we formulate the problem as an integer program based on the

layered representation from Gouveia (1998). To our knowledge, this is the first formulation for the

problem that is valid for L ≥ 5 and any K > 1.

As previously mentioned the model is too large to be used directly with CPLEX (or for that

matter any other solver). Hence, we use a Benders decomposition method to efficiently handle the

large number of variables and constraints. Although Benders decomposition has been widely used

for hard mixed-integer problems — including fixed-charge network design problems (Costa, 2005)
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— not much is said about the algorithmic aspects, most authors using “textbook implementations”.

Some recent works (Fischetti et al., 2010; Ljubic et al., 2009) have highlighted the importance of

the normalization constraint in the separation problem. Herein, we investigate another aspect of

the algorithm, namely, when to generate cuts throughout a branch-and-cut algorithm. We present

a thorough computational study of branch-and-cut algorithms on a large set of instances including

the real-world based instances from SNDlib (Orlowski et al., 2010). Some computational experi-

ments (not reported here) also confirm previous results obtained by Fortz and Poss (2009) showing

that branch-and-cut algorithms outperform cutting plane algorithms.

Another outcome of our research is that the Benders cuts may give some relevant information

for finding valid inequalities for the cases with L ≥ 5. We show that the Benders cuts contain

the constraints used by Huygens et al. (2004) and Huygens and Mahjoub (2007) to formulate the

problem for L = 2, 3, 4 and K = 2 in the space of natural design variables, as well as new valid

inequalities when L ≥ 5. Hence, for L = 2, 3 our branch-and-cut algorithms (polynomially)

separate “cut inequalities” and “L-paths inequalities” while Huygens et al. (2007) need to separate

both inequality types independently. Finally, we present a fast and efficient LP-based heuristic that

provides the optimal solution for more than half of the instances.

In the next section we introduce the layered representation and describe our integer program-

ming formulation. In Section 3, we reformulate the problem through Benders decomposition

and discuss different algorithmic approaches. Section 4 compares the Benders cuts with previ-

ous known cuts for the problem, while computational results are presented in Section 5.

2. Problem description

The main idea of Gouveia (1998) is to model the subproblem associated with each commodity with

a directed graph composed of L+1 layers as illustrated in Figure 1. Namely, from the original non-

directed graph G = (V,E), we create a directed layered graph Gq = (V q, Aq) for each commodity,

where V q = V q
1 ∪ . . .∪V

q
L+1 with V q

1 = {o(q)}, V q
L+1 = {d(q)} and V q

l = V \{o(q)}, l = 2, . . . , L.

Let vql be the copy of v ∈ V in the l-th layer of graph Gq. Then, the arcs sets are defined by

Aq = {(iql , j
q
l+1) | ij ∈ E, iql ∈ V q

l , j
q
l+1 ∈ V q

l+1, l ∈ {1, . . . , L}}∪{d(q)l, d(q)l+1, l ∈ {2, . . . , L}},
see Figure 1. In the sequel, an (undirected) edge in E with endpoints i and j is denoted ij while a

(directed) arc between iql ∈ V q
l and jql+1 ∈ V q

l+1 is denoted by (i, j, l) (the commodity q is omitted

in the notation as it is often clear from the context).

Note that each path between o(q) and d(q) in the layered graph Gq is composed of exactly L
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(a) (b)

Figure 1: Original network (a) and its alternative (or associated) layered representation (b) when
L = 4

arcs (hops), which corresponds to a maximum of L edges (hops) in the original one. In fact this

is the main idea of this transformation, since in the layered graph any path is feasible with respect

to the hop-constraints. The usual network flow equations defined in this layered graph yield the

following model:

min
∑
ij∈E

cijZij

s.t.
∑

j:(j,i,l−1)∈Aq

U l−1 q
ji −

∑
j:(i,j,l)∈Aq

U lq
ij =

 −K if (i = o(q))
K if (i = d(q)) and (l = L+ 1)
0 else

,

(P) i ∈ V q, l ∈ {2, . . . , L+ 1}, q ∈ Q, (1)∑
l∈{1,...,L}

(
U lq
ij + U lq

ji

)
≤ Zij , ij ∈ E, q ∈ Q, (2)

Zij ∈ {0, 1}, ij ∈ E, (3)

U lq
ij integer, (i, j, l) ∈ Aq, q ∈ Q. (4)

Each variable Zij states whether edge ij ∈ E is built and each variable U lq
ij describes the

amount of flow through arc (i, j, l) for commodity q in layered graph Gq. Constraints (1) are the

flow conservation constraints at every node of the layered graph which guarantee that K units of

flow go from o(q) to d(q), while constraints (2) guarantee edge-disjointness of the paths. Note that

(2) together with (3) imply that U lq
ij ≤ 1 for i ̸= j, while (1) implies that U lq

ii ≤ K.

In the sequel, we assume the reader familiar with standard notions of polyhedral theory, see for

instance Nemhauser and Wolsey (1988).
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3. Benders decomposition

3.1 Reformulation

When facing a complex mixed-integer optimization problem, the Benders decomposition method

(Benders, 1962) can be used to project out complicating real variables. This projection results in

the addition of many constraints to the problem. Benders decomposition has been widely stud-

ied for fixed charge network design problems (Costa, 2005). In these problems, multi-commodity

flows are routed in some network to be designed. Therefore, the associated formulations contain

many constraints and variables bound together by the capacity constraints. The Benders decompo-

sition of these problems considers a master problem, with capacity variables only, and subproblems

with flow variables for one commodity only. Hence, the subproblems are independent linear pro-

grams for each commodity (see, for instance, SP(q, Z) below), thus reducing significantly the size

of the linear programs to solve. However, the classical framework does not apply to our model

(P) because all of its variables are integer; classical duality theory does not allow us to project out

variables with integer restrictions. It is well known indeed in the field of stochastic programming

that integer recourse cannot be tackled through classical Benders decomposition, called L-shaped

in stochastic programming (Birge and Louveaux, 2008). Although Carøe and Tind (1998) gener-

alize the L-shape to integer recourse using general duality theory, their framework stays mainly

theoretical.

