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1 Introduction

Many network design problems considered in this book aim at optimizing simultane-
ously the decisions on opening links (with an associated fixed cost) and the capacity
to allocate to these links in order to satisfy a set of demands, with a variable routing
cost associated to these demands. However, in certain situations, the demand is not
known in advance, or involves a lot of uncertainty, leading to an approach in two
phases, where the topological design of the network (considering only fixed cost of
opening links) is considered first, and the decisions on routing and capacity alloca-
tion taken in a second (later) stage. This approach is relevant when the fixed costs
are high compared to routing and capacity costs, and/or when topological decisions
do not affect too much capacity decisions. For example, in telecommunications,
fiber optic cables have a virtually unlimited capacity, and the limitation of capacity
arises from equipment placed in the nodes of the network (routing cards). While
decisions to dig a trench to lay a cable are very costly and must be taken over a long
term horizon, increasing capacity by adding or upgrading equipment into nodes is
relatively simple and cheap.

In this chapter, we study models and techniques for long-term planning of the
first phase, i.e., we only deal with topological aspects. Two main issues appear in
the planning process of networks: economy and survivability. Economy refers to the
construction cost, which is expressed as the sum of the edge costs, while survivability
refers to the restoration of services in the event of node or link failure. The goal is then
to determine a set of links connecting all nodes under some survivability criteria.

For example, in telecommunications, the network is seen as a given set of nodes
and a set of possible fiber links that have to be placed between these nodes to achieve
connectivity and survivability at minimum cost. Until about 25 years ago, the limited
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capacity of copper cables resulted in highly diverse routing. The developments in
fiber-optic technology have led to components that are cheap and reliable, having
an almost unlimited capacity. The introduction of such a technology has made
hierarchical routing and bundling of traffic very attractive. This approach has resulted
in sparse, even treelike network topologies with larger amounts of traffic carried by
each link. Trees satisfy the primary goal ofminimizing the total costwhile connecting
all nodes. However, only one node or edge breakdown causes a tree network to fail
in its main objective of enabling communication between all pairs of nodes.

This means that some survivability constraints have to be considered while build-
ing the network. Losing end-to-end customer service could lead to dramatic loss
of revenue for commercial service providers. Constructing network topologies that
provide protection against failures has become one of the most important problems
in the field of network design.

The most studied models deal with k-connectivity requirements, i.e., the ability
to restore network service in the event of a failure of at most k−1 components of the
network. Among them, the minimum-cost two-connected spanning network problem
consists in finding a network with minimal total cost for which two node-disjoint
paths are available between every pair of nodes. This means that two-connected
networks are able to deal with a single link or node failure. Two-connected networks
have been found to provide a sufficient level of survivability in most cases, and a con-
siderable amount of research has focused on so-called low-connectivity constrained
network design problems, i.e., problems for which each node j is characterized by a
requirement rj ∈ {0,1,2} and min{ri,rj} node-disjoint paths between every pair of
nodes i, j are required.

Two-connectivity seems a sufficient level of survivability for most networks, since
the probability of dealing with two simultaneous failures is usually very low for fiber
optics technologies used in telecommunications networks. However, it turns out that
the optimal solution of this problem is often very sparse (in many cases such as a
Hamiltonian cycle). In such a topology, primary routing paths and re-routing paths
in case of failure might become very long. This introduces another difficulty as it
causes large delays in the network.

To avoid this, two kinds of solutions have been proposed in the literature. The
first one imposes a constraint on the length of the paths (in terms of number of links
crossed), the so-called hop-constrained models. The second approach consists of
imposing that each edge belongs to at least one cycle whose length is bounded by
a given constant, which ensures the existence of an alternate short path in case of
failure.

The chapter is organized as follows. After introducing in Section 2 the specific no-
tation and some fundamental definitions used in the chapter, we begin by the simplest
but fundamental problem: the design of connected networks (and in particular the
minimum spanning tree problem) is covered in Section 3. Next we turn our attention
to networks requiring a higher level of survivability in Section 4. Sections 5 and 6
consider problems in which the length of re-routing paths in case of failure is limited,
by introducing hop constraints and rings of bounded lengths, respectively. Section 7
provides links to the relevant literature that was used as basis to this chapter, as
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well as interesting references to dig further. We conclude in Section 8 with some
perspectives on future trends in topological network design.

