
On the hop-constrained survivable network design problem with reliable edges

Quentin Bottona, Bernard Fortzb, Luis Gouveiac

aLouvain School of Management, Université catholique de Louvain, Louvain-la-Neuve, Belgium
bDépartment d’Informatique, Faculté des Sciences, Université Libre de Bruxelles, Bruxelles, Belgium

cDEIO, CIO, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal

Abstract

In this paper, we study the hop-constrained survivable network design problem with reliable edges. Given a graph

with non-negative edge costs and node pairs Q, the hop-constrained survivable network design problem consists

of constructing a minimum cost set of edges so that the induced subgraph contains at least K edge-disjoint paths

containing at most L edges between each pair in Q. In addition, we consider here a subset of reliable edges that

are not subject to failure. We study two variants: a static problem where the reliability of edges is given, and an

upgrading problem where edges can be upgraded to the reliable status at a given cost. We adapt for the two variants

an extended formulation proposed in Botton, Fortz, Gouveia, Poss 2011 for the case without reliable edges. As

before, we use Benders decomposition to accelerate the solving process. Our computational results indicate that

these two variants appear to be more difficult to solve than the original problem (without reliable edges). We

conclude with an economical analysis which evaluates the incentive of using reliable edges in the network.

Keywords: Network design, Survivability, Hop constraints, Benders decomposition, Branch-and-cut algorithms

1. Introduction

Given an undirected graph G = (V, E) with a nonnegative cost ci j associated to each edge i j ∈ E, and a set

Q of node pairs, we want to find a set of edges of minimum cost such that the induced subgraph contains at least

K edge-disjoint L-paths between each pair in Q. A path in G is a L-path if it contains no more than L edges.

Given two distinct nodes o, d ∈ V , an od-path is a sequence of node-edges P = (v0, e0, v1, ..., el−1, vl), where l ≥ 1,

v0, v1, ..., vl are distinct nodes, v0 = o, vl = d, and ei = vivi+1 is an edge connecting vi and vi+1 (for i = 0, ..., l − 1).

A collection P1, P2, ..., Pk of od-L-paths is called edge-disjoint if any edge i j appears in at most one path. The

problem considered is NP-hard [10] and was first studied by Huygens et al. [9] who only consider L ≤ 4 and

K = 2. Recently, an extended formulation combined with a Benders decomposition approach to efficiently handle

the large number of variables and constraints of the formulation have been proposed and tested in Botton et al. [1].

They consider instances with 1 ≤ K ≤ 3 and 3 ≤ L ≤ 5.

The survey by Kerivin and Mahjoub [11] describes several variants of this problem as well as techniques for

solving them. There are several reasons for requiring edge-disjoint paths and including a limit on the number of

edges for each path of each commodity. Briefly, the requirement for using disjoint paths guarantees the existence

Email addresses: quentin.botton@uclouvain.be (Quentin Botton), bernard.fortz@ulb.ac.be (Bernard Fortz),
legouveia@fc.ul.pt (Luis Gouveia)

Preprint submitted to Elsevier May 28, 2015

of a working path for each commodity after K − 1 edge failures and the hop constraints impose a certain level of

quality of service, since in most of the routing technologies, delay is caused at the nodes, and thus, it is usual to

measure the delay in a path in terms of its number of intermediate nodes, or equivalently, its number of edges (or

hops).

In this paper, we study two different versions of the problem with different degrees of reliability associated

to the edges of the underlying graph. In the first variant we assume that the edges in a subset ER ⊂ E are more

reliable but more costly. Essentially, these edges are not prone to failure and the edge-disjoint property must be

guaranteed only for the remaining edges. Thus, for a given commodity, all the K paths can simultaneously use

each reliable edge.

This variant arises in the context of multi-layered telecommunication networks, for example, a SONET/SDH

layer over an optical network layer. A link of the SONET/SDH layer can be considered as a demand that should

be routed through a path in the optical layer. If this path is protected against failures, then the link corresponding

to this path in the SONET/SDH layer can be viewed as ”reliable.” Otherwise the link can fail and hence requires

some protection against failures at the SONET/SDH layer (see Pióro and Medhi [13]). Zotkiewicz et al. [14]

present a polynomial time algorithm to solve the particular case of this variant where K = 2.

In the second variant, we give the network provider the option of choosing whether an edge should be reliable

or not. That is, the subset ER corresponds to edges i j that could be upgraded to more reliable edges at a higher

cost.

These two variants are obviously NP-Hard since they contain the original problem without reliable edges as

particular case.

The paper is organized as follows: In Section 2, we first review the model proposed in [1] for the original case

where all edges are assumed to be unreliable and then we show how to adapt this original model to accommodate

the new specifications. In Section 3 we show the Benders reformulation of both problems and in Section 4 a

branch-and-cut algorithm is described. Computational results are reported in Section 5, and we provide concluding

remarks in Section 6.

2. Problem definition and formulations

In this section, we start by describing the model for the problem without reliable edges proposed in [1] and

then, we show how to modify the model for the two variants previously described.