To avoid this difficulty, we introduce a new formulation for the problem, (P’), where we relax

the integrality restrictions on U variables in (P), replacing (4) by

U lq
ij ≥ 0, (i, j, l) ∈ Aq, q ∈ Q. (5)

We discuss below and in Section 4 whether (P’) provides the same optimal design Z as (P). Then,

we can use the classical framework (described by Costa (2005) among others) to project out U

variables from (P’). Given commodity q ∈ Q, let us introduce a dual variable πl
i, associated with

node i ∈ V and layer l, for each constraint (1) and a dual variable σij for each constraint (2).

Defining o := o(q) and d := d(q), and adding the constraints π1
o = 0 and πL+1

d ≤ 1 to normalize the

dual cone (see Fischetti et al. (2010); Ljubic et al. (2009) for alternative choices of normalization

constraints), we get our dual subproblem SP(q, Z).

Note that for each commodity q ∈ Q, one of the constraints in (1) is redundant, so we set

π1
o = 0 to avoid some extreme rays in the dual subproblem.

7



max K
(
πL+1
d − π1

o

)
−

∑
ij∈E

Zijσij (6)

s.t. π2
i − π1

o − σoi ≤ 0, oi ∈ E,

πl+1
i − πl

j − σij ≤ 0, ij ∈ E, i, j /∈ {o, d}, l ∈ {2, . . . , (L− 1)},

SP(q, Z) πl+1
j − πl

i − σij ≤ 0, ij ∈ E, i, j /∈ {o, d}, l ∈ {2, . . . , (L− 1)},

πl+1
d − πl

i − σid ≤ 0, id ∈ E, l ∈ {2, . . . , L},

πl+1
d − πl

d ≤ 0, l ∈ {2, . . . , L},

π1
o = 0,

πL+1
d ≤ 1,

σij ≥ 0, ij ∈ E.

The Benders reformulation for (P’) follows:

(BR)

min
∑
ij∈E

cijZij

s.t. KπL+1
d(q) −

∑
ij∈E

Zijσij ≤ 0, (π, σ) ∈
⋃
q∈Q

Rq,

Zij ∈ {0, 1}, ij ∈ E,

where Rq contains vertices of the feasibility polyhedron for the dual subproblem SP(q, Z) (notice

that the feasibility polyhedron of SP(q, Z) depends only on q, not on Z).

Next, we discuss how to extend this procedure to (P). We need to first introduce some notation.

Given Z ∈ {0, 1}|E|, let Ui(Z) be the set of binary vectors defined by (1),(2) and (4) and Uc(Z)
the polyhedron defined by (1),(2) and (5). Then, define Zi (respectively Zc) as the set of vectors

Z ∈ {0, 1}|E| such that Ui(Z) (respectively Uc(Z)) is nonempty, and let conv(Zi) (respectively

conv(Zc)) be its convex hull. Since Ui(Z) ⊆ Uc(Z) for every binary Z, we have that Zi ⊆ Zc so

that any valid inequality for conv(Zc) is valid for conv(Zi). In particular, the Benders cut

KπL+1
d(q) −

∑
ij∈E

Zijσij ≤ 0, (7)

with (π, σ) ∈ Rq for some commodity q ∈ Q, is valid for conv(Zi).

These definitions raise the following question. Are cuts (7) together with integrality restrictions

(3) enough to characterize Zi ? Namely, given a binary vector Z, is it true that Z belongs to Zi

if and only if Z does not violate any cut (7)? It is easy to see that this is true when K = 1, and

we prove in Section 4 that this is also the case for L = 2, 3 with any K ≥ 2, and for L = 4 with
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K = 2. For L ≥ 5 and K ≥ 2, sets Zi and Zc may be different (unless P = NP ), so that we must

in general check the existence of an integer flow in the graph described by Z. We do so by solving

the following problem for each commodity:

min
∑
ij∈E

eqij

s.t.
∑

j:(j,i,l−1)∈Aq

U l−1q
ji −

∑
j:(i,j,l)∈Aq

U lq
ij =

 −K if (i = o(q))
K if (i = d(q)) and (l = L+ 1)
0 else

,

FP(q, Z) i ∈ V q, l ∈ {2, . . . , L+ 1},∑
l∈{1,...,L}

(
U lq
ij + U lq

ji

)
≤ Zij + eqij(1− Zij), ij ∈ E,

U lq
ij integer, (i, j, l) ∈ Aq,

eqij ∈ {0, 1} ij ∈ E,

which is one among many ways to turn the decision problem into an optimization problem. Let eq

denote the optimal value of eq, and eZ = maxq∈Q{
∑

ij∈E eqij}. If eZ = 0, Z ∈ Zi. Otherwise, we

can add the inequality ∑
ij∈E0(Z)

Zij ≥ eZ , (8)

with E0(Z) = {ij ∈ E s.t. Zij = 0}, to move away from the current solution, as explained in

the next subsection. Since FP(q, Z) looks for the minimal number of additional edges required

by commodity q, it is easy to see that (8) is valid for (P). Notice that (8) can be seen as a rein-

forced feasibility cut typically used in logic-based Benders decomposition, see Hooker (2000) and

Codato and Fischetti (2006) among others. It is interesting to point out that in our computational

experiments (see Section 5), we never needed to add such a cut because we did not find a vector

Z ∈ Zc\Zi.

3.2 Algorithmic approach

(BR) contains exponentially many constraints (this is a direct consequence of Lemma 1 in Sec-

tion 4) while only a few of them are active at the optimum. Therefore, we can dynamically generate

the required constraints throughout the solution method. Early papers on Benders decomposi-

tion for mixed-integer problems use cutting plane algorithms, cycling many times between master

integer problems and continuous subproblems. However, modern developments in branch-and-

cut frameworks such as the commercial CPLEX (IBM-ILOG, 2009) or the noncommercial SCIP

(Achterberg, 2009), among others, have eased the development of a branch-and-cut algorithm to
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solve the master problem, incorporating the Benders cut separation in the cutting plane callback.

Recent works by Fortz and Poss (2009) and Bai and Rubin (2009) present examples for which there

is an important time reduction when using a branch-and-cut algorithm instead of a cutting plane

algorithm. Moreover, our experiments for the problem studied herein confirm that branch-and-cut

algorithms are an order of magnitude faster than cutting plane algorithms. We describe next our

algorithms.

