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We study the problem of designing at minimum cost a two-connected network such that the shortest cycle to which each edge belongs
(a “mesh”) does not exceed a given length K . This problem arises in the design of +ber-optic-based backbone telecommunication networks.
A Branch-and-Cut approach to this problem is presented for which we introduce several families of valid inequalities and discuss the
corresponding separation algorithms. Because the size of the problems solvable to optimality by this approach is too small, we also develop
some heuristics. The computational performances of these exact and approximate methods are then thoroughly assessed both on randomly
generated instances as well as instances suggested by real applications.

Weconsider the problem of designing a minimum cost
network N with the following constraints:

(a) N contains at least two vertex-disjoint paths between
every pair of vertices (2-connectivity constraints),
and

(b) each edge of N must belong to at least one cycle
whose length is bounded by a given constantK (mesh
constraints).

We call this problem the 2-Connected Network with
Bounded Meshes problem (abbreviated as 2CNBM).
The 2CNBM problem +nds its motivation in the rapidly

developing +eld of telecommunication networks, in par-
ticular in the search for optimum topologies for these
networks. In recent years the development of telecommu-
nication networks is characterized by the introduction of
+ber-optic technology: The very high capacity and reli-
ability per 'ber cable has made hierarchical routing and
bundling of tra6c economically attractive, resulting in
sparse network topologies.
However, sparse networks are very sensitive to damage,

and providing alternative communication paths to enhance
the survivability of the network becomes mandatory (see,
e.g., Stoer 1992, Ch. 1).
In the most common mathematical model, a graph
G=(V; E) is considered where V is the set of vertices that
have to be connected and E is the set of edges that is the
set of potential links between vertices. From E, the subset
F constituting the network N =(V; F) has to be chosen.
Each edge e of E has a +xed nonnegative cost ce, and the
objective is to +nd the subset F of E of minimum total
cost, such that the resulting network N =(V; F) satis+es the

survivability requirement. From this point of view a graph
can be either k-edge connected or k-vertex connected, which
means that the removal of any (k−1) or fewer edges (re-
spectively, vertices) leaves G connected.
Two-connected networks have been found to provide in

most cases a su6cient level of survivability and a consid-
erable amount of research has focused on so-called low
connectivity constrained network design problems, i.e.,
problems for which each vertex j is characterized by a
requirements rj ∈{0; 1; 2} and min{rv; rw} vertex-disjoint
paths between every distinct pair of vertices v; w are re-
quired. Work on this kind of problem goes from the early
contributions of Steiglitz et al. (1969) to the more recent
articles of Gr>otschel and Monma (1990), Boyd and Hao
(1993), Monma and Shallcross (1989), Gr>otschel et al.
(1992, 1995), and others. For in-depth surveys in this area
the reader is referred to Stoer (1992) and Gr>otschel et al.
(1992, 1995). The special case where two edge-disjoint
(or vertex-disjoint) paths are required between each pair of
vertices has been studied by Monma et al. (1990), where
structural properties for optimal 2-connected spanning net-
works are given. There it is shown that—provided the graph
is complete and costs satisfy the triangle inequality—the
minimum cost of a two-edge connected spanning network is
equal to the minimum cost of a two-vertex connected one.
Moreover, every vertex in an optimal solution has degree 2
or 3.
Related to mesh constraints, Alevras et al. (1998) con-

sider the installation of capacity in an existing network
such that demand can be routed on length-constrained node-
disjoint paths. However, to the authors’ knowledge, mesh
constraints have never been considered in the topological
design of the network. This is a relevant extension: If a
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connection is broken, the Oow that was routed using such
connection needs to be rerouted. The extra constraint limits
the region of inOuence of the tra6c which is necessary
to reroute. For instance, the optimal solution of the 2-
connected network problem without mesh constraints on the
set of 52 zonal centers of Belgium turns out to be a shortest
Hamiltonian cycle. This implies that any edge failure
would require rerouting of the Oow that passed through
that edge, using all the edges of the network—an ob-
viously undesirable feature. Furthermore, the emerging
technology of self-healing rings can be used for rerout-
ing only if the network satis+es such bounded mesh
constraints. A self-healing ring is a cycle in the net-
work equipped in such a way that any link failure
in the ring is automatically detected by the link end nodes
and the tra6c rerouted along the alternative path in the
cycle. When such a strategy is chosen, rings must cover
the network, and their size must be limited, which are two
properties provided by our model.
Two mathematical formulations are presented in

Section 1. Section 2 describes a Branch-and-Cut approach.
Section 3 presents several heuristic methods; one of them
guarantees a 2-approximate solution. Both the exact as well
as the heuristic methods presented in the paper are tested
with randomly generated as well as instances coming from
real applications. These results are summarized in Section 4.

1. MATHEMATICAL FORMULATIONS

Let G=(V; E) be an undirected graph where V is the set of
vertices and E is the set of edges that represent the possible
pairs of vertices between which a direct transmission link
can be placed. Each edge e := {i; j}∈E has a nonnegative
cost ce := cij and a length de :=dij :=d(i; j). It is assumed
that these edge lengths satisfy the triangle inequality. The
cost of a network (V; F) where F ⊆E is a subset of possible
edges is denoted by c(F) :=Pe∈F ce. The distance between
two vertices i and j in this network is denoted by dF(i; j)
and is given by the length of a shortest path linking these
two vertices.
Given the graph G=(V; E) and W ⊂V , the edge set
�(W ) := {{i; j}∈E | i∈W; j∈V\W} is called the cut
induced by W . We write �G(W ) to make clear—in case
of possible ambiguities—with respect to which graph
the cut induced by W is considered. We also denote by
V − z :=V\{z} and E − e :=E\{e} the subsets obtained
by removing one vertex or one edge from the set of vertices
or edges. G − z denotes the graph (V − z; E\�({z}), i.e.,
the graph obtained by removing a vertex z and its incident
edges from G.
We associate with every subset F ⊆E an incidence vector

x=(xe)e∈E ∈{0; 1}|E| by setting xe := 1 if e∈F , and xe := 0
otherwise. Conversely, each vector x∈{0; 1}|E| induces a
subset F := {e∈E | xe=1} of the edge set E. For any subset
of edges F ⊆E we de+ne x(F) :=Pe∈F xe.
For each edge e∈E, we de+ne Ce as the set of cycles

in G=(V; E) that include edge e and whose length is less

Figure 1. A fractional solution satisfying equations
(5) and (6).