2.1. Original problem (no reliable edges)

The main idea of the formulation is to model the subproblem associated with each commodity with a directed

graph composed of L + 1 layers as illustrated in Fig. 1.

From the original undirected graph G = (V, E), we create a directed layered graph Gq = (Vq, Aq) for each

commodity q, where Vq = Vq
1 ∪ . . . ∪ Vq

L+1 with Vq
1 = {o(q)}, Vq

L+1 = {d(q)} and Vq
l = V\{o(q)}, l = 2, . . . , L. Let

vq
l be the copy of v ∈ V in the l-th layer of graph Gq. Then, the arc sets are defined by Aq = {(iql , jql+1) | i j ∈ E, iql ∈

Vq
l , jql+1 ∈ Vq

l+1, l ∈ {1, . . . , L}} ∪ {d(q)l, d(q)l+1, l ∈ {2, . . . , L}}, see Fig. 1. In the sequel, an (undirected) edge in E

2

(a) (b)

Figure 1: A basic network (a) and its alternative layered representation (b) when L = 4.

with endpoints i and j is denoted i j while a (directed) arc between iql ∈ Vq
l and jql+1 ∈ Vq

l+1 is denoted by (i, j, l)

(the commodity q is omitted in the notation as it is often clear from the context).

Note that each path between o(q) and d(q) in the layered graph Gq is composed of exactly L arcs (hops),

which correspond to a maximum of L edges (hops) in the original graph (the horizontal-loop arcs at the bottom

of Figure 1 allow paths with less than L arcs). This transformation was first proposed by Gouveia [7] and is

motivated by the fact that in the layered graph any path is feasible with respect to the hop-constraints. A set of

K-paths satisfying the hop limit can be obtained by sending K units of flow in the layered graph, leading to the

following extended formulation:

(Hop) min
∑
i j∈E

ci jzi j

s.t.
∑

j:(j,i,l−1)∈Aq

xl−1,q
ji −

∑
j:(i, j,l)∈Aq

xl,q
i j =


−K i f (i = o(q)) and (l = 1)

K i f (i = d(q)) and (l = L + 1)

0 else

,

i ∈ Vq, l ∈ {2, . . . , L + 1}, q ∈ Q, (1)∑
l∈{1,...,L}

(
xl,q

i j + xl,q
ji

)
≤ zi j, i j ∈ E, q ∈ Q, (2)

zi j ∈ {0, 1}, i j ∈ E, (3)

xl,q
i j ≥ 0 and integer, (i, j, l) ∈ Aq, q ∈ Q. (4)

Each binary variable zi j indicates whether edge i j ∈ E is in the solution and each variable xl,q
i j describes the

amount of flow through arc (i, j, l) for commodity q in layered graph Gq (constraints (2) together with (3) imply

that xl,q
i j ≤ 1 for i , j, and thus, these variables may be interpreted as indicating whether arc (i, j) is used in

position l in one of the paths of commodity q). Constraints (1) are the flow conservation constraints at every

node of the layered graph and guarantee the existence of K paths from o(q) to d(q). Constraints (2) guarantee

edge-disjointness of the paths.

As discussed in [1], for K = 1 and any L, for any K and L = 2, 3 and for L = 4 and K = 2, the integrality on

x can be dropped (x will be integral as soon as z is). However, in the general case, x can be fractional even if z is

integer.

3

2.2. The static problem

Let us first consider the version of the problem where the reliable status of an edge is given a priori. We denote

by ER the set of reliable edges and by ER the set of remaining edges. The formulation (HopR1) for this variant

uses the same variables and is very similar to the extended formulation (Hop) for the original problem, and thus

we only specify the main differences.

To make meaningful comparisons between the formulations, we assume the cost of a reliable edge is pi j > 1

times the cost of the unreliable version of that edge used in (Hop), i.e. a reliable edge i j ∈ ER has cost pi jci j.

(HopR1) min
∑

i j∈ER

pi jci jzi j +
∑

i j∈ER

ci jzi j

s.t. (1), (3), (4),∑
l∈{1,...,L}

(xl,q
i j + xl,q

ji) ≤ Kzi j, i j ∈ ER, q ∈ Q, (5)

∑
l∈{1,...,L}

(xl,q
i j + xl,q

ji) ≤ zi j, i j ∈ ER, q ∈ Q, (6)

Note that in this model the xl,q
i j variables for reliable edges are not necessarily binary (while (2) implicitly force

an upper bound of 1 in model Hop). This might explain why this model produces LP bounds that are significantly

worse than the one provided by the previous model (for the problem with unreliable edges).

2.3. The upgrading problem

In this version of the problem, all edges i j ∈ E are considered as normal edges. The subset of reliable edges

(ER ⊂ E) contains the edges that can be upgraded to be reliable, and ER := E \ ER are edges that cannot be

upgraded.

To formulate this variant, we introduce new variables yi j for edges in ER to indicate whether they are upgraded

to and used as reliable edges or not.

As before, the base cost ci j is multiplied by pi j when the edge is upgraded to a reliable status.