Given a subset Rq of Rq for each q ∈ Q, and binary vectors Z
s
, s = 1, . . . , r, let us define the

master problem

(MP)

min
∑
ij∈E

cijZij

s.t. KπL+1
d(q) −

∑
ij∈E

Zijσij ≤ 0, (π, σ) ∈
⋃
q∈Q

Rq,∑
ij∈E0(Z

s
)

Zij ≥ eZs , s = 1, . . . , r,

Zij ∈ {0, 1}, ∀ij ∈ E.

Our branch-and-cut strategy solves (MP) only once. We aim at embedding the generation of vio-

lated feasibility cuts (7) (and (8) if needed) into the branch-and-cut framework solving (MP).

It is important to add many cuts early in the tree to avoid exploration of too many infeasible

nodes. However, adding too many unnecessary cuts would slow down the linear programming

relaxation at each node. Our first branch-and-cut algorithm, bc-all, checks for violated Benders

cuts (7) at every node of the tree, while it tests for violated inequality (8) only at integer nodes. As

noted by Fortz and Poss (2009), this algorithm is relatively slow, because too many cuts are added

and too much time is spent in the solution of SP(q, Z). In bc-int, we add as many cuts (7) and

(8) as we can find at the root node. Then we start branching and check for further violated cuts

at integer nodes only. Finally, we developed a hybrid algorithm bc-n, described in Algorithm 1,

checking for violated inequality (8) at integer nodes and for violated inequality (7) at integer nodes

and nodes with a depth less than or equal to n. Note that bc-n generalizes both frameworks since

bc-int is the same as bc-0, and bc-all is the same as bc-|E|.
In Algorithm 1, solving a node o′ ∈ N means solving the linear programming relaxation of

(MP), augmented with branching constraints of o′, while depth(o′) counts the number of branching

constraints of o′.
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Algorithm 1: Hybrid branch-and-cut algorithm: bc-n
begin /* Initialization */

N = {o} where o has no branching constraints;
UB = +∞;

while N is nonempty do
select a node o′ ∈ N ;
N ← N\{o′}; /* withdraw node o′ from the tree */
solve o′;
let Z be an optimal solution;
let w be the optimal cost;
if w < UB then

if Z ∈ {0, 1}|E| or depth(o′) ≤ n then
foreach q ∈ Q do compute sq = SP (q, Z);
;
if sq > 0 then add (7) to (MP);
;

if Z ∈ {0, 1}|E| and sq ≤ 0 for each q ∈ Q then
foreach q ∈ Q do compute fq = FP (q, Z);
;
if fq > 0 for some q ∈ Q then add (8) to (MP);
;
else

UB ← w; /* define a new upper bound */

Z∗ ← Z; /* save current incumbent */

if sq > 0 or fq > 0 for some q ∈ Q then
N ← N ∪ {o′}; /* put node o′ back in the tree */

else if Z /∈ {0, 1}|E| then
branch, resulting in nodes o∗ and o∗∗;
N ← N ∪ {o∗, o∗∗}; /* add children to the tree */

return Z∗

3.3 Heuristic

An intrinsic drawback of decomposition methods is that the solver does never see the complete

model as a whole but only a part at the time, making difficult for the solver to detect and exploit

the model structure. It is well known that special structures can help the solution of hard integer

programs. For instance, detecting a flow structure within a more complicated problem can be used

to add strong cut inequalities (Achterberg and Raack, 2010). For the same reason, it is hard for

our MIP solver (CPLEX 12) to find good upper bounds. We present next a simple, yet efficient,
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Figure 2: Graph obtained from Z

heuristic. First, we solve the linear programming relaxation of (P’) by a Benders decomposition

algorithm, resulting in a fractional Z. Then, for each Zij = 0 we add the constraint Zij = 0 to

(MP), and we solve the resulting problem with bc-n. This allows us to reduce significantly the

number of variables of the problem, yielding a very good solution in a limited amount of time. The

issue of whether or not the heuristic finds a feasible solution is discussed in Section 4.

We present in Section 5 the heuristic quality and the solution time of a new branch-and-cut

algorithm, bc-n-heur, starting with the upper bound from the heuristic.

4. Feasibility problem

Note that the feasibility problems SP(q, Z) and FP(q, Z) and the Benders cuts (7) are independent

for each commodity q ∈ Q, so that without loss of generality, we assume in this section that we

have a unique commodity q going from o to d. Let us come back to the problem of knowing

whether Benders cuts (7) together with integrality restrictions on Z are sufficient to describe Zi,

or in other words, whether Zi = Zc. This is equivalent to knowing whether Ui(Z) = ∅ implies

that Uc(Z) = ∅, for any binary vector Z. Note that the inclusion conv(Ui(Z)) ⊆ Uc(Z) may be

strict. Consider the example with the binary Z described in Figure 2, where each edge ij ∈ E

has a routing cost c̃ij , which refers to an example with L = 4 and K = 2. There are 5 different

4-paths from o to d: the ones shown on Figure 3 and the path o − b − c − d. There are only two

pairs of disjoint paths, {P3, P4} from Figure 3 and {P4, o − b − c − d}, both with a cost equal

to 20. Then, the fractional optimal solution routes 0.5 unit on each path from Figure 3 yielding a

total routing cost equal to 10. Thus, the cheapest fractional routing is less than the cheapest integer

routing, implying conv(Ui(Z)) ⊂ Uc(Z).

12



Figure 3: Fractional and integer minimum cost routing when L = 4 and K = 2.

Let us recall some well-known families of cuts used by Huygens et al. (2004) and Huygens and

Mahjoub (2007) to describe a formulation for (P) using only design variables. In what follows, we

show that cuts (7) imply these families of cuts. Therefore, using results from Dahl et al. (2006);

Diarrassouba (2009) and the Lemmas below, we obtain that Benders cuts together with binary

constraints completely describe Zi for L = 2, 3 and any K ≥ 1. Then, we give an example (see

Figure 4) showing that cuts (7) may be interesting when L ≥ 5.