than or equal to K . The 2CNBM problem can be stated as
follows:

min
∑
e∈E
cexe

s:t:

x(�(W ))¿2; W ⊂V; � 	=W 	=V; (1)

x(�G−z(W ))¿1; z ∈V; W ⊂V\{z};

� 	=W 	=V\{z}; (2)

xe=1⇒
∑
f∈c
xf = |c|; for some c∈Ce; (3)

xe ∈{0; 1}; e∈E: (4)

Inequalities (1) enforce that removing an edge preserves
connectivity: They are called cut inequalities. Inequalities
(2) ensure that there is no articulation vertex in the resulting
graph: They are called vertex (or node) cut inequalities.
Together with (4) we would then obtain the formulation
of the minimum 2-connected network problem utilized by
Gr>otschel et al. (1992) and Stoer (1992).
To formulate the 2CNBM problem as an integer linear

program, we must express the mesh constraints (3) as lin-
ear inequalities. This can be done as in Fortz et al. (1997)
by using new variables describing the presence of feasi-
ble cycles in the solution. More precisely, we associate a
binary variable zc to each cycle c∈ ⋃

e∈E Ce, and constraints
(3) can be expressed as:∑
c∈Ce

zc¿xe; e∈E; (5)

zc6xf; f∈ c; c∈
⋃
e∈E

Ce: (6)

We propose here a strenghtened formulation. Consider a
fractional solution given by the graph depicted in Figure 1.
All edge lengths are equal to 1 and the bound K =5. The
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feasible cycles are:

c1 = {{1; 2}; {1; 9}; {2; 9}};
c2 = {{1; 2}; {1; 9}; {2; 3}; {3; 8}; {8; 9}};
c3 = {{2; 3}; {2; 9}; {3; 8}; {8; 9}};
c4 = {{2; 3}; {2; 9}; {3; 7}; {7; 8}; {8; 9}};
c5 = {{3; 7}; {3; 8}; {7; 8}};
c6 = {{6; 7}; {6; 9}; {7; 8}; {8; 9}};
c7 = {{3; 7}; {3; 8}; {6; 7}; {6; 9}; {8; 9}};
c8 = {{3; 4}; {3; 7}; {4; 5}; {5; 6}; {6; 7}}:
It is easy to verify that taking zci =0:5, i=1; : : : ; 6, zc7 = 0
and zc8 = 1 provide a feasible solution to (5)–(6). However,
edge {2; 3} belongs only to cycles c2; c3, and c4; and all
these cycles contain edge {8; 9}. Because x{8;9}=0:5, we
would like to restrict the contribution of these cycles to 0.5
when we impose that {2; 3} belongs to a feasible cycle.
To do so, we must distinguish which cycles are used to

impose mesh constraints for a particular edge by introducing
a variable for each feasible cycle containing a given edge,
for all the edges in the network. Therefore, we de+ne new
binary variables yce , c∈Ce, e∈E, such that

yce =



1 if cycle c is present in the solution F and

covers edge e;

0 otherwise:

With these variables, mesh constraints can be expressed as∑
c∈Ce

yce¿xe; e∈E; (7)

∑
c∈Ce:f∈c

yce6xf; e∈E; f∈E\{e}; (8)

where constraints (8) restrict the contribution of cycles that
share some edges. For the above fractional solution, we
obtain the inconsistent subset of constraints

yc2{2;3} + y
c3
{2;3} + y

c4
{2;3}¿x{2;3}=1; (9)

yc2{2;3} + y
c3
{2;3} + y

c4
{2;3}6x{8;9}=0:5: (10)

The new formulation is therefore stronger than the previous
one. The complete formulation of the 2CNBM problem is
given below:

min
∑
e∈E
cexe

s:t:

x(�(W ))¿2; W ⊂V; � 	=W 	=V; (11)

x(�G−z(W ))¿1; z ∈V; W ⊂V\{z};

� 	=W 	=V\{z}; (12)

∑
c∈Ce

yce¿xe; e∈E; (13)

∑
c∈Ce:f∈c

yce6xf; e∈E; f∈E\{e}; (14)

xe; yce ∈{0; 1}; c∈Ce; e∈E: (15)

This formulation involves Pe∈E |Ce| new variables and
m(m+1) new constraints with respect to the formulation of
the 2-connected problem without mesh constraints. Because
the number of variables and constraints are both exponential,
we propose a Branch-and-Cut approach, using the decision
variables (xe)e∈E only, to solve the problem.