(HopR2) min
∑

i j∈ER

pi jci jyi j +
∑
i j∈E

ci jzi j

s.t. (1), (4)∑
l∈{1,...,L}

(xl,q
i j + xl,q

ji) ≤ Kyi j + zi j, i j ∈ ER, q ∈ Q, (7)

∑
l∈{1,...,L}

(xl,q
i j + xl,q

ji) ≤ zi j, i j ∈ ER, q ∈ Q, (8)

yi j + zi j ≤ 1, i j ∈ ER, (9)

yi j ∈ {0, 1}, i j ∈ ER. (10)

The main differences with the previous models are constraints (9) which guarantee that if an edge in ER is

used, the two scenarios are mutually exclusive. The edge-disjointness constraints (7) are also modified.

4

Figure 2: Network with 1 source, 5 destinations.

(a) Total Cost=262 (b) Total Cost=212 (c) Total Cost=216.4

Figure 3: Optimal topologies respectively for models Hop (a), HopR2 (b) and HopR1 (c).

For the same reasons as for the (Hop) model of Section 2.1, variables x must be defined as integer in the static

and the upgrading models.

Constraints (7) and (9) are typical of the so-called multiple-choice model that often arises in network design

problems with modular costs (see. e.g, [3, 4]). Note also that (HopR1) is a particular case of (HopR2) and by

fixing variables in (HopR2), constraints (9) become redundant and constraints (7) become equivalent to constraints

(5) of (HopR1). However, we presented both models as (HopR1) has a structure very similar to (Hop) — the only

difference lies in different right hand sides of (2) and (5), while for (HopR2) the model is more complex due to the

addition of the choice variables and the need for additional constraints (9).

2.4. Example

Fig. 2 shows a graph G composed of 7 nodes and 9 edges. The base cost ci j is indicated next to each edge.

All commodities have the same origin node, the square node 21, and the five destination nodes (the double-circle

nodes) are nodes 3, 4, 7, 11 and 15. We consider parameters L = 3 and K = 2. Fig. 3(a) represents the optimal

solution for the original problem where no reliable edges exist. The associated cost is equal to 262.

Assume now that a subset of the edges are reliable: ER = {3 − 4, 3 − 21, 4 − 21, 7 − 21, 15 − 21}. For this

example, we set multiplicative factor for the reliable edges to pi j = 1.2 for all i j ∈ ER. Fig. 3(c) shows the optimal

topology for the static problem, while Fig. 3(b) presents the optimal solution of the upgrading problem. Here the

5 edges that were previously considered as reliable can either be used as normal or as reliable edges. We see that

edges 4 − 21 and 3 − 4 are upgraded and edges 7 − 21 and 15 − 21 are not.

This solution shows a positive effect of allowing the provider to choose which edges should be used as reliable

5

or not since the optimal cost for the upgrading problem (212) is lower than the optimal solution of the original

problem (262) and also lower than the optimal solution of the static problem (216.4). A deeper analysis of the cost

effect linked to the utilization or not of reliable edges is presented later.

3. Benders decomposition

The two models are extended formulations of large scale (with O(L.|Q|.|E|) integer variables and O(L.|Q|.|V |)

constraints) and difficult to solve even with current solvers. To overcome this difficulty, we propose to use alter-

native formulations by projecting out the flow variables xl,q
i j in a Benders decomposition approach. The remaining

problem called master problem is only dependent on design variables y and z. When we project out the flow

variables, the subproblems become independent linear programs for each commodity, thus reducing significantly

the size of the linear programs to solve.

To apply this standard Benders decomposition approach, we introduce new formulations (HopR1’) and (HopR2’),

where we relax the integrality restrictions on x variables in (HopR1) and (HopR2), replacing (4) by

xlq
i j ≥ 0, (i, j, l) ∈ Aq, q ∈ Q. (11)

As discussed above and in [1], for K = 1 with any L, for L = 2, 3 with any K ≥ 2 and for L = 4 and K = 2, the

integrality on x can be dropped (x will be integral as soon as y and z are). For higher values of K, the existence of

a feasible solution with x integer for (HopR1) can be checked by solving the following integer program for each

commodity:

min
∑
i j∈E

eq
i j

s.t.
∑

j:(j,i,l−1)∈Aq

xl−1,q
ji −

∑
j:(i, j,l)∈Aq

xl,q
i j =


−K i f (i = o(q)) and (l = 1)

K i f (i = d(q)) and (l = L + 1)

0 else

,

i ∈ Vq, l ∈ {2, . . . , L + 1}, q ∈ Q,∑
l∈{1,...,L}

(
xlq

i j + xlq
ji

)
≤ Kzi j, i j ∈ ER,

∑
l∈{1,...,L}

(
xlq

i j + xlq
ji

)
≤ zi j + eq

i j(1 − zi j), i j ∈ ER,

xlq
i j integer, (i, j, l) ∈ Aq,

eq
i j ∈ {0, 1} i j ∈ E,

where z is the current solution to the master problem. Let eq denote the optimal value of eq, and ez = maxq∈Q{
∑

i j∈E eq
i j}.