We first introduce some notation. If W ⊂ V is a node subset, then the set of edges that have

one node in W and one node in V \W is called a cut and denoted by δ(W ), and Z(δ(W )) :=∑
ij∈δ(W )

Zij . For o, d ∈ V , a cut δ(W ) such that o ∈ W and d ∈ V \W is called a od-cut. Then, let

V0, V1, . . . , VL+1 be a partition of V such that o ∈ V0, d ∈ VL+1 and Vi ̸= ∅ for i = 1, . . . , L. A set

of edges T ⊂ E is called a L-path-cut if for each ij ∈ T , i ∈ Vv, j ∈ Vw such that |v − w| > 1.

Then, consider the cut inequalities

Z(δ(W )) ≥ K, for all od− cuts δ(W ), (9)

and the L-path-cut inequalities

Z(T ) ≥ K, for all L-path-cuts T. (10)

Dahl (1999) uses these inequalities for the special case K = 1 (for any L ≥ 1). He proves that a

binary vector Z belongs to Zi if it satisfies (9) and (10). Huygens et al. (2004) extend (9) and (10)

to L = 2, 3 and K = 2, which together with binary restrictions on Z, provide a valid formulation

for the problem. In further work, Dahl et al. (2006) and Diarrassouba (2009) prove the formulation

to be valid for any K ≥ 2. Consider now a partition V0, V1, . . . , VL+r of V such that o ∈ V0,
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d ∈ VL+r and Vi ̸= ∅ for i = 1, . . . L + r − 1. Generalizing (10), Dahl and Gouveia (2004)

introduce the generalized jump inequality∑
i∈Vv ,j∈Vw,v ̸=w

min(|v − w| − 1, r)Zij ≥ Kr. (11)

Finally, Huygens and Mahjoub (2007) introduce in the two-layered 4-path-cut specifically for

the case L = 4 and K = 2. Let V0, V1, . . . , V6,W1, . . . ,W4 be a partition of V such that o ∈ V0,

d ∈ V6 and Vi ̸= ∅ for i = 1, . . . 5. They define the inequality

ax ≥ 4, (12)

with

aij = min(|v − w| − 1, 2), i ∈ Vv, j ∈ Vw, i ̸= j,
aij = 2, i ∈ Wv, j ∈ Ww, |v − w| ≥ 2,
aij = 2, i ∈ Vv, j ∈ Ww, w − v ≥ 2 or v − w ≥ 3,
aij = 1, i ∈ Vv, j ∈ Ww, (v, w) = (2, 3), (3, 1), (3, 4), (4, 2),
aij = 0, otherwise.

(13)

They have shown that inequalities (12), besides (9) and (10), are needed to obtain a valid

formulation for L = 4 and K = 2.

Next, we prove that cuts (7) imply cuts (9), (11) and (12) (thus (10) because it is a special case

of (11)) by showing that all of their coefficients belong to the feasibility polyhedron of one of the

subproblems SP(q, Z).

Lemma 1. Consider some od − cut δ(W ). There exists a vector (π, σ) feasible for SP(q, Z) so

that (7) written for (π, σ) is the same as inequality (9) for δ(W ). Moreover, (π, σ) is an extreme

point of the polyhedron of feasible solutions of SP(q, Z).

Proof. Setting πL+1
d = 1, σij = 1 for ij ∈ δ(W ) and 0 otherwise, (7) becomes∑

ij∈δ(W )

Zij ≥ K.

Next, we set up πl
i for l < L+ 1 so that (π, σ) is feasible for SP(q, Z). It is easy to see that πl

i = 0

for i ∈ W , and πl
i = 1 for i ∈ V \W , satisfies this requirement.

It remains to show that (π, σ) is an extreme point of the polyhedron of feasible solutions of

SP(q, Z). Let us assume that

(π, σ) =
1

2
((π′, σ′) + (π′′, σ′′))

14



for some (π′, σ′) and (π′′, σ′′) feasible for SP(q, Z). We show next that we must have (π′, σ′) =

(π′′, σ′′) = (π, σ), and hence (π, σ) is an extreme point of the polyhedron of feasible solutions of

SP(q, Z).

First note that if σij = 0, then, since σ′
ij ≥ 0 and σ′′

ij ≥ 0, we have σ′
ij = σ′′

ij = 0. Using similar

arguments, π
′L+1
d ≤ 1 and π

′′L+1
d ≤ 1, together with πL+1

d = 1 imply that π
′L+1
d = π

′′L+1
d = 1.

Moreover, for all l ≤ L, π
′l+1
d − π

′l
d ≤ 0 implies that π′l

d ≥ 1. Similarly, π′′l
d ≥ 1, and since πl

d = 1,

we must have π
′l
d = π

′′l
d = 1.

Consider now a node i /∈ W , i.e. such that πl
i = 1. Then, id /∈ δ(W ) and σid = 0. Therefore,

σ′
id = 0 and π

′l+1
d − π

′l
i − σ′

id ≤ 0 becomes π′l
i ≥ 1. Similarly, π′′l

i ≥ 1, and since πl
i = 1, we must

have π
′l
i = π

′′l
i = 1.

A similar proof, starting with π1
o = 0 leads to π

′l
i = π

′′l
i = 0 for all i ∈ W .

Let’s turn to an edge ij ∈ δ(W ), i.e. σij = πl+1
j = 1 and πl

i = 0 for all l ≤ L− 1. We already

know that π
′l+1
j = 1 and π

′l
i = 0, so from π

′l+1
i −π

′l
j −σ′

ij ≤ 0 we have σ′
ij ≥ 1. Similarly, σ′′

ij ≥ 1,

and since σij = 1, we must have σ′
ij = σ′′

ij = 1.

We thus proved that (π′, σ′) = (π′′, σ′′) = (π, σ).

Since (π, σ) are extreme points of SP(q, Z), od-cut constraints are Benders cuts, which implies

that the number of Benders cuts is exponential in the size of the network.

Lemma 2. Let (V0, V1, . . . , VL+r) be some partition of V such that o ∈ V0, d ∈ VL+r and Vi ̸= ∅
for i = 1, . . . L + r − 1. There exists a vector (π, σ) feasible for SP(q, Z) so that (7) written for

(π, σ) is the same as inequality (11) for that partition.