2. VALID INEQUALITIES AND A
BRANCH-AND-CUT ALGORITHM

2.1. Cut and Vertex Partition Inequalities

The +rst inequalities to introduce are those that enforce
two-connectivity. An obvious set of such inequalities is the
set of cut inequalities (1) and vertex-cut inequalities (2).
These inequalities can be generalized as in Gr>otschel et al.
(1992), obtaining partition inequalities and vertex partition
inequalities.
In our case, partition inequalities are just the sum of the

cut inequalities for the subsets inducing the partition, and
so do not need to be considered. On the other hand, vertex
partition inequalities are in general stronger than vertex cut
inequalities. These inequalities are de+ned as

1
2

p∑
i= 1

x(�G−z(Wi))¿p−1;

where z ∈V is a given vertex and W1; : : : ; Wp a partition of
V\{z} into nonempty subsets. The separation problem is
solved as suggested in Gr>otschel et al. (1992).
Other kinds of inequalities have been proposed for the

two-connected network problem (Gr>otschel et al. 1992,
Stoer 1992). However, we found cut and vertex parti-
tion inequalities su6cient to e6ciently enforce the two-
connectivity of all the instances we considered. The other
inequalities are apparently useless in our case, because the
constraint on the mesh lengths is a stronger requirement
compared to the two-connectivity.

2.2. Mesh Cover Inequalities

Suppose we have a two-connected solution, with an (in-
feasible) edge e violating the mesh constraints (13) and
(14), i.e., at least one edge in each feasible cycle c∈Ce is
not in the current solution. A valid inequality can be gen-
erated by imposing that at least one of these edges must
be in the solution, as proposed by Ma6oli and V>arbrand
(1994). More precisely, if S ⊆E is a subset of edges such
that S ∩ c 	=� forall c∈Ce, then x(S)¿xe is a valid in-
equality.
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We derive here stronger inequalities by looking at the
projection of our formulation of mesh constraints. Sup-
pose x̃=(x̃e)e∈E is a vector not satisfying mesh constraints
(14)–(13), i.e., such that the linear system∑
c∈Ce:f∈c

yce6x̃f; e∈E; f∈E\{e};

∑
c∈Ce

yce¿x̃e; e∈E;

yce¿0; e∈E; c∈Ce;

is infeasible. Since x̃ is +xed, the system can be decomposed
by edge. Therefore, there exists e∈E such that∑
c∈Ce

yce ¡x̃e

for all (yce )c∈Ce , satisfying∑
c∈Ce:f∈c

yce6x̃f; f∈E\{e}; (16)

yce¿0; c∈Ce: (17)

By duality, the linear program

min
∑

f∈E\{e}
ufx̃f

s:t:
∑

f∈c\{e}
uf¿1; c∈Ce; (18)

uf¿0; f∈E\{e}; (19)

has an optimal value smaller than x̃e. Let ( Suf)f∈E\{e} be the
optimal solution of this linear program. A valid inequality
for the 2CNBM problem is∑
f∈E\{e}

Sufxf¿xe: (20)

We call inequalities (20) mesh cover inequalities.
Unfortunately, solving the separation problem exactly

requires the knowledge of all the feasible cycles c∈Ce.

2.3. Metric Inequalities

We now describe a new class of valid inequalities, obtained
by projecting Oow formulation of the mesh constraints. This
approach is related to the work of Bienstock et al. (1998).

PROPOSITION 1. Consider an edge e := {i; j}∈E and a set of
node potentials (�k)k∈V satisfying

�i− �j¿K −d(i; j):
Then∑
f∈E\{e}

vfxf¿xe (21)

is a valid inequality for 2CNBM where

vf = min
(
1;max

(
0;

|�l− �k | −d(k; l)
�i− �j +d(i; j)−K

))
(22)

for all f := {k; l}∈E\{e}.

PROOF. Let F ⊆E be a feasible solution de+ned by the
(xe)e∈E variables, and consider an edge e := {i; j}∈F . This
edge belongs to a feasible cycle of length less than or equal
to K . It means that the shortest path between i and j in
F\{e} has a length less than or equal to K −d(i; j). In
other words, the problem

min Sw=
∑

{k;l}∈E\{e}
d(k; l)(ukl+ ulk)

s:t: ∑
l:{k;l}∈E\{e}

(ukl− ulk)

=



x{i; j} if k = i;

−x{i; j} if k = j;

0 otherwise;

k ∈V; (23)

ukl+ ulk6x{k;l}; {k; l}∈E\{e}; (24)

ukl¿0; {k; l}∈E\{e}; (25)

ulk¿0; {k; l}∈E\{e}; (26)

has an optimal solution value w∗ such that w∗6K −d(i; j).
On the other hand, if {i; j} =∈F; ukl=0; k; l∈V is

feasible, meaning that the optimal solution of the problem is
w∗=0. We can conclude that the optimal solution value
always satis+es

w∗6(K −d(i; j))x{i; j}:
The dual of this minimum cost Oow problem is

max w=(�i− �j)x{i; j} −
∑

{k;l}∈E\{e}
%{k;l}x{k;l}

s:t:

�k − �l− %{k;l}6d(k; l); {k; l}∈E\{e}; (27)

�l− �k − %{k;l}6d(k; l); {k; l}∈E\{e}; (28)

%{k;l}¿0; {k; l}∈E\{e}: (29)

It is easy to see that the optimum of the dual is reached for

%{k;l}=max(0; |�l− �k | −d(k; l)); {k; l}∈E\{e};
and the dual problem becomes

maxw= (�i− �j)x{i; j}

−
∑

{k;l}∈E\{e}
max(0; |�l− �k | −d(k; l))x{k;l}:
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Figure 2. Values of �k = �k.

By duality for any values of (�k)k∈V , we must have
w6w∗6(K −d(i; j))x{i; j}, which implies that∑
{k;l}∈E\{e}

max(0; |�l− �k | −d(k; l))x{k;l}

¿(�i− �j +d(i; j)−K)x{i; j}
is a valid inequality. Dividing by the positive coe6cient of
x{i; j}, this leads to

∑
{k;l}∈E\{e}

max
(
0;

|�l− �k | −d(k; l)
�i− �j +d(i; j)−K

)
x{k;l}¿x{i; j}:

Because the variables are binary, a stronger valid inequality
is obtained by changing the coe6cient of a variable to 1
when

|�l− �k | −d(k; l)
�i− �j +d(i; j)−K¿1;

leading to (21).