If ez , 0, we can add the combinatorial Benders cuts∑
i j∈E0(z)

zi j ≥ ez, (12)

6

with E0(z) = {i j ∈ E s.t. zi j = 0}, to move away from the current solution. Note that these cuts can be seen as

a reinforced feasibility cut typically used in logic-based Benders decomposition, see Hooker [8] and Codato and

Fischetti [2] among others. A similar approach is used for (HopR2).

The master problems associated to (HopR1’) and (HopR2’) are slightly different because design variables y and

z have different meanings. On the other hand, the structure of the subproblems is similar. The goal of subproblems

is to ensure that, for a given design vector z and a given commodity, the problem of finding K edge-disjoint paths

with maximum L hops is feasible. Except for small details this problem is similar for both models.

3.1. Dual subproblems

Given a commodity q ∈ Q, let us introduce a dual variable πl
i, associated with node i ∈ V and layer l, for each

constraint (1) and a dual variable σi j for each constraint (5) or (7). Defining o := o(q) and d := d(q), and adding

the normalizing constraints πL+1
d ≤ 1 and π1

o = 0 to normalize the dual cone we get the dual subproblem S P(q, y, z)

S P(q, y, z) max ob jective f unction (13)

s.t. π2
i − π

1
o − σoi ≤ 0, oi ∈ E,

πl+1
i − πl

j − σi j ≤ 0, i j ∈ E, i, j < {o, d}, l ∈ {2, . . . , (L − 1)},

πl+1
j − π

l
i − σi j ≤ 0, i j ∈ E, i, j < {o, d}, l ∈ {2, . . . , (L − 1)},

πl+1
d − πl

i − σid ≤ 0, id ∈ E, l ∈ {2, . . . , L},

πl+1
d − πl

d ≤ 0, l ∈ {2, . . . , L},

π1
o = 0,

πL+1
d ≤ 1,

σi j ≥ 0, i j ∈ E.

The subproblems associated to the two variants of the problem differ in their objective function. For (HopR1’),

(13) becomes

max KπL+1
d −

∑
i j∈ER

Kzi jσi j −
∑

i j∈ER

zi jσi j (14)

while for (HopR2’), we replace (13) by

max KπL+1
d −

∑
i j∈ER

Kyi jσi j −
∑
i j∈E

zi jσi j (15)

For both problems and for a particular commodity q ∈ Q, given a vector (y, z) defining a graph, if it is possible

to find a feasible flow in terms of continuous x variables leading to K edge-disjoint paths composed of maximum L

hops, then the value of the objective function of S P(q, y, z) is equal to 0. Otherwise, a new Benders cut is added to

the master problem. Depending on the nature of the problem the Benders cuts are slightly different. For (HopR1’),

Benders cuts are:

KπL+1
d(q) −

∑
i j∈ER

σi jKzi j −
∑

i j∈ER

σi jzi j ≤ 0 (16)

7

and for (HopR2’), Benders cuts are:

KπL+1
d(q) −

∑
i j∈ER

σi jKyi j −
∑
i j∈E

σi jzi j ≤ 0 (17)

3.2. Master problems

Given a set Rq of extreme points of the dual subproblem S P(q, y, z) described in the previous subsection, the

master problems associated with the two versions of the problem are given below.

(BR-HopR1’) min
∑

i j∈ER

pi jci jzi j +
∑

i j∈ER

ci jzi j

s.t. KπL+1
d(q) −

∑
i j∈ER

σi jKzi j −
∑

i j∈ER

σi jzi j ≤ 0, (π, σ) ∈
⋃
q∈Q

Rq,

zi j ∈ {0, 1}, i j ∈ E.

(BR-HopR2’) min
∑

i j∈ER

pi jci jyi j +
∑
i j∈E

ci jzi j

s.t. KπL+1
d(q) −

∑
i j∈ER

σi jKyi j −
∑
i j∈E

σi jzi j ≤ 0, (π, σ) ∈
⋃
q∈Q

Rq,

yi j + zi j ≤ 1, i j ∈ ER,

yi j ∈ {0, 1}, i j ∈ ER,

zi j ∈ {0, 1}, i j ∈ E.

4. Branch-and-cut algorithm

The Benders reformulation is useful here because the three extended formulations (Hop, HopR1 and HopR2)

are composed with two groups of variables with a large number of x variables. A first natural approach consists

in solving this kind of huge extended models with a commercial solver like CPLEX. But the large number of

variables and constraints can have a negative effect on the performance (CPU time and memory usage) of this

kind of techniques.

A second approach consists in using the Benders decomposition approach with cutting plane techniques. The

main idea is to solve, in an alternative manner, at each iteration, the master problem and the subproblems for

each commodity q ∈ Q. At each iteration, a new branch-and-bound tree is explored to solve the master problem.

Then the solution of the master problem in terms of design variables z gives new parameters z for the different

subproblems. For each commodity q ∈ Q a new subproblem is generated and solved to optimality using the new

parameters from the master problem. Depending on the optimal solution of each subproblem, a new cut is possibly

generated and added to the master problem for the next iteration. This process stops when the optimal solution of

the master problem’s branch-and-bound tree is a vector of y, z variables for which no more Benders cut is added.