2 Notation and Definitions

Most models considered in this chapter are based on undirected graphs as capacity
is not involved and links are usually bi-directional. Therefore, the given sets of nodes
and possible connections are represented by an undirected graph G = (N,E) where
N is the set of nodes and E is the set of edges that represent the possible pairs of
nodes between which a direct connection can be established. The graph G may have
parallel edges but should not contain loops. Throughout this chapter, n = |N | and
m = |E | will denote the number of nodes and edges of G.

Given a subset of nodes S ⊂ N , the edge set

δ(S) = {{i, j} ∈ E | i ∈ S, j ∈ N\S}

is called the cut induced by S. We write δG(S) to make clear — in case of possible
ambiguities — with respect to which graph the cut induced by S is considered. For
a single node i ∈ N , we denote δ(i) = δ({i}). The set

E(S) = {{i, j} ∈ E | i ∈ S, j ∈ S}

is the set of edges having both end nodes in S. We denote by G(S) = (S,E(S)) the
subgraph induced by edges having both end nodes in S. If E(S) is empty, S is an
independent set. G/S is the graph obtained from G by contracting the nodes in S
to a new node w (retaining parallel edges). Given two subsets of nodes S1 and S2,
S1∩S2 = ∅, the subset of edges having one endpoint in each subset is denoted by

[S1 : S2] = {{i, j} ∈ E | i ∈ S1, j ∈ S2}.

Wedenote byN− z =N\{z} and E−e = E\{e} the subsets obtained by removing
one node or one edge from the set of nodes or edges. G − z denotes the graph
(N − z,E\δ(z)), i.e., the graph obtained by removing a node z and its incident edges
from G. This is extended to a subset Z ⊂ N of nodes by the notation G −Z =
(N\Z,E\(δ(Z)∪E(Z))).

Each edge e = {i, j} ∈ E, has a fixed cost ce = ci j representing the cost of es-
tablishing the direct link connection, and a length de = di j = d(i, j). It is assumed
throughout this work that these edge lengths satisfy the triangle inequality, i.e.,

d(i, j)+ d( j, k) ≥ d(i, k) for all i, j, k ∈ N .

The cost of a network (N,F ) where F ⊆ E is a subset of possible edges is denoted
by c(F ) =

∑
e∈F

ce. The distance between two nodes i and j in this network is denoted

by dF(i, j) and is given by the length of a shortest path linking these two nodes in F .
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Without loss of generality, all costs are assumed to be nonnegative, because an
edge e with a negative cost ce will be contained in any optimum solution.

For any pair of distinct nodes s, t ∈ N , an [s, t]-path P is a sequence of nodes
and edges (v0, e1,v1, e2, . . .,vl−1, el,vl), where each edge ei is incident to the nodes
vi−1 and vi (i = 1, . . ., l), where v0 = s and vl = t, and where no node or edge appears
more than once in P. A collection P1,P2, . . .,Pk of [s, t]-paths is called edge-disjoint
if no edge appears in more than one path, and is called node-disjoint if no node (other
than s and t) appears in more than one path. A cycle (containing s and t) is a set
of two node-disjoint [s, t]-paths. A Hamiltonian cycle is a cycle using each node of
the network exactly once. A graph G = (N,E) is k-edge-connected (resp., k-node-
connected) if, for each pair s, t of distinct nodes, G contains at least k edge-disjoint
(resp., node-disjoint) [s, t]-paths.

When the type of connectivity is not mentioned, we assume node-connectivity.
The edge connectivity (resp., node-connectivity) of a graph is themaximal k forwhich
it is k-edge-connected (resp., k-node-connected). A 1-edge-connected network is
also 1-node-connected, and we call it simply connected. A cycle-free graph is a
forest and a connected forest is a tree. A connected component of a graph is a
maximal connected subgraph. If G− e has more connected components than G for
some edge e, we call e a bridge. Similarly, if Z is a node set and G−Z has more
connected components than G, we call Z an articulation set of G. If a single node
forms an articulation set, the node is called articulation point.