Inequalities (21) are called metric inequalities. Given a
fractional point (xe)e∈E , an easy way to solve the separa-
tion problem is to compute the minimum cost Oow de+ned
by (23)–(26) for each e∈E and to consider the inequal-
ity derived from �k values equal to the corresponding node
potentials &k . However, it is possible to generate stronger
inequalities, as illustrated below.
Consider the graph depicted in Figure 2, with edge lengths

equal to 1 and a bound K =5. Edge {1; 2} violates the mesh
constraints. Let &k be the node potentials corresponding to
the minimum cost Oow between 1 and 2. These values are
given in Figure 2. The inequality obtained for edge {1; 2}
by taking �k = &k is

x17 + x28 + x26 + x46¿x12: (30)

The aim of introducing this inequality is to enforce that
the distance between vertices 1 and 2 becomes less than or
equal to 4. But if we add edge {4; 6} to the current solution
in the graph of Figure 2, inequality (30) is satis+ed, while
the distance between vertices 1 and 2 remains equal to 5.

Moreover, if we take �4 =−4 in place of �4 =−5, we get
the new valid inequality

x17 + x28 + x26¿x12; (31)

which is stronger than (30) and involves only edges that
contribute to shorten the distance between vertices 1 and 2.
Note that this inequality is also a mesh cover inequality.
More precisely, we would like to +nd an inequality in

which each edge with positive coe6cient contributes to the
decrease of the distance between i and j if added to the
solution. Heuristic 1 provides (�k)k∈V with this property.

HEURISTIC 1 (SEPARATION OF METRIC INEQUALITIES). Let
x̃=(x̃f)f∈E be an infeasible ( fractional) solution of the
2CNBM problem and e := {i; j}∈E be an edge such that
x̃e¿0.

1: Compute a minimum cost /ow of value x̃e between i
and j with capacities (x̃f)f∈E\{e} inG−e. Let (&k)k∈V
be the corresponding node potentials.

2: If &j +K −de¿0; all metric inequalities having xe as
right-hand side are satis'ed. STOP.

3: Set

�k :=

{
&j if k = j;

0 otherwise

for all k ∈V .
All vertices are unlabeled.

4: While there exists an unlabeled vertex; do:

• select a vertex l∈V such that �l=min{�k : k ∈V;
k unlabeled};

• for all vertices k ∈V such that k is adjacent to l
in E\{e}; if �k¿�l+d(k; l) and if �l+d(k; l)¿&k ;
set �k := �l+d(k; l);

• label vertex l.
5: Set

vf =min
(
1;max

(
0;

|�l− �k | −d(k; l)
�i− �j +d(i; j)− K

))

for all f := {k; l}∈E\{e}:
6: If Pf∈E\{e} vfxf¡xe is violated; add it to the current
LP.

Note that the computation can be restricted to the sub-
graph Ue induced by edges belonging to a feasible cycle
including e; i.e., Ue=

⋃
C∈Ce
C\{e}: Applied to the example

of Figure 2, this heuristic leads to inequality (31).
Heuristic 1 is a polynomial time procedure to separate

metric inequalities. The inequalities generated provide a
weaker linear relaxation than the one obtained using mesh
cover inequalities, as shown in Proposition 3. However, if
the heuristic stops with node potentials (&k)k∈V such that
&j +K −de¿0, then all mesh cover inequalities for edge e
are satis+ed (see Proposition 2), and the two linear relax-
ations are thus equivalent.
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Applying this heuristic instead of the exact separation for
mesh cover inequalities may fail if the heuristic stops with
&j +K −de¡0 and an inequality that is not violated. How-
ever, in practice, each time this case occurred, we remarked
that all mesh cover inequalities were satis+ed. We thus
preferred this approach to the exact separation requiring
computation of all the feasible cycles.

PROPOSITION 2. If Heuristic 1 applied to edge e := {i; j}
∈E 'nishes with &j +K −de¿0; then all mesh cover in-
equalities (20) are satis'ed.

PROOF. Because −&j6K −de, the Oow generated by the
minimum cost Oow algorithm uses only paths of length less
than or equal to K −de. Each one of these paths, combined
with edge e, forms a feasible cycle belonging to Ce.
Setting yce equal to the Oow sent on the corresponding

path leads to a feasible solution of the system (16)–(17)
such that Pc∈Ce y

c
e¿x̃e. We can conclude that all mesh cover

inequalities are satis+ed.

PROPOSITION 3. Any metric inequality generated by Heuris-
tic 1 is a mesh cover inequality.

PROOF. To prove this result, it is su6cient to show that
(vf)f∈E is a feasible solution to the separation problem (18)–
(19) for mesh cover inequalities. The nonnegativity con-
straints are obviously satis+ed.
Let c∈Ce be a feasible cycle. If there exists f∈ c such

that vf =1, obviously Pf∈c\{e} vf¿1 and (18) is satis+ed.
Otherwise, for all f∈ c,

vf =max
(
0;

|�l− �k | −d(k; l)
�i− �j +d(i; j)− K

)
;

and

∑
f∈c\{e}

vf¿

∑
f:={k; l}∈c\{e} (|�l− �k | −d(k; l))

�i− �j +d(i; j)− K

¿

∑
f:={k; l}∈c\{e} (�l− �k −d(k; l))
�i− �j +d(i; j)− K

=
�i − �j −

∑
f∈c\{e} df

�i − �j + d(i; j)− K
¿1;

because c is feasible and thus Pf∈c\{e}df6K − d(i; j).
Constraint (18) is therefore satis+ed.