At this stage, it is ensured that there exists a vector x feasible for the linear relaxation of our models. A weak cut

(12) can then be generated if no integral feasible x can be found.

8

This cutting plane approach can converge slowly because a new branch-and-bound tree has to be explored at

each iteration (this was also observed in [5] for a multi-layer network design problem). Therefore, we proposed

in [1] to embed Benders cuts in a branch-and-cut algorithm. We have already deeply investigated this algorithmic

aspect in [1] and we propose in this paper to use the fastest branch-and-cut algorithm we have developed to test

models (HopR1) and (HopR2).

Algorithm 1: Hybrid branch-and-cut algorithm: bc-n.

begin /* Initialization */

T = {o} where o has no branching constraints;
UB = +∞;

while T is nonempty do
select a node o′ ∈ T ;
T ← T\{o′}; /* withdraw node o′ from the tree */

solve o′;
let z be an optimal solution;
let w be the optimal cost;
if w < UB then

if z ∈ {0, 1}|E| or depth(o′) ≤ n then
foreach q ∈ Q do compute sq = S P(q, y, z);
if sq > 0 then add (16) or (17) to (MP);

if z ∈ {0, 1}|E| and sq ≤ 0 for each q ∈ Q then
foreach q ∈ Q do compute fq = FP(q, y, z) (see [1]);
if fq > 0 for some q ∈ Q then add combinatorial Benders cuts (12) to (MP);
else

UB← w; /* define a new upper bound */

z∗ ← z; /* save current incumbent */

if sq > 0 or fq > 0 for some q ∈ Q then
T ← T ∪ {o′}; /* put node o′ back in the tree */

else if z < {0, 1}|E| then
branch, resulting in nodes o∗ and o∗∗;
T ← T ∪ {o∗, o∗∗}; /* add children to the tree */

return z∗

Our best performing branch-and-cut algorithm (called bc-5-heur) adds Benders cuts only at ”strategic points”

of the exploration tree: when the optimal solution of the relaxation at a node is integer, and when the depth of

the node is less or equal to a given parameter n. This algorithm adds a lot of Benders cuts at the beginning of the

exploration. In [1], we performed a tuning stage to evaluate the best value for the parameter on a set of complicated

instances and n = 5 gave the best results. We use the same value for this parameter in this paper.

Furthermore, the algorithm is improved with a good upper bound found by a simple fix-and-branch heuristic,

also proposed in [1]. The linear relaxation at the root node of the branch-and-bound tree usually has a large number

of y and z variables equal to 0. The heuristic consists in fixing those variables to 0 before starting the branch-and-

bound process. The small size of this problem allows to obtain its optimal solution quickly. In this paper, we

experience our branch-and-cut algorithm with the heuristic for both models (bc-5-heurR1 and bc-5-heurR2).

9

Table 1: Instances description.

Name |N | |E| |Q| Rooted demands?
TC-5 21 210 5 true
TC-10 21 210 10 true

pdh 11 34 24 false
di-yuan 11 42 22 false

5. Computational experiments

The objective of our experiments is twofold. First we want to study the behavior of the formulations for

solving the proposed variants when the proportion of reliable edges changes. More precisely, we want to examine

the gap between the linear programming relaxation value and the optimal solution value as well as the CPU time

needed to reach optimality. We also compare our branch-and-cut algorithms (bc-5-heurR1 and bc-5-heurR2) with

the alternative of using the formulations within CPLEX. The second objective of this section is to examine more

closely the optimal solutions obtained for the upgrading variant in contrast to the optimal solutions obtained for

the original problem and for the static variant in order to evaluate the economical impact of allowing to upgrade

edges for a network manager.

5.1. Implementation details

All models have been coded in JAVA using CPLEX 12 MIP solver and run on a DELL Latitude D820 with a

processor Intel Core Duo 2 T7200 of 2GHz and 2.5 GB of RAM memory. We allow CPLEX to store the branch-

and-bound tree in a file, setting parameter IntParam.NodeFileInd to 2, to avoid from running out of memory.

5.2. Instance details

For our computational experiments we used two different test sets. One set denoted by TC, is taken from a

class of complete graphs that has been widely used in the network design literature, e.g, [1, 6]. For each instance,

the cost matrix is given by the integer parts of the Euclidean distance between the coordinates of the 21 nodes,

randomly placed among the integer points of a grid (100 × 100) and all point-to-point demands have one of their

extremities in common (which we call rooted demands in Table 1). The second set contains two instances that

are based on sparse networks from SNDlib [12]: pdh and di-yuan. Table 1 reports the characteristics of all the

instances. We solved the instances with L ranging from 3 to 5 and K equal to 2 and 3. We set a time limit of 3600

seconds for all instances and algorithms.

We have also evaluated the models in terms of three other parameters: the scale economy parameter, the

proportion of reliable edges and the geographical distribution of reliable edges. The multiplicative factor for the

cost of a reliable edge i j is given by pi j = ((K − 1) + f), where 0 < f < 1. This allows to model different economy

of scale scenarios for the use of reliable edges in both versions. In this computational study we have considered

f ∈ {0.2, 0.4, 0.6, 0.8} to evaluate how sensitive the optimal design is to changes in the scale economy parameter.