Proof. First, we must set πL+1
d = 1, σij = r−1min(|v − w| − 1, r) for i ∈ Vv, j ∈ Vw, so that (7)

becomes

r−1
∑

i∈Vv ,j∈Vw,v ̸=w

min(|v − w| − 1, r)Zij ≥ K,

equal to (11) by multiplying both sides by r. We are left to set up πl
i for l < L+ 1 so that (π, σ) is

feasible for SP(q, Z). First, set π1
o = 0 and πl

d = 1 for l = 2, . . . , L. For each 0 ≤ k ≤ L + r, let

i ∈ Vv and set πl
i = r−1min(v + 1 − l, r) for l = 1, . . . , v, πl

i = 0 for l = v + 1, . . . , L + r − 1,

see Table 1 for r = 2 and L = 4. We must check that for any i ∈ Vv, j ∈ Vw, and 1 ≤ l ≤ L, the

arc (i, j, l) satisfies σij ≥ πl+1
j −πl

i. By definition of π, πl+1
j −πl

i =
y
r

for some 1 ≤ y ≤ r implies

that w > v + y + 1 so that σij ≥ y
r
. Thus, (π, σ) satisfies all equations of SP(q, Z).
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Table 1: Values of π for the generalized jump in-
equality for L = 4 and r = 2.

l 1 2 3 4 5
V0 –/0 0 0 0 –
V1 – 0 0 0 –
V2 – 0.5 0 0 –
V3 – 1 0.5 0 –
V4 – 1 1 0.5 –
V5 – 1 1 1 –
V6 – 1 1 1 –/1

Table 2: Values of π for nodes in W for the two-
layered 4-path-cut inequality.

l 1 2 3 4 5
W1 – 0 0 0 –
W2 – 1 0 0 –
W3 – 1 1 0 –
W4 – 1 1 1 –

Lemma 3. Let V0, V1, . . . , V6,W1, . . . ,W4 be a partition of V such that o ∈ V0, d ∈ V6 and Vi ̸= ∅
for i = 1, . . . 5. There exists a vector (π, σ) feasible for SP(q, Z) so that (7) written for (π, σ) is

the same as inequality (12) for that partition.

Proof. We set πL+1
d = 1 and σij = 1

2
aij , with a defined in (13), and π as in Tables 1 and 2. The

rest of the proof of is similar to the proof of Lemma 2.

As a result of Lemmas 1, 2 and 3, Dahl (1999), Theorem 2.2 from Huygens et al. (2004) (and

its generalization to any K in Dahl et al. (2006) and Diarrassouba (2009)) and Theorem 3 from

Huygens and Mahjoub (2007) we obtain:

Proposition 1. The sets Zc and Zi are equal for L = 2, 3 with any K ≥ 2, and L = 4 with K = 2.

In particular, we obtain that heuristic described in subsection 3.3 shall find a feasible

solution in this context:

Corollary 1. For K = 1 with any L ≥ 1, L = 2, 3 with any K ≥ 2, and L = 4 with K = 2, the

algorithm heuristic will always find a feasible design for (P).

Proof. Let (Z,U) be an optimal solution to the linear programming relaxation of (P). Thus, Z

satisfies all Benders cuts (7). Then, since each component of σ is positive or zero, ⌈Z⌉ satisfies all

(7) as well, so that ⌈Z⌉ ∈ Zc. Therefore, Proposition 1 implies that ⌈Z⌉ ∈ Zi.

It is natural to wonder whether the equality Zc = Zi holds for L = 4 and K ≥ 3, and L ≥ 5

and K ≥ 2. Although, we do not know the complete answer, Theorem 3.3 from Itaı́ et al. (1982)

leads to the following partial answer.

Proposition 2. For each L ≥ 4, there exists a K ≥ 2 for which the inclusion Zi ⊂ Zc holds

strictly, unless P = NP .
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(a) (b)

Figure 4: New inequality for L = 5.

Proof. We prove this result by contradiction. Consider some L ≥ 5 and assume that Zi = Zc for

each K ≥ 2. Consider some Z ∈ Zi and let G = (V,E) be the graph described by Z, i.e., ij ∈ E

if and only if Zij = 1. For each K ≥ 2, we can check whether there exists K edge-disjoint L-

paths between o and d by solving SP(q, Z), because Zi = Zc. Thus, this existence question can be

answered in polynomial time for any K. Since the maximum number of such paths is bounded by

the number of vertices of V , the problem of finding the maximum number of edge-disjoint L-paths

between o and d is polynomial, which contradicts Theorem 3.3 from Itaı́ et al. (1982) when L ≥ 5

and Corollary 4 from Bley and Neto (2010) when L = 4, unless P = NP .

Finally, let us show that cuts (7) contain new valid inequalities for the problem for L ≥ 5.

First, note that Huygens and Mahjoub (2007) introduce the two-layered L-path-cut inequalities,

extending the two-layered 4-path-cut inequalities to general L. It can be easily seen that Lemma 3

can be extended to incorporate these generalized inequalities. More important is the fact that they

show on three examples that these new inequalities, together with (9), (11) and binary restrictions

on Z, are not sufficient to formulate the problem for L ≥ 5. For instance, let G′ be the graph shown

in Figure 4(a), taken from Huygens and Mahjoub (2007). We see that it is impossible to find two

edge-disjoint paths from o to d with length smaller than or equal to 5. Moreover, it is impossible

to find a fractional flow satisfying (1),(2) and (5) in the layered graph constructed from G′, so that

there must exist a Benders cut that cuts off G′. However, Huygens and Mahjoub were not able to

provide an inequality that cuts off G′.

We describe next a Benders cut that cuts off the solution depicted in Figure 4(a). Consider the

complete graph G = (V,E) with 8 nodes o, a, b, d, e, f, g, d and q a commodity in G from o to d.