This result implies that if Heuristic 1 generates a violated
metric inequality, then there exists a mesh cover inequality
which is at least as violated as the metric inequality.

2.4. Weighted Partition Inequalities

We now describe inequalities related to a partition of V into
subsets W1; : : : ; Wp.

PROPOSITION 4. Consider a graph G=(V; E) and let
W1; : : : ; Wp be a partition of V . Then

1
2

p∑
i=1

∑
e∈�(Wi)

(K − de)xe¿(p− 1)K (32)

is a valid inequality for 2CNBM.

PROOF. Let (xe)e∈E be variables de+ning a feasible solution
of 2CNBM.
We will +rst prove the result for p=2, i.e., the partition

de+nes a cut. Note that, by the triangle inequality, an edge
e∈E such that de¿K=2 does not belong to any cycle of
length less than or equal to K , and so xe=0. This means that

dexe6
K
2
xe; e∈E: (33)

Thus we have

1
2

2∑
i=1

∑
e∈�(Wi)

(K − de)xe

=
∑
e∈�(W1)

(K − de)xe because �(W1)= �(W2);

¿
∑
e∈�(W1)

K
2
xe by (33);

=
K
2
x(�(W1))

¿K;

because the solution network must be two-connected.
Now suppose that p¿2 and that the result holds for all
q; 26q6p−1. Suppose also that there exist a partition
W1; : : : ; Wp of V such that (32) is violated, i.e.,

1
2

p∑
i=1

∑
e∈�(Wi)

(K − de)xe¡(p− 1)K: (34)

Consider a feasible cycle using at least one edge in
⋃p
i=1

�(Wi), and denote by C the subset of edges de+ning this
cycle. C is such that∑
e∈C
dexe6K:

Let C =C ∩ (⋃pi=1 �(Wi)). Obviously,∑
e∈C
dexe6K: (35)

Moreover, the number of elements in C is given by Pe∈C xe,
implying∑
e∈C
Kxe= |C|K: (36)

Combining (35) and (36), we obtain∑
e∈C
(K − de)xe¿(|C| − 1)K: (37)



872 / FORTZ, LABB �E, AND MAFFIOLI

Without loss of generality, we may assume that the +rst q−1
subsets of the partition—W1; : : : ; Wq−1—are not incident to
C, while all the others—Wq;Wq+1; : : : ; Wp—are. We de+ne a
new partition of V in q subsets as follows:

Wi=



Wi if i¡q;
p⋃
j=q

Wj if i= q:

This partition is such that

1
2

q∑
i= 1

∑
e∈�(Wi)

(K − de)xe

=
1
2

p∑
i= 1

∑
e∈�(Wi)

(K − de)xe −
∑
e∈T
(K − de)xe; (38)

where T =(
⋃p
i= q �(Wi))− �(Wq).

By the de+nition of C and Wq, it is clear that C ⊆ ⋃p
i= q

�(Wi) and C ∩ �(Wq)=�, so C ⊆T . Using (37), this leads
to:∑
e∈T
(K − de)xe¿

∑
e∈C
(K − de)xe¿(|C| − 1)K: (39)

Combining (34), (38), and (39), we have:

1
2

q∑
i=1

∑
e∈�(Wi)

(K − de)xe

¡(p− 1)K − (|C| − 1)K =(p− |C|)K:
Moreover, C is adjacent to at most |C| subsets in the original
partition, meaning that p− q+ 16|C|, or p− |C|6q− 1.
We conclude that

1
2

q∑
i=1

∑
e∈�(Wi)

(K − de)xe¡(q− 1)K;

which leads to a contradiction since q¡p, and (32) is thus
a valid inequality for 2CNBM.

We call this new class of inequalities weighted parti-
tion inequalities. A polynomial method for separating the
weighted partition inequalities is available only when p=2
—weighted cut inequalities—using the Gomory-Hu algo-
rithm (Gomory and Hu 1961). Following ideas of Gr>otschel
et al. (1992), we try to transform the minimum weighted cut
into a partition leading to a violated inequality.
Unfortunately, from the proof of Proposition 4 when
p=2, we see that the weighted cut inequalities are weaker
than cut inequalities, implying that all weighted cut inequal-
ities are satis+ed when the solution is two-connected. This
implies that we cannot rely on “almost violated” weighted
cut inequalities but that we have to try all cuts coming
from the Gomory-Hu tree if we want to generate violated

weighted partition inequalities. Nevertheless, weighted
partition inequalities are the only valid inequalities that
combine the two-connectivity constraints with the mesh
constraints, and our numerical experiments showed that
these inequalities are useful for improving the lower bounds
computed in the Branch-and-Cut algorithm.

2.5. The Branch-and-Cut Algorithm

We now brieOy describe how we implement a Branch-and-
Cut algorithm for 2CNBM.

• Preprocessing: For each edge, compute the length of
the shortest cycle containing it. If this length is greater
than the bound imposed on meshes, the edge will never
appear in a feasible solution and can be removed. If the
remaining network is not two-vertex connected, stop:
The problem is infeasible.

• Start with an empty pool of valid inequalities.
• Solve the LP formed by the degree constraints
x(�(v))¿2; v∈V .

• At each node of the Branch-and-Bound tree:
1. Look for violated inequalities in the pool. If none is
found, generate cut, weighted partition and metric
inequalities. If no new inequality is found, generate
vertex partition inequalities.

2. If some inequalities are found:
– Solve the new LP,
– Put all the inactive inequalities in the pool, and
remove them from the LP,

– Go to Step 1.
Otherwise,
– Apply the dual greedy heuristic of §3.4 on the
graph corresponding to nonzero variables to get
a valid upper bound,

– Branch on the fractional variable maximizing
min(xe; 1 − xe)L, where L is the length of the
shortest cycle including e in the graph de+ned
by the edge set {f : xf¿0}. The Branch-and-
Bound tree is examined using a best +rst search
strategy.