Node and edge-disjoint [s, t]-paths are related to cuts and articulation sets by
Menger’s theorem:

Theorem 1 (Menger (1927)).

1. In a graph G = (N,E), there is no cut of size k−1 or less disconnecting two given
nodes s and t, if and only if there exist at least k edge-disjoint [s, t]-paths in G.

2. Let s and t be two nonadjacent nodes in G. Then there is no articulation set Z
of size k − 1 or less disconnecting s and t, if and only if there exist at least k
node-disjoint [s, t]-paths in G.

In order to formulate network design problems as integer linear programs, we
associate with every subset F ⊆ E an incidence vector yF = (yFe )e∈E ∈ {0,1} |E | by
setting

yFe =

{
1 if e ∈ F ,
0 otherwise .

Conversely, each vector y ∈ {0,1} |E | induces a subset

F y = {e ∈ E | ye = 1}

of the edge set E. For any subset of edges F ⊆ E we define

y(F ) =
∑
e∈F

ye .
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3 Connected Networks

A fundamental constraint in topological network design is to ensure all nodes can
communicate. This translates into the constraint that a path must exist between any
pair of nodes in the graph, or in other terms, the constructed graphmust be connected.

The problem of finding a minimum cost connected network is polynomially
solvable: if costs are non-negative, there exists an optimal solution with theminimum
number n−1 of edges in a connected graph, hence the problem reduces to the well-
knownMinimum Spanning Tree problem. A simple algorithm to solve it is the greedy
algorithm: start with an empty solution; order the edges of G = (N,E) by increasing
costs; iteratively consider each edge in this sorted list and add it to the solution if it
does not form a cycle with the edges already selected.

The property that a spanning tree is a graph with n−1 edges and without cycles
is the basis of the greedy algorithm described above. This property also leads to
an integer programming formulation of the problem. Let ye be a binary variable
indicating whether edge e ∈ E is part of the spanning tree. Then the minimum
spanning tree problem can be formulated as

Minimize
∑
e∈E

ceye (1)

Subject to y(E) = n−1, (2)
y(E(S)) ≤ |S| −1 ∀∅ , S ⊂ N, (3)

ye ∈ {0,1}, ∀e ∈ E, (4)

where constraint (2) imposes the cardinality constraint and constraints (3) are sub-
tour elimination constraints that eliminate all possible cycles from the solution.
Although there is an exponential number of subtour elimination constraints, they
can be separated in polynomial time by a simple minimum cut computation.

Primal-dual arguments can be used to show that the linear programming relaxation
of formulation (1)-(4) is integer, and its extreme points coincide with the incidence
vectors of spanning trees. Moreover, the same arguments can be used to prove the
correctness of the greedy algorithm.

Another formulation for the minimum spanning tree problem is obtained by
considering a spanning tree as a connected subgraph with n−1 edges. Connectivity
can be imposed by forcing each cut in the graph to contain at least one edge, leading
to the cut-set formulation

Minimize
∑
e∈E

ceye (5)

Subject to y(E) = n−1, (6)
y(δ(S)) ≥ 1 ∀∅ , S ⊂ N, (7)
ye ∈ {0,1}, ∀e ∈ E, (8)
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where subtour elimination constraints have been replaced by cut inequalities (7).
In general, the linear relaxation of (5)-(8) has fractional extreme points and there-

fore its polytope strictly contains the polytope induced by (1)-(4). Cut inequalities
can be generalized: Consider a partitionS1,S2, . . .,Sp ofN into p nonempty subsets.
Any spanning tree contains at least p−1 edges joining the setsS1,S2, . . .,Sp , leading
to the valid inequality

1
2

p∑
i=1

y(δ(Si)) ≥ p−1 (9)

that is usually called partition inequality or multi-cut inequality. Cut inequalities (7)
are a special case of (9) with p = 2. Again, it is possible to show that the polyhedron
of the linear relaxation of the formulation given by (6), (9), (8) has integer extreme
points. Hence the linear relaxations of the multi-cut formulation and of the subtour
formulation are equivalent and both define the convex hull of incidence vectors of
spanning trees.