Define the following dual variables: σog = σcg = σgd = 0.5, σij = 0 for ij ∈ E\{og, cg, gd}, and

π is described in Table 3. One can check that (π, σ) belongs to SP(q, Z) for G. Moreover, they
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Table 3: Values of π for cut (14).

l 1 2 3 4 5 6
o 0 0 0 0 0 –
a – 0 1 0 1 –
b – 1 0 1 0 –
c – 1 1 0 1 –
e – 1 1 1 0 –
f – 1 1 1 1 –
g – 0.5 0.5 0.5 0.5 –
d – 1 1 1 1 1

yield the Benders cut

ax ≥ 2, (14)

with aij = 1 for plain edges from Figure 4(b) and aij = 0.5 for dashed edges from Figure 4(b).

Applying (14) to G′ from Figure 4(a), we obtain 1.5 < 2. This cut can be extended for more gen-

eral graphs, partitioning the nodes into 8 subsets as in Figure 4(b) and setting (π, σ) accordingly.

Similar cuts can be obtained in this way for the other examples in Huygens and Mahjoub (2007).

5. Computational results

In this section we compare the solution times of formulations (P) and (P’), which we denote

layered and layered-r, respectively, and branch-and-cut approaches bc-all, bc-int,

bc-5 and bc-5-heur. Then, for the branch-and-cut approaches we compare the number of cuts

generated and the number of nodes visited in the branch-and-cut tree. Finally, we evaluate the

quality of the upper bound given by heuristic.

We have discussed in Section 4 whether we can relax the integrality restrictions (4). We have

answered affirmatively for some values of L and K, see Proposition 1. Moreover, we have never

encountered an instance for which a feasibility cut (8) was needed. Thus, Benders cuts were

enough to describe the problem for all the instances in our computational experiments, so that

models layered and layered-r coincide for these instances. Therefore, we also present the

computational time required by layered-r. Note that we tested branch-and-cut algorithms with-

out the feasibility part as well, but the speed-up was insignificant, so that we do not report them in

the remainder.
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5.1 Implementation details

All models have been coded in JAVA using CPLEX 12 MIP solver and run on a DELL Latitude

D820 with a processor Intel Core Duo 2 T7200 of 2GHz and 2.5 GB of RAM. We allow CPLEX

to store the branch-and-bound tree in a file, setting parameter IntParam.NodeFileInd to 2, to avoid

from running out of memory. Moreover, for each algorithm we configure CPLEX as follows :

layered and layered-r: All parameters have been kept to their default values, CPLEX

chooses to explore the branch-and-cut tree with the dynamic search.

bc-all, bc-int, and bc-n: Since the model does not contain explicitly all constraints,

we must deactivate the dual presolve, setting BooleanParam.PreLinear to false and Int-

Param.Reduce to 1. Then, we implemented our (global) cuts generation with a LazyCon-

straintCallback, preventing CPLEX from using dynamic search.

heuristic: We first solve the linear programming relaxation by a cutting plane algo-

rithm (in fact, we use a branch-and-cut algorithm with a limit of 0 nodes, setting Int-

Param.NodeLim to 0). Then, we fix some of the variables to 0, and re-solve the resulting

problem with bc-n.

bc-n-heur: We use the algorithm bc-n, providing CPLEX with the upper bound found

by heuristic. The CPU times reported do not consider the time spent in heuristic.

5.2 Instance details

We used three different test sets. The sets TC and TE were taken from a class of complete

graphs G = (V,E), reported in Gouveia (1996). They share the following features: |V | = 21,

|Q| ∈ {5, 10}, and all point-to-point demands share one of their extremities (which we call rooted

demands in Table 4). The cost matrix for each instance considers the integer part of the Euclidean

distance between the coordinates of the 21 nodes, randomly placed among the integer points of a

grid 100 × 100. The TC class contains 5 instances with 5 commodities and 5 instances with 10

commodities with the root located in the center of the grid and the TE class contains 5 instances

with 5 commodities and 5 instances with 10 commodities with the root located on a corner of the

grid. We see in the next section that instances TE are much harder to solve than instances TC. Then,

two instances are based on sparse networks from SNDlib (Orlowski et al., 2010): pdh and di-yuan.

Table 4 summarizes the size of the instances. We solved the problem for L in {3, 4, 5, 7, 10} and

K from 1 to 3. We set a time limit of 3600 seconds for all instances and algorithms.
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Table 4: Instances description.

Name |N | |E| |Q| # of instances Rooted demands?
TC-5 21 210 5 5 true
TC-10 21 210 10 5 true
TE-5 21 210 5 5 true

TE-10 21 210 10 5 true
pdh 11 34 24 1 false

di-yuan 11 42 22 1 false

We also tested the performance of our best branch-and-cut algorithm bc-5-heur on a set

of larger instances described below. Those instances (see Table 5) are made of complete graphs

composed of 41 vertices with a single source and many (5,10 or 20) destinations. The distinc-

tion between TC and TE instances is the same as before. This time, we test only the methods

layered, layered-r and bc-5-heur, and fix a maximum CPU time limit of 3 hours. Be-

cause the whole execution of heuristic was taking too much time, we only run the heuristic for

5 minutes. Then, we start the branch-and-cut algorithm bc-5-heurwith the best bound provided

by heuristic during the 5 minutes.

Table 5: Large instances description.

Name |N | |E| |Q| # of instances Rooted demands?
TCh-5 41 820 5 1 true
TCh-10 41 820 10 1 true
TCh-20 41 820 20 1 true
TEh-5 41 820 5 1 true

TEh-10 41 820 10 1 true
TEh-20 41 820 20 1 true

5.3 Results for medium size instances

First, we look at the quality of the linear programming relaxation of our model (P). Let IP ∗ and

LP ∗ be the optimal value of (P) and its linear programming relaxation, respectively. Table 6 shows

that the linear programming bound of the model improves when the value of K increases and that

it is quite bad for K = 1. Apparently these results are not in agreement with the results provided

in other papers (eg., Gouveia (1998)) which in a certain way have motivated the choice of model
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Table 6: Arithmetic average of gap
(
IP ∗−LR∗

IP ∗ ∗ 100
)

for TC and TE instances.