3. HEURISTICS

We describe brieOy +ve heuristics used to generate feasible
solutions; the +rst four are constructive. In each case, we
assume that the problem is feasible, i.e., the set of potential
edges is two-vertex connected and satis+es the mesh con-
straints. Furthermore, we suppose that all redundant edges
always have been removed.

3.1. Ear-Inserting Method

The basic idea of this heuristic is derived from the ear-
inserting procedure proposed by Monma and Shallcross
(1989) for designing minimum-weight two-connected net-
works. We adapt this procedure in order to satisfy mesh
constraints. It is developed for the particular case where the
edge costs equal to their lengths.
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Our aim is to construct cycles with length at most K ,
so that the total cost does not increase too much: We +rst
construct the minimum length cycle; we then add at each
step the vertex which minimizes the total length increase.
When no new vertex can be added to the starting cycle
without violating the mesh constraints, we create a new cycle
including a pair of vertices already in the solution in order
to preserve the two-connectivity requirement. We add as
many vertices as possible to this cycle until we reach the
bound. Then we repeat the procedure by initiating a new
cycle until all vertices are in the solution. Moreover, we
also start a new cycle when it is better than augmenting
the current one. This procedure is improved by local 2-opt
exchange in the cycle being constructed and by allowing to
re-use a vertex already in the solution if it leads to a better
solution.

3.2. Cutting Cycles in Two Equal Parts

Our numerical experiments show that the optimal two-
connected network with no further constraints often turns
out to be a Hamiltonian cycle. By adding edges to this
cycle, we can satisfy the mesh constraints. In this heuristic,
edges are added to cut the cycle in two almost equal parts,
and the cutting is repeated for all subcycles until the mesh
constraints are satis+ed.

3.3. Path Following Method

This method consists of determining an Hamiltonian tour
and then, beginning with any vertex, following the tour in,
say, the clockwise direction until we reach the most distant
vertex of the tour, such that connecting it with the start-
ing vertex yields a cycle of length not greater than K . We
insert that edge and start again, taking as +rst vertex the one
that was considered last in the previous iteration, until the
solution graph becomes feasible. The procedure is repeated
starting from every vertex, and the best solution is kept.
Although rarely attractive in practice, this simple con-

structive heuristic has the nice feature of suggesting a poly-
nomial algorithm with a worst-case performance bound with
respect to the cost of an optimal solution, in the important
particular case that the costs satisfy the triangle inequality
(and hence G is a complete graph).
Assume we apply the polynomial heuristic starting with

the Hamiltonian tour obtained by Christo+des heuristic
(Christo+des 1976). Let ĉH be the cost of this tour and
ĉTCBM the cost of the solution to the 2CNBM problem found
by the path following heuristic. Because of the triangle in-
equality, we have ĉTCBM62ĉH . It was already observed by
Frederickson and J�a J�a (1982) that ĉH6 3

2c
∗
TC where c

∗
TC is

the cost of an optimal two-connected subgraph of G. Ob-
viously, c∗TC6c

∗
TCBM , the cost of an optimal solution to the

2CNBM problem. Hence, this version of the path following
heuristic gives a solution with a cost never worse than three
times the optimal cost.
Note that each inequality used to get that bound is tight.

However, examples for which the bounds are reached do not

coincide, and the question of the tightness of our worst-case
bound remains open.

3.4. Dual Greedy Method

The fourth heuristic is based on a greedy removal of edges.
It starts with all edges and tries to remove the most costly
one while preserving two-connectivity and keeping cycles
of bounded lengths.

3.5. Randomly Iterated Dual Greedy

Each dual greedy solution can be seen as a local minimum
for our problem. In order to +nd better solutions, we would
like to iterate the process to generate diWerent solutions.
Suppose we have a dual greedy solution S1: If a better so-
lution S2 exists, at least one edge from S1 is not in S2.
In other words, by removing an S1-edge from the set of
all possible edges and applying dual greedy again, we +nd
a new solution. We can iterate this procedure by keeping
a list of all solutions found and removing from the initial
set of edges a randomly selected “covering” of the gener-
ated solutions. Applying dual greedy again leads to a new
solution.
Even if this heuristic is time and memory consuming, it

leads to better results than the others. This is because of
the fact that this heuristic permits us to explore diWerent re-
gions of the solution space, avoiding being trapped in local
minima. However, choices for new solutions are made at
random, while it would be advisable to guide the search.
Meta-heuristics such as Simulated Annealing or Tabu Search
can be useful tools to achieve this goal, but mesh constraints
make the identi+cation of a neighborhood that can be eWec-
tively searched a di6cult task.

4. COMPUTATIONAL RESULTS

We have tested the Branch-and-Cut algorithm and the
heuristics on planar problems in which lengths and costs
are equal to the Euclidean distances. Tests were made for
diWerent values of the bound, for instances coming from
real applications, with 12, 17, 30, and 52 vertices; and for
random problems, with vertices uniformly generated in a
square of size 250× 250. Random problems with 10 to 50
vertices were generated, and we tested +ve instances of
each size.

4.1. Branch-and-Cut Method

The Branch-and-Cut algorithm was implemented in C++
on a SUN Sparc 10 workstation, using CPLEX 4.0 as LP
solver. The CPU time limit was +xed to 20 000 seconds.
Table 1 reports results obtained for problems coming from

real applications, while Table 2 reports a summary of re-
sults obtained for randomly generated problems. The gaps
are relative to the best known upper bound. Data on the
randomly generated test problems are available at the Web
page http://smg.ulb.ac.be/˜bfortz/2cnbm/data.html.
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Table 1. Results of the Branch-and-Cut algorithm for instances coming from real applications.