The subtour and multi-cut formulations are ideal, but are not usable as such
in practice, as they suffer from an exponential number of constraints. However, a
cutting-plane approach can be used, as both classes of inequalities can be separated
in polynomial time.

Another approach is to model the problem with extended formulations, by intro-
ducing new sets of variables but keeping the number of constraints polynomial. One
of these extended formulations makes use of directed flows between an arbitrarily
chosen root node r ∈ N and all the other nodes to impose connectivity. Indeed, the
constructed graph is connected if and only if there exists a path from r to every other
node k ∈ N \{r}. To this aim, let us consider each node k , r as a commodity, where
one unit of flow originates at node r and must be delivered to node k. In order to
represent these flows, we defineA = {(i, j), ( j, i)|{i, j} ∈ E} as the directed set of arcs
obtained by replacing each edge by two arcs in opposite direction. As in previous
chapters, let xki j be the flow of commodity k in arc (i, j). We can then formulate the
minimum spanning tree problem as:

Minimize
∑
e∈E

ceye (10)

Subject to
∑

j∈N+i
xki j −

∑
j∈N−i

xkji = w
k
i , ∀ i ∈ N,∀ k ∈ N \ {r} (11)

xki j + xk
′

ji ≤ ye, ∀e = {i, j} ∈ E, ∀ k, k ′ ∈ N \ {r}, (12)
y(E) = n−1, (13)

xki j ≥ 0, ∀ (i, j) ∈ A, ∀ k ∈ N \ {r}, (14)
ye ∈ {0,1}, ∀e ∈ E, (15)

where, for each i ∈ N , we define

N+i = { j ∈ N : (i, j) ∈ A}, N−i = { j ∈ N : ( j, i) ∈ A}. (16)
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Flow balance constraints (25) define a path between r and k with

wk
i =


1, if i = r,
−1, if i = k,

0, otherwise.
(17)

Each edge is given a natural direction as flows are directed away from the root r
of the tree. Constraints (12) ensure that flow is sent only on edges present in the
spanning tree, and always in the same direction. Finaly (13) are the usual cardinality
constraints.

This formulation can also be seen as an application of the max flow-min cut
theorem, and again leads to a complete description of the convex hull of incidence
vectors of spanning trees (or to be more precise, the projection of the formulation on
the space of y-variables defines this polyhedron).

Now consider the general case where costs are not restricted to be positive. Then a
minimum cost connected network is not necessarily a tree, as all negative cost edges
should belong to the optimal solution, possibly creating cycles. Hence the subtour
formulation is not valid anymore. However, the multi-cut and the flow formulations
become valid if cardinality constraints (6) and (13) are removed. Moreover, the
obtained formulations are ideal again in the sense that their linear relaxation (or its
projection) describe the convex hull of incidence vectors of connected networks.

4 Survivable Networks

The major problem with the models presented above is that the topology tends
to be sparse, as costs are minimized, the most extreme case being the minimum
spanning tree. However, networks are subject to failures. For example, in the context
of telecommunications, a network is seen as a set of gateway nodes (routers or
telephone offices) and (fiber) links that are placed between nodes. If connectivity
is the only constraint imposed on the network, a single link or node failure will
disconnect it, which is clearly not acceptable.

In this context, survivability refers to the restoration of services in the event of
node or link failure, or, in other words, a network is survivable if there exists a
prespecified number of node-disjoint or edge-disjoint paths between any two nodes.
Again, the only costs considered are construction costs, like the cost of digging
trenches and placing a fiber cable into service.

A considerable amount of research has focused on low-connectivity constrained
network design problems. These models can be described informally as follows: a set
of nodes that have to be connected by a network is given. These nodes are classified
according to their importance, namely the

• special nodes, for which a “high” degree of survivability has to be ensured in the
network to be constructed;

• ordinary nodes, which have to be simply connected to the network;
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• optional nodes, which may not be part of the network at all.