For the geographical distribution of reliable edges, we have evaluated two different strategies, that we call

Close and Far. To define Close we consider two parameters cg and c. The parameter cg defines one of the nodes

10

0%

5%

10%

15%

20%

25%

30%

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

% of reliable edges

G
ap

 (%
)

TC-Close
TC-Far
SNDlib-Close
SNDlib-Far

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

2 4 6 8

Scale economy factor (f)

G
ap

 (%
)

Original
Static
Upgrading

(a) (b)

Figure 4: Evolution of the gap (%) in function of the percentage of reliable edges (a) and depending on the scale economy factor f (b) for all
instances tested.

of the network which is considered as a center of gravity. The parameter c indicates that we create a subset of

(c + 1) nodes C composed of cg and of c additional nodes which are the closest nodes from the center of gravity

node cg. Then, the set of reliable edges is given by

ER = {i j ∈ E : i ∈ C or j ∈ C}.

We have performed tests with c ∈ {0, 1, 2, 3, 4} for TC instances and c ∈ {0, 1, 2, 3} for SNDlib instances. The

Far strategy is also defined with two parameters cg and b. As before, the parameter cg defines a center of gravity

and the parameter b indicates that we create a subset F of b nodes which are the farthest nodes from the center of

gravity node cg. Then,

ER = {i j ∈ E : i ∈ F and j ∈ F}.

Note that the Close strategy sets as reliable, those edges which are close to a center of gravity and the Far strategy

favors edges far from the center of gravity. The set F is a clique and contains all edges i j belonging to the farthest

clique (composed of b nodes) from the center of gravity cg. We have performed tests with b ∈ {0, 8, 10, 12, 14} for

TC instances and b ∈ {0, 4, 5, 6, 7} for SNDlib instances to keep a proportion of reliable edges similar for the two

kind of instances.

5.3. Evaluation of the models

The two variants studied in this paper can be solved with the hop-indexed model developed in [1] with simple

modifications. The first evaluation criterion is given by the average gap (expressed in %) which represents the

relative difference between the optimal linear programming relaxation solution and the optimal integer solution,

i.e. (IP∗−LR∗)
IP∗ . The results depicted on Fig. 4(a) clearly show that the gap increases with the proportion of reliable

edges.

These results are interesting because:

i) without any reliable edges, the extended hop-indexed model performs reasonably well, e.g., for K = 2, 3 the

average gap decreases to reach approximately the threshold of 5% for the TC test set as shown in [1].

11

Table 2: Arithmetic average of CPU time (sec.).
Original Static Upgrading

Extended formulation 41.10 122.80 111.44
Branch-and-cut algorithm + heuristic 2.96 6.26 14.42

Table 3: Savings obtained by the utilization of reliable edges.
Upgrading < Original Upgrading < Static

(%) of all the instances 42.76 58.21
Arithmetic average of savings realized (%) 3.95 7.05

Maximum savings realized (%) 24.29 24.70

ii) in the limit, the problem with all edges being reliable should become easier since, for each commodity, all

paths should share the same set of edges.

Table 2 clearly shows that the original problem without reliable edges is the easiest problem since it takes

less time to reach optimality for the associated extended formulation and for the branch-and-cut algorithm. The

two new variants (static and upgrading) are harder to solve as the CPU time increases considerably. The average

time needed for the two extended formulations (HopR1) and (HopR2) to reach optimality are close (around 110

seconds). It is not the case for the branch-and-cut algorithms since on average the static version takes less time

than the upgrading version (6.26 seconds versus 14.42 seconds respectively). For both variants, the associated

branch-and-cut algorithms again outperform the standard extended formulations as in [1] for the original model

and problem. The improvement is really significant and in some cases, the branch-and-cut algorithms is 40

times faster than using the formulation within CPLEX. Note also that only 1 instance out of 912 is not solved to

optimality within the 3600 seconds time limit for the static version with a remaining gap to close of 7%. However,

this instance is easily solved to optimality by the proposed branch-and-cut bc-5-heurR1 (in 70.67 seconds). Table

10 shows the good performance of the heuristic. For the static variant, the value given by the heuristic is the

optimal solution in around 45% of the case, otherwise the gap ((HEUR∗−IP∗)
IP∗) between the value of the heuristic

and the optimal solution is around 3.34%. Note that the heuristic takes on average 1.64 seconds to find the upper

bound which is clearly better than the 122.80 seconds and the 6.26 seconds respectively needed by the extended

formulation and the branch-and-cut algorithm. For the upgrading variant the conclusions about the heuristic are

equivalent.

5.4. Economic advantages of upgrading edges

One of the advantages of having a pool of reliable edges is to simplify the task of the managers since the

edge-disjoint property is not required for edges in the pool. It is clear that if the set of potential reliable edges

becomes smaller then finding the optimal solution becomes less difficult. Our aim is now to measure the savings

the utilization of reliable edges can bring.