K
|Q| L 1 2 3 Average

5

3 18.07 4.79 1.98 8.28
4 20.78 5.87 4.87 10.50
5 22.58 0.00 5.28 9.29
7 22.60 0.00 5.51 9.37

10 22.60 0.00 5.51 9.37
Average |Q|=5 21.33 2.13 4.63 9.36

10

3 25.58 14.67 8.02 16.09
4 27.58 11.65 6.62 15.28
5 28.82 9.65 5.49 14.66
7 30.33 5.24 6.15 13.91

10 32.32 0.00 6.59 12.97
Average |Q|=10 28.93 8.24 6.57 14.58
Average Total 25.13 5.19 5.60 11.97

for this work. The reason is that the problem studied in Gouveia is a Steiner tree problem, which

permitted a different enhancement technique, namely the use of the technique “of directing the

formulation”. This leads to much stronger linking constraints between flow variables and design

variables. We note that without explicitly stating that our problem is a tree problem for K = 1, it is

not difficult to see that the optimal solutions are Steiner trees spanning the root node and the nodes

in Q and thus we could have used the “directing the formulation” technique. However, the focus

of our paper is on the disjoint case and thus, we have not considered this enhancement technique

for K = 1.

Before comparing the different algorithms, we need to determine the “best” value for the depth

parameter of branch-and-cut algorithm bc-n. We select a group of complicated instances (in-

stances that layered cannot solve to optimality within 3600 seconds) and we test different values

of the depth parameter n. On Figure 5, we plot the result of this tuning stage. For both curves,

the minimum is reached when n = 5. Therefore, in the sequel we always consider bc-5 for the

hybrid branch-and-cut algorithm.

We compare the performance in terms of resolution time for the different methods by plotting

the performance profile (Dolan and More, 2002) on Figure 6. Clearly, algorithms bc-5, bc-int

and bc-5-heur are the fastest algorithms.

Out of the 330 instances which compose the entire test set, layered, layered-r, bc-all,
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Figure 5: bc-n depth parameter tuning by average CPU time (sec.)

and bc-int could respectively not solve 21, 20, 39, and 2 of them within 3600 seconds. In con-

trast, bc-5 and bc-5-heur could solve them all. Among the 21 instances that layered and 20

instances that layered-r cannot solve to optimality, only 2 cannot be solved by bc-int. bc-5

and bc-5-heur can solve all instances to optimality. The geometric averages of CPU times in

seconds are > 31.62, > 25.97, > 36.80, > 9.46, 9.61, 7.58, and 2.45, for layered, layered-r,

bc-all, bc-int, bc-5, bc-5-heur, and heuristic respectively (> indicates that one or

more instances could not be solved to optimality).

Table 7 indicates the arithmetic average values of the LP relaxation and heuristic gaps,

given by IP ∗−LP ∗

IP ∗ and heuristic∗−IP ∗

IP ∗ , respectively, as well as heuristic CPU time in seconds

and the number of instances for which the solution of heuristic is optimal. It can be seen that

heuristic always provides a very good solution to the problem. Furthermore, heuristic is

also pretty fast, taking around 3 seconds whereas layered and bc-5-heur take respectively

on average 31.62 and 7.58 seconds. In 174 cases out of 330 (around 53%), the solution given by

the heuristic is the optimal one. Finally, Tables 8 and 9 respectively present geometric averages

of the number of Benders cuts generated by the branch-and-cut algorithms, and number of nodes

explored by branch-and-cut and extended formulations, and Table 10 provides means of CPU time

and the corresponding percentage of total time spent for solving Benders subproblems (means have

been taken over all instances).
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Figure 6: Performance profile comparing methods on the entire test set.

Table 7: Linear relaxation gap and heuristic performance for the entire test set.

Instances
LP Relaxation heuristic

Gap(%) Gap(%) Optimal
TC-5 8.07 2.45 38/75

TC-10 12.67 1.85 42/75
TE-5 10.64 3.28 33/75
TE-10 16.48 1.23 38/75

pdh 18.82 0.62 10/15
di-yuan 14.46 0.86 13/15

Arithmetic mean 12.39 2.07 -

5.4 Results for large instances

Out of the 54 instances that belong to the test sets of larger instances, 25, 25, and 22 instances could

not be solved to optimality within the time limit by layered, layered-r, and bc-5-heur,

respectively. The difference in performance between the methods is less striking than with the

medium-size instances. Indeed layered and layered-r do not reach optimality for 25 in-

stances which is close to the 22 instances that bc-5-heur cannot solve optimality.

Table 11 shows the number of large instances that could be solved to optimality by all three

methods, depending on |Q|, L and K. Out of the 54 instances tested, only 27 instances could

be solved to optimality by the three methods. The geometric average of their solution times (in
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Table 8: Number of cuts generated for the entire test set.

Instances
Number of cuts generated

bc-all bc-int bc-5 bc-5-heur
TC-5 133.45 85.51 89.35 67.63

TC-10 1950.49 391.05 470.82 229.19
TE-5 277.87 146.59 148.22 114.42

TE-10 5420.83 809.77 943.42 516.66
pdh 1328.24 491.61 501.22 458.86

di-yuan 358.36 203.88 195.24 185.26
Geometric mean 781.49 256.36 280.03 182.34

Table 9: Number of nodes visited for the entire test set.

Instances
Number of nodes visited

bc-all bc-int bc-5 bc-5-heur layered
TC-5 25.27 50.23 32.84 16.22 16.98

TC-10 354.39 1863.52 967.46 600.49 471.27
TE-5 47.81 147.42 81.59 103.11 60.25

TE-10 675.94 8832.68 3690.13 3900.22 1278.58
pdh 764.30 1621.85 1325.91 559.40 1299.96

di-yuan 64.43 140.82 114.56 31.33 107.15
Geometric mean 136.89 579.57 319.05 236.12 170.43

Table 10: CPU time spent for solving Benders subproblems.

bc-all bc-int bc-5 bc-5-heur heuristic
CPU time 19.09 4.01 4.73 0.16 0.07

(Geometric mean)
Percentage of total time 65.54 % 62.68 % 64.83 % 23.17 % 21.42 %

(Arithmetic mean)

seconds) are 69.72, 62.19, 140.84, and 15.09, for layered, layered-r, bc-5-heur, and

heuristic respectively. Clearly for those instances, the two layered models layered-r and

layered are faster than our branch-and-cut algorithm bc-5-heur. As we did before, for the

same 27 instances we evaluate the quality of the linear programming relaxation of our model (P)

by computing the gap at the root. Table 12 shows the evolution of this gap depending on |Q|, K
and L. The conclusion is similar to the one we reached before since the gap is relatively large
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Table 11: Number of large instances solved to optimality by all methods in the 10800 seconds time
windows.