The pairs of nodes between which a direct transmission link can be placed are also
given, together with the cost of placing the fiber cable and putting it into service.
The problem now consists in determining where to place fiber cables so that the
construction cost, i.e., the sum of the fiber cable costs, is minimized and certain
survivability constraints are ensured. For instance, we may require that

• the destruction of any single link may not disconnect any two special nodes, or
• the destruction of any single node may not disconnect any two special nodes.

These requirements are equivalent to ask that there exist

• at least two edge-disjoint paths, or
• at least two node-disjoint paths

between any two special nodes.
Higher survivability levels may be imposed by requiring the existence of three

or more paths between certain pairs of nodes according to their importance class.
However, up to now, low-connectivity requirements have been found to provide a
sufficient level of survivability for telecommunications operators.

In graph-theoretic language, the set of nodes and possible link connections can be
represented again by an undirected graph G = (N,E). The survivability requirement
or importance of a node is modeled by node types. In particular, each node s ∈ N
has an associated nonnegative integer rs , the type of s. Sometimes, we also write r(s)
instead of rs . A network (N,F ), where F ⊆ E is a subset of the possible links, is
said to satisfy the node-connectivity requirements, if, for each pair s, t ∈ N of distinct
nodes, (N,F ) contains at least

r(s, t) =min{rs,rt }

node-disjoint [s, t]-paths.
Similarly, we say that (N,F ) satisfies the edge-connectivity requirements, if, for

each pair s, t ∈ N of distinct nodes, the network contains at least r(s, t) edge-disjoint
[s, t]-paths. If all node types have the same value k, it is equivalent to request that
(N,F ) is k-node-connected or k-edge-connected.

We consider here the low-connectivity requirements, i.e., node types rs ∈ {0,1,2}.
Using our previous classification of nodes,

• special nodes have type 2,
• ordinary nodes have type 1, and
• optional nodes have type 0.

To shorten notation, we extend the type function r to sets by setting

r(S) = max{rs | s ∈ S} for all S ⊆ N, and
con(S) = max{r(s, t) | s ∈ S, t ∈ N\S}

= min{r(S),r(N\S)} ∀S ⊂ N,∅ , S ,N .
We write conG(S) to make clear with respect to which graph con(S) is considered.
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We can now formulate the connectivity constrained network design problem as
the following integer linear program:

Minimize
∑
e∈E

ceye (18)

Subject to y(δ(S)) ≥ con(S) ∀S ⊂ N, ∅ , S ,N, (19)
y(δG−z(S)) ≥ conG−z(S) ∀ z ∈ N, S ⊂ N\{z},

∅ , S ,N\{z}, (20)
ye ∈ {0,1} ∀e ∈ E . (21)

It follows from Menger’s Theorem that, for any feasible solution y of this pro-
gram, the subgraph (N,F y) of G defines a network satisfying the node-connectivity
requirements. Removing (20), we obtain an integer linear program for edge-
connectivity requirements. Inequalities (19) are called cut inequalities, while in-
equalities (20) are called node cut inequalities.

The connectivity constrained network design problem is NP-hard in general. In
particular :

• If rs ∈ {0,1}, ∀s ∈ N , it reduces to the well-known NP-hard Steiner tree problem
in networks.

• If rs = 2, ∀s ∈ N , it consists in determining a minimum cost two-connected
network. This last problem is NP-hard even if the graph is complete and costs
satisfy the triangle inequality, since with an algorithm for this problem, one could
decide whether a graph has a Hamiltonian cycle by associating a cost equal to 1
to all graph edges and cost equal to 2 to all non-graph edges.

However, for some particular connectivity requirements or costs, or when the
underlying graph G is restricted, the problem may become polynomially solvable:

• If rs = 1, ∀s ∈ N , the problem reduces to the minimum cost connected network
problem studied in the previous section.

• If rs = 1 for exactly two nodes ofN and rs = 0 for all the other nodes, the problem
becomes a shortest path problem.

• If rs = k, k ≥ 2, for exactly two nodes ofN and rs = 0 for all the other nodes, the
problem becomes a k-shortest paths problem.