V E K C WP M VP BBN T LB UB G GR

12 31 150 Infeasible — 1 — — — —
12 49 200 8 23 112 29 78 22 622 622 0 9.5
12 58 250 6 17 42 3 10 3 541 541 0 2.6
12 63 300 6 17 71 35 50 11 541 541 0 5.0
12 65 350 7 14 37 28 10 2 521 521 0 2.7

17 55 150 Infeasible — 1 — — — —
17 88 200 19 44 332 43 147 166 834 834 0 7.6
17 109 250 26 40 304 52 310 280 789 789 0 6.6
17 119 300 21 33 124 22 66 38 726 726 0 2.1
17 126 350 22 40 164 37 170 95 725 725 0 3.3

30 174 150 115 275 811 207 2327 20000 1164 1268 8.2 18.1
30 266 200 79 190 1301 170 2227 20000 1034 1095 5.6 12.2
30 328 250 49 110 654 84 1520 6925 935 935 0 4.3
30 372 300 47 78 764 80 1085 6188 898 898 0 2.7
30 406 350 52 71 314 42 282 940 874 874 0 2.6

52 559 150 115 155 683 66 427 20000 1212 1343 9.8 13.3
52 821 200 103 122 565 69 367 20000 1143 1246 8.3 11.2
52 1040 250 90 122 654 50 308 20000 1107 1181 6.3 8.9
52 1149 300 102 115 858 47 279 20000 1084 1117 3.0 4.7
52 1230 350 137 147 799 53 256 20000 1067 1085 1.7 3.1

V=Number of vertices
E=Number of edges after preprocessing
K=Bound on the mesh lengths
C=Number of cut inequalities
WP=Number of weighted partition inequalities
M=Number of metric inequalities
VP=Number of vertex partition inequalities
BBN=Number of nodes explored in the Branch-and-Bound tree
T=Time (in seconds)
LB=Best lower bound
UB=Best upper bound
G=Remaining gap (in %)
GR=Gap at root node (in %)

For 20 vertices or less, most problems could be solved
to optimality. Then, from 30 vertices on, the problem be-
comes intractable within the time limit. Also, the gap at
the root node GR and thus the di6culty of the problem de-
crease when the bound K on the mesh lengths increases.
This is because when this value increases, the problem be-
comes closer to the two-connected network problem (with-
out mesh constraints), which can be solved e6ciently us-
ing cut and vertex-partition inequalities. Furthermore, the
fact that the gap GR increases when K decreases suggests
the need for new valid inequalities exploiting the mesh
constraints.
In order to compare the e6ciency of the diWerent classes

of inequalities, we present in Table 3 the evolution of
the lower bound on the 52 node real network for diWer-
ent values of the bound K when using diWerent subsets
of inequalities. We can observe that weighted partition
inequalities provide the best increase of the lower bound
when added to constraints imposing two-connectivity,
while the conjunction of all inequalities is the most
e6cient.

4.2. Heuristic Methods

Because the Branch-and-Cut approach is not able to solve
instances of reasonable size (e.g., the Belgian network
contains 52 vertices), we implemented the +ve heuristics
proposed in Section 3. They all were coded in C++ and
tested on a Pentium P90 under Linux. The randomly it-
erated dual greedy heuristic was run +ve times on each
problem and stopped when 100 diWerent solutions were
generated.
Table 4 reports results obtained for the problems coming

from real applications, while Table 5 reports a summary
of results obtained for the randomly generated problems.
Optimal solutions—when known—are denoted in bold.
The randomly iterated dual greedy heuristic outperforms

the other ones, but is also very time consuming. It seems
that this heuristic has a quite stable behaviour, because
the costs of the solutions found over +ve runs are not too
diWerent.
Among the four constructive heuristics, the dual greedy

one performs the best, while sometimes beaten by the ear-
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Table 2. Results of the Branch-and-Cut algorithm for randomly generated instances (average
over +ve instances).

Solved to Optimality Time Limit Reached

V E K INST BBN T GR INST BBN G GR

10 34.6 400 5 70.00 13.20 12.7 0 — — —
10 40.0 450 5 75.20 14.80 12.3 0 — — —
10 43.2 500 5 71.00 15.80 11.8 0 — — —
10 44.4 550 5 30.60 6.80 8.5 0 — — —

20 96.5 250 4 2182.50 3078.50 14.7 1 6379.00 2.1 19.2
20 121.8 300 4 548.25 579.00 10.6 1 5293.00 4.6 19.3
20 149.6 350 5 874.00 2102.00 11.0 0 — — —
20 170.2 400 5 702.80 1356.80 10.0 0 — — —

30 226.2 250 0 — — — 5 2261.50 8.4 19.1
30 288.8 300 1 2461.00 16093.00 7.4 4 1581.00 3.9 12.9
30 345.8 350 2 1706.00 10726.00 6.1 3 1481.33 1.9 8.7
30 381.6 400 3 236.67 1801.33 4.8 2 1417.00 2.0 8.5

40 368.8 250 0 — — — 5 915.00 10.8 17.6
40 466.6 300 0 — — — 5 757.80 6.9 13.2
40 561.6 350 0 — — — 5 629.00 3.3 8.3
40 645.6 400 0 — — — 5 576.00 2.1 6.3

50 607.0 250 0 — — — 5 370.80 11.4 16.1
50 775.4 300 0 — — — 5 345.20 5.6 9.0
50 926.0 350 0 — — — 5 300.40 4.5 7.5
50 — 400 0 — — — 5 267.40 3.9 6.5

V=Number of vertices
E=Number of edges after preprocessing (average)
K=Bound on the mesh lengths
INST=Number of instances
BBN=Number of nodes explored in the Branch-and-Bound tree (average)
T = Time (in seconds) (average)
G=Remaining gap (in %)
GR=Gap at root node (in %)
Time limit = 20 000 seconds

Table 3. Lower bounds obtained with diWerent
subsets of inequalities.