Table 3 shows that in approximately 43% of the instances, the upgrading variant leads to a cheaper optimal

design compared to the one obtained by the original problem with an average saving of 3.95% of the total design

cost when reliable edges are not included. Moreover in approximately 60% of the instances, the upgrading variant

leads to a cheaper optimal design compared to the one of the static variant with an average saving of 7.05% of the

12

Table 4: Arithmetic average of gap (%) depending on the number of
commodities.

Instance Problems
Name |Q| Original Static Upgrading

TC 5 1.61 6.61 5.82
10 5.77 14.85 10.84

pdh 27 11.84 20.77 15.78
di-yuan 48 13.62 19.97 14.98

Average 7.70 15.30 11.67

Table 5: Arithmetic average of gap (%) depending on the location of
the reliable edges set.

Geographical distribution Problems
Static Upgrading

Close 16.20 12.41
Far 14.49 11.00

Table 6: Arithmetic average of gap (%) depending on the number of
edge-disjoint paths K.

K
Problems

Original Static Upgrading
2 10.21 16.39 14.15
3 5.19 14.20 9.19

Table 7: Arithmetic average of gap (%) depending on the hop limit L.

L
Problems

Original Static Upgrading
3 9.86 16.65 13.25
4 7.89 15.61 11.87
5 5.35 13.63 9.89

Table 8: Impact on the arithmetic average of gap of the scale economy factor f .
Scale economy factor f

Network K 0.2 0.4 0.6 0.8

Static

TC 2 10.61 10.98 10.36 9.81
TC 3 11.88 11.32 10.70 10.18

SNDlib 2 22.00 22.98 23.44 23.63
SNDlib 3 17.46 17.66 17.84 17.95

Average Static 15.26 15.49 15.32 15.11

Upgrading

TC 2 10.38 10.21 8.57 6.19
TC 3 9.96 8.64 7.26 5.45

SNDlib 2 21.31 21.13 19.72 18.05
SNDlib 3 12.83 11.35 9.97 8.67

Average Upgrading 13.44 12.65 11.20 9.39

Table 9: Impact on the arithmetic average of IP CPU Time of the scale economy factor f .
Scale economy factor f

Network K 0.2 0.4 0.6 0.8

Static

TC 2 8.17 6.92 6.83 5.89
TC 3 10.43 8.83 8.17 7.61

SNDlib 2 6.74 7.49 7.45 7.47
SNDlib 3 1.71 1.72 1.70 1.69

Average Static 6.89 6.33 6.11 5.72

Upgrading

TC 2 20.57 19.79 11.29 7.12
TC 3 12.78 8.16 6.18 5.20

SNDlib 2 34.11 42.19 29.08 24.04
SNDlib 3 3.46 3.48 3.13 2.88

Average Upgrading 17.67 18.17 12.23 9.62

Table 10: Arithmetic average of heuristic CPU time (sec.) and quality of the heuristic.
HEUR*=IP* Heuristic CPU Time (sec.) Heuristic gap (%)

Static 415/912 (45.50%) 1.64 3.34
Upgrading 561/912 (61.51%) 3.87 1.19

13

total design cost. This means that the improvements proposed by the upgrading variant in terms of cost are not

huge, indeed only small percentages of the total design cost can be saved. Nevertheless, although the percentage

is small, it could represent huge amounts of savings for managers. The question for managers now is to know

if the increase in the time needed to reach optimality can be balanced by the savings in design cost. With a

simple extended model as the one we have given, the answer appears to be negative, but with a fast branch-and-

cut algorithm as the one developed in this paper it could be worth to integrate the use of reliable edges in these

problems.

Tables 4, 5, 6 and 7 report the same results (average gap at the root node) related with the number of com-

modities, the geographical distribution of the reliable edges set, the number of required edge-disjoint paths and

the hop limit, respectively. The results again illustrate the increase of the gap between the original problem and

the extensions with reliable edges.

Results reported in Table 5 show that the Close instances lead to worse gaps than the Far instances. These

results are easily explained since the reliable edge clique defined by the Far strategy is far from the center and thus

it is unlikely that many reliable edges will be used in the optimal design. Thus, the instances become ”closer” to

the problem without reliable edges which, as pointed out before, appears easier to solve. On the other hand, if the

reliable edges are close to the center, then the probability to use a reliable edge in the optimal design increases

and, based on previous remarks, the problem becomes more difficult to solve.

Table 6 shows that the LP gaps become smaller for instances with more edge disjoint paths (K = 3 versus 2)

and Table 7 shows that the gaps become smaller when more edges are allowed in the paths.

Another evaluation criteria is related to the scale economy factor f . In Table 8 we show the average gap (%)

obtained for the static and upgrading models and on Table 9 the average IP CPU time (in seconds) for K = 2, 3

and different values of the scale economy factor f . We show on Fig. 4(b) that for the upgrading problem, as the

factor f increases, the average gap decreases as well as the average IP CPU time. This observation is not a surprise

because the economical incentive to use reliable edges decreases when f increases. Thus if it is less profitable

to use reliable edges, it is easier to find the optimal topology because the problem becomes closer to the original

problem without reliable edges.