• If rs ∈ {0,1}, ∀s ∈N , the problem reduces to the Steiner tree problem in networks.
This problem is NP-hard in general, but solvable in polynomial time in the case
where either the number of nodes of type 0 or the number of nodes of type 1 is
restricted.

The general formulation described above and many of its special cases received
a lot of attention. Polyhedral results have been obtained for different special cases of
the model (see Section 7 for references to surveys on the subject).

An important class of valid inequalities for k-node-connected networks are ob-
tained by a generalization of partition inequalities (9). First, we observe that the
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deletion of k −1 nodes from a k-node-connected network leaves a connected graph.
Thus, ifZ ⊆ N is a node set with exactly k −1 nodes and S1,S2, . . .,Sp (p ≥ 2) is a
partition of N\Z into p nonempty subsets, the inequality

1
2

p∑
i=1

y(δG−Z(Si)) ≥ p−1 (22)

is valid for the polytope of k-node-connected networks. These inequalities are called
node-partition inequalities, and can be seen as a generalization of node cut inequal-
ities (20).

When r(s) = 2 for all s ∈ N , partition inequalities can be generalized further:
consider again a patition S1,S2, . . .,Sp (p ≥ 2) ofN and let F ⊆ δ(S1)with |F | odd.
The F -partition inequality is defined as

1
2

p∑
i=1

y(δ(Si))− y(F ) ≥ p−
⌈
|F |

2

⌉
. (23)

To show it is valid, simply add valid inequalities

y(δ(Si)) ≥ 2 ∀ i = 2, . . ., p,
−ye ≥ −1 ∀e ∈ F ,

ye ≥ 0 ∀e ∈ δ(S1) \ F ,

divide by 2 and round up to obtain (23).
The formulation above is in the space of design variables only, and involves an

exponential number of constraints. As in Section 3, it is also possible to obtain valid
polynomial-size models by the introduction of flow variables. We do it here only for
edge-connectivity requirements. Assuming that we want to construct a network in
which there are r(s, t) edge-disjoint paths between nodes s and t, we can define a set
K of commodities where we have one commodity for each node pair s, t such that
r(s, t) > 0, with a flow requirement of r(s, t)where the source and sink of commodity
k are arbitrarily chosen between s and t.

Minimize
∑
e∈E

ceye (24)

Subject to
∑

j∈N+i
xki j −

∑
j∈N−i

xkji = w
k
i , ∀ i ∈ N,∀ k ∈ K, (25)

xki j + xkji ≤ ye, ∀e = {i, j} ∈ E, ∀ k ∈ K, (26)

xki j ≥ 0, ∀ (i, j) ∈ A, ∀ k ∈ K, (27)
ye ∈ {0,1}, ∀e ∈ E, (28)
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Flow balance constraints (25) define r(s, t) paths between s and t for each commodity
k ∈ K corresponding to the node pair s, t, with

wk
i =


r(s, t), if i = s,
−r(s, t), if i = t,

0, otherwise,
(29)

and (26) impose that these paths are edge-disjoint.
Applying simple max-flow / min-cut arguments, it is quite easy to see that the

linear relaxation of the flow formulation is equivalent to the formulation involving
only design variables with an exponential number of constraints.

5 Hop Constraints

The models from the previous section usually lead to designs that are very sparse.
In general, the survivability constraints alone may not be sufficient to guarantee a
cost effective routing with a good quality of service. The reason for this is that the
routing paths may be too long, leading to unacceptable delays. Since in most of the
routing technologies, delay is caused at the nodes, it is usual to measure the delay in
a path in terms of its number of intermediate nodes, or equivalently, its number of
arcs (or hops). Thus, to guarantee the required quality of service, one can impose a
limit on the number of arcs in the routing paths.

Given a graph G = (N,E)with nonnegative edge costs ce, e ∈ E, and a set of node
pairs K (sometimes called commodities), we study the problem of constructing a
minimum cost set of edges so that the induced subgraph contains at least K edge-
disjoint paths with at most L edges between each pair in K.