Bound C+VP C+VP+M C+VP+WP C+VP+M+WP

150 1025 1092 1116 1165
200 1025 1060 1077 1106
250 1025 1048 1059 1076
300 1025 1041 1050 1064
350 1025 1033 1044 1051

C: Cut inequalities
VP: Vertex partition inequalities
M: Metric inequalities
WP: Weighted partition inequalities

inserting or the cut-in-two heuristic when the value of the
bound on the mesh lengths is small. However, the cut-in-two
heuristic is not always able to +nd a feasible solution when
the bound is small. The path-following heuristic has only
a theoretical interest—its worst case bound—but performs
poorly in practice.

5. CONCLUSION

In this paper, we studied a problem arising from the need to
design survivable telecommunication networks. Designing
a two-connected network at minimum cost is a problem that
was widely studied in the literature, and e6cient methods
for solving it were already available.
Unfortunately, it turned out that the optimal solution of

this problem on the set of 52 zonal centers of the Belgian
backbone network is a Hamiltonian cycle. Hence, any edge
failure would require to reroute the Oow that passed through
that edge, using all the edges of the network—an obviously
undesirable feature. This led us to examine a new model for
limiting the region of inOuence of the tra6c that is necessary
to reroute: In addition to two-connectivity, we required that
each edge belongs to at least one cycle whose length is
bounded by a given constant. This problem is called the
Two-Connected Network with Bounded Meshes Problem.
The problem was formulated as an integer linear program,

and several classes of valid inequalities were presented, lead-
ing to a Branch-and-Cut Algorithm. Because we could solve
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Table 4. Results of heuristics for instances coming from real applications.

Randomly Iterated D.G. Branch-and-cut
Ear- Cut in Path Dual

V K Insert Two Follow Greedy Best Worst Avg time LB UB

12 200 680 675 783 684 629 629 7 622 622
12 250 541 558 650 541 541 541 7 541 541
12 300 558 558 576 541 541 541 7 541 541
12 350 558 521 521 521 521 521 7 521 521

17 200 923 933 985 920 860 871 19 834 834
17 250 845 849 990 789 789 789 22 789 789
17 300 823 785 865 789 726 727 25 726 726
17 350 784 746 768 743 725 726 27 725 725

30 150 1304 1579(∗) 1390 1323 1287 1302 114 1164 1268
30 200 1194 1169 1309 1157 1108 1132 206 1034 1095
30 250 1068 1003 1231 977 935 954 286 935 935
30 300 1042 979 1218 951 921 925 345 898 898
30 350 1014 950 1057 910 874 909 400 874 874

52 150 1522 1600 1618 1367 1367 1367 1727 1212 1343
52 200 1380 1368 1526 1274 1266 1266 3015 1143 1246
52 250 1307 1291 1429 1185 1185 1185 4426 1107 1181
52 300 1345 1221 1331 1164 1147 1162 5135 1084 1117
52 350 1328 1195 1342 1232 1182 1197 5737 1067 1085

(∗) Infeasible solution.
CPU times are:
61 second for all applications of split-in-two and path-following;
64 seconds for ear-inserting;
61 minute for dual greedy.

Table 5. Results of heuristics for randomly generated instances (average
over +ve instances).

Randomly Iterated D.G. Branch-and-Cut
Ear- Cut in Path Dual

V K Insert Two Follow Greedy Best Worst Avg Time LB UB

10 400 1083 1257 (a) 1224 1159 1069 1071 3 1069 1069
10 450 1094 1156 (b) 1195 1097 1007 1047 3 1007 1007
10 500 1046 1162 (b) 1134 1061 978 979 3 978 978
10 550 1000 1061 (b) 1054 1006 932 948 4 931 931

20 250 1371 1557 (a) 1507 1366 1326 1330 27 1296 1303
20 300 1339 1521 (a) 1412 1324 1251 1263 36 1210 1222
20 350 1261 1320 1393 1278 1180 1193 47 1158 1158
20 400 1259 1207 1315 1238 1131 1151 57 1125 1125

30 250 1706 2079 (a) 1823 1798 1642 1668 169 1463 1600
30 300 1602 1730 1519 1674 1505 1521 241 1402 1451
30 350 1504 1752 1697 1494 1384 1408 313 1322 1338
30 400 1443 1436 1608 1406 1309 1337 363 1267 1278

40 250 1999 2313 (a) 2096 2018 1924 1936 577 1661 1864
40 300 1920 1988 2013 1847 1748 1769 807 1581 1700
40 350 1815 1796 1918 1695 1625 1636 1071 1521 1573
40 400 1730 1760 1880 1643 1571 1583 1332 1478 1510

50 250 2109 2170 2327 2061 1985 1997 1805 1712 1935
50 300 1976 1976 2261 1900 1796 1817 2602 1641 1738
50 350 1829 1849 2264 1822 1735 1756 3431 1599 1675
50 400 1888 1821 1997 1814 1706 1729 4199 1565 1628

(a) Infeasible solution found for two instances out of five.
(b) Infeasible solution found for one instance out of five.
CPU times are:
61 second for all applications of split-in-two and path-following;
64 seconds for ear-inserting;
61 minute for dual greedy.
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only small problems to optimality with the Branch-and-Cut
algorithm, we developed a series of heuristics, among which
the randomly iterated dual greedy one performs the best.
This heuristic is very time-consuming and is only a +rst step
in the development of more elaborate and eWective local
search methods. However, on a practical point of view, it
was su6cient for Belgacom’s instances.
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