6. Conclusion

In this paper we have proposed and studied two variants to integrate the concept of reliable edges in the sur-

vivable network design problem with hop constraints. We have shown how to adapt models previously developed

for the basic problem. We have also adapted the branch-and-cut algorithm developed for the original problem and

have tested its performance on a test set. One conclusion of this testing phase is that the linear programming gaps

increase when the proportion of reliable edges increases. We can also conclude that for the upgrading problem,

when the scale economy factor associated to the reliable edges increases, the linear programming gap decreases

because the upgrading problem becomes closer to the original problem without reliable edges. Finally, the use of

reliable edges leads to reasonable savings and this could motivate managers to consider the two types of edges

when designing a network.

14

We conclude by pointing out interesting research topics that are, in a certain way, motivated by the present

work and could be worth investigating:

i) This work is a direct follow up to the previous study [1] that explains the incorporation of the hop constraints.

However, it is clear that incorporating reliable edges makes sense in problems dealing only with survivability

considerations. Furthermore, it would be interesting to compare the behavior of the different models with

and without hop constraints.

ii) A further generalization of the second variant studied here is to measure the number of paths of a given

commodity through a reliable edge. Consider, for instance, a case with K = 3 (this generalization only

makes sense for K > 2) and we want to distinguish the situations: one path traverses edge i j, two paths

traverse edge i j and three paths traverse edge i j. Economies of scale should be considered but we would

like to set the cost of using two paths less than the cost of using three paths. This could be easily modeled,

by creating new variables with adequate coefficients, for each possible scenario. Finally, knapsack-like

constraints imposing a maximum slack for each commodity, or for all commodities could be used as well.

iii) Finally, model (HopR1) appears to be more difficult to solve than the original model (Hop). We have pointed

out that the reason for this behavior might be explained by the fact that many path variables are no longer

binary. It would be worth to see how the given model can be improved for this simple but apparently elusive

variation.

Acknowledgements

The work of Quentin Botton is supported by “Concours Bourses de Voyage” of the “Communauté française de

Belgique” and Marie-Curie Research Training Network “ADONET”. The work of Bernard Fortz is supported by

the Interuniversity Attraction Poles Programme initiated by the Belgian Science Policy Office. The work of Luis

Gouveia is supported by National Funding from FCT - Funda£o para a Ciłncia e a Tecnologia, under the project:

PEst-OE/MAT/UI0152.

References

[1] Q. Botton, B. Fortz, L. Gouveia, and M. Poss. Benders decomposition for the hop-constrained

survivable network design problem. INFORMS Journal on Computing, Articles in Advance

(http://dx.doi.org/10.1287/ijoc.1110.0472):1–14, 2011.

[2] G. Codato and M. Fischetti. Combinatorial Benders’ cuts for mixed-integer linear programming. Oper. Res.,

54(4):756–766, 2006.

[3] K.L. Croxton, B. Gendron, and T.L. Magnanti. A comparison of mixed-integer programming models for

nonconvex piecewise linear cost minimization problems. Management Science, 49(9):1268–1273, 2003.

[4] K.L. Croxton, B. Gendron, and T.L. Magnanti. Variable disaggregation in network flow problems with

piecewise linear costs. Operations Research, 55(1):146–157, 2007.

15

[5] B. Fortz and M. Poss. An improved Benders decomposition applied to a multi-layer network design problem.

Oper. Res. Lett., 37(5):359–364, 2009.

[6] L. Gouveia. Using variable redefinition for computing lower bounds for minimum spanning and steiner trees

with hop constraints. INFORMS J. Comput., 10:180–188, 1998.

[7] L. Gouveia. Using variable redefinition for computing lower bounds for minimum spanning and steiner trees

with hop constraints. INFORMS Journal on Computing, 10(2):180–188, 1998.

[8] J.N. Hooker. Logic-based methods for optimization: combining optimization and constraint satisfaction.

Wiley-Interscience, 2000.

[9] D. Huygens, M. Labbé, A.R. Mahjoub, and P. Pesneau. The two-edge connected hop-constrained network

design problem: Valid inequalities and branch-and-cut. Networks, 49(1):116–133, 2007.

[10] A. Itaı́, Y. Perl, and Y. Shiloach. The complexity of finding maximum disjoint paths with length constraints.

Networks, 2:277–286, 1982.

[11] H. Kerivin and A.R. Mahjoub. Design of survivable networks: A survey. Networks, 46(1):1–21, 2005.

[12] S. Orlowski, R. Wessäly, M. Pióro, and A. Tomaszewski. SNDlib 1.0 Survivable Network Design Library.

Networks, 55(3):276–286, 2010. ISSN 1097-0037.

[13] M. Pióro and D. Medhi. Routing, Flow, and Capacity Design in Communication and Computer Networks.

Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2004. ISBN 0125571895.

[14] M. Zotkiewicz, W. Ben-Ameur, and M. Pióro. Failure disjoint paths. Electronic Notes in Discrete Mathe-

matics, 36:1105–1112, 2010.

16