K
|Q| L 1 2 3

5
3 2/2 2/2 2/2
4 2/2 2/2 2/2
5 2/2 2/2 1/2

10
3 2/2 2/2 2/2
4 1/2 1/2 2/2
5 0/2 0/2 0/2

20
3 0/2 0/2 0/2
4 0/2 0/2 0/2
5 0/2 0/2 0/2

Total 9/18 9/18 9/18

Table 12: Arithmetic average of gap (%)
(
IP ∗−LR∗

IP ∗ ∗ 100
)

for the 27 large instances TC and TE
solved to optimality.

K
|Q| L 1 2 3 Average

5
3 17.31 9.82 4.13 10.42
4 18.13 5.31 4.74 9.39
5 18.24 0.00 3.55 8.00

Average |Q|=5 17.89 5.04 4.26 9.35

10
3 25.94 13.06 8.32 15.77
4 25.62 8.05 4.79 10.81

Average |Q|=10 25.84 11.39 6.55 13.79
Average Total 20.54 7.16 5.28 10.99

for K = 1 and becomes smaller for K = 2, 3. The time spent by heuristic to find a good

upper bound is again relatively low (on average 15.09 seconds). Moreover the quality of this upper

bound is good since for 13 out of 27 instances (around 48% of the cases), the solution given by the

heuristic is the optimal solution and on average the gap between the heuristic and the optimal

solution is around 3.19%.

Table 13 shows the gap remaining to close after 3 hours of computation for the 27 instances that

at least one of the methods could not solve to optimality within the time limit. This gap is given

by UB−LB
UB

, where UB is the objective value of the best feasible solution found, and LB the best

guaranteed lower bound after 3 hours. For |Q| ∈ {5, 10}we see, on average, that the gap remaining
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Table 13: Arithmetic average of gap (%) remaining to close for the 27 large instances TC and TE
not solved to optimality.

layered layered-r bc-5-heur Average

|Q|
5 0.00 1.48 0.00 0.49

10 1.09 10.07 3.24 8.13
20 25.91 17.66 19.01 20.86

Average Total 20.56 14.81 13.63

to close for the model layered is the smallest one even if the gap proposed by the branch-and-

cut algorithm is not far. For |Q| = 20, the situation is different since the gap of layered-r

is the smallest (17.66% compared to 25.91% and 19.01 respectively for the models layered

and bc-5-heur). Nevertheless our branch-and-cut algorithm bc-5-heur seems to be the best

method from a global point of view since its global gap is the smallest one. This conclusion is

reinforced by the following observation: bc-5-heur leads to the smallest gap remaining to close

in 74.07% of the 27 large instances not solved to optimality. This figure goes down to 11.11% and

25.93% for layered and layered-r, respectively.

From this numerical experiment it seems that the difficulty of a given instance is not only linked

to the number of commodities |Q|. Indeed in the SNDlib instances, the number of commodities is

high but the instances are easy to solve because the graphs from SNDlib are sparse. In contrast TC

and TE instances are difficult instances to solve because there are complete graphs and this kind of

instances become much more difficult to solve as the number of commodities increases.

Detailed results for each instance can be found at http://bit.ly/k85Khm (pdf) or

http://bit.ly/eSWTsE (xls) Moreover, all our instances can be downloaded in text format at

http://bit.ly/iA8pqu.
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Fortz, B., M. Labbé. 2004. Two-connected networks with rings of bounded cardinality. Comput.
Optim. and Appl. 27 123–148.

Fortz, B., A.R. Mahjoub, S.T. Mc Cormick, P. Pesneau. 2006. Two-edge connected subgraphs with
bounded rings: Polyhedral results and branch-and-cut. Math. Prog. 105 85–111.

Fortz, B., M. Poss. 2009. An improved Benders decomposition applied to a multi-layer network
design problem. Oper. Res. Lett. 37 359–364.

Gouveia, L. 1996. Multicommodity flow models for spanning trees with hop constraints. Eur. J.
Oper. Res. 95 178–190.

Gouveia, L. 1998. Using variable redefinition for computing lower bounds for minimum spanning
and steiner trees with hop constraints. INFORMS J. Comput. 10 180–188.

Gouveia, L., T. L. Magnanti. 2003. Network flow models for designing diameter-constrained
minimum-spanning and Steiner trees. Networks 41 159–173.

Gouveia, L., P.F. Patrı́cio, A.F. Sousa. 2006. Telecommunications Planning: Innovations in Pric-
ing, Network Design and Management, chap. Compact models for hop-constrained node surviv-
able network design. Springer, New York, 167–180.

Gouveia, L., P.F. Patrı́cio, A.F. Sousa. 2008. Hop-contrained node survivable network design: An
application to MPLS over WDM. Networks Spatial Econom. 8 3–21.

Gouveia, L. E., P.F. Patrı́cio, A.F. de Sousa, R. Valadas. 2003. MPLS over WDM Network Design
with Packet Level QoS Constraints based on ILP Models. Proceedings of IEEE Infocom. 576–
586.

28



Grötschel, M., C. L. Monma, M. Stoer. 1992. Facets for polyhedra arising in the design of com-
munication networks with low-connectivity constraints. SIAM J. Optim. 2 274–504.

Hooker, J.N. 2000. Logic-based methods for optimization: combining optimization and constraint
satisfaction. Wiley-Interscience.
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Design Library. Networks 55 276–286.

Pirkul, H., S. Soni. 2003. New formulations and solution procedures for the hop constrained
network design problem. Eur. J. Oper. Res. 148 126–140.

Raghavan, S. 1995. Strong formuations for network design problems with connectivity require-
ments. Ph.D. thesis, Massachusetts Institute of Technology.

Stoer, M. 1993. Design of survivable networks. Springer.

29