In theory, we could formulate the limit on the number of hops in a path in the space
of design variables only. This approach was used by several authors (see Section 7)
but has a major drawback: it leads to formulations with an exponential number of
constraints, some of which are really hard to interpret and also difficult to handle
numerically (the associated separation problem being NP-hard).

In this chapter, we prefer to use extended formulations, once again based on
multi-commodity flow variables, that allow to model the limit on the path length
more naturally. Moreover, these formulations imply all the valid inequalities known
for formulations in the space of design variables. More precisely, the projection of
the extended formulations presented here on the space of design variables strictly
contains the polyhedron defined by formulations in the space of design variables
presented in the literature so far.

The basic idea is to use a layered representation of graph G to implicitly force
each path to use at most L edges. We model the subproblem associated with each
commodity with a directed graph composed of L+1 layers as illustrated in Figure 1.

Namely, from the original non-directed graph G = (N,E), we create a directed
layered graph Gq = (Nq,Aq) for each commodity q ∈ K, where Nq =N

q
1 ∪ . . .∪
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(a) (b)

Fig. 1 Original network (a) and its alternative (or associated) layered representation (b) when L = 4

N
q
L+1 with Nq

1 = {o(q)}, N
q
L+1 = {d(q)} and N

q
l
= N\{o(q)}, l = 2, . . ., L. Let vq

l
be the copy of v ∈ N in the l-th layer of graph Gq . Then, the arc sets are defined by
Aq = {(iq

l
, jq

l+1) | {i, j} ∈ E, iq
l
∈ N

q
l
, jq

l+1 ∈ N
q
l+1, l ∈ {1, . . ., L}} ∪ {d(q)

l,d(q)l+1, l ∈
{2, . . ., L}}, see Figure 1. In the sequel, an (undirected) edge in E with endpoints
i and j is denoted {i, j} while a (directed) arc between iq

l
∈ N

q
l
and jq

l+1 ∈ N
q
l+1 is

denoted by (i, j, l) (the commodity q is omitted in the notation as it is often clear
from the context).

Note that each path between o(q) and d(q) in the layered graph Gq is composed
of exactly L arcs (hops), which correspond to a maximum of L edges (hops) in
the original one. In fact this is the main idea of this transformation, since in the
layered graph any path is feasible with respect to the hop-constraints. The usual
multi-commodity flow equations defined in this layered graph yield the following
model:

Minimize
∑
e∈E

ceye (30)

Subject to∑
j∈N+i

xlqi j −
∑

j∈N−i
xl−1q
ji = w

q
i , ∀ i ∈ Nq, ∀ l ∈ {2, . . ., L+1}, ∀q ∈ K (31)∑L

l=1

(
xlqi j + xlqji

)
≤ ye, ∀e = {i, j} ∈ E, ∀q ∈ K, (32)

xlqi j ≥ 0, integer, ∀ (i, j, l) ∈ Aq, ∀q ∈ K, (33)
ye ∈ {0,1}, ∀e ∈ E, (34)

(35)

Flow balance constraints (31) define K paths between o(q) and d(q) in the layered
graph Gq with
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wk
i =


K, if i = o(q),
−K, if i = d(q),

0, otherwise.
(36)

Constraints (32) guarantee that paths are edge-disjoint and only use installed edges.
This model can become very large when the number of commodities and the size

of the network increase, but it can be solved efficiently using Benders decomposition.
It is also interesting to mention that if there is only one commodity, and with non-
negative costs, the linear relaxation of this model is always integral when L ≤ 3.

6 Rings

As stated before, models from Section 4 lead to very sparse designs. In fact, it
turns out that the optimal solution of the two-connected network problem is often
a Hamiltonian cycle. Hence, any edge failure implies that the flow that was routed
on that edge must be rerouted, using all the edges of the network, an obviously
undesirable feature.

It is therefore necessary to add extra constraints to limit the region of influence
of the traffic that it is necessary to reroute if a connection is broken. Hop constraints
presented above are a possible way to achieve this. Another approach presented
in this section is based on the technology of self-healing rings, quite popular in
telecommunications networks. Self-healing rings are cycles in the network equipped
in such a way that any link failure in the ring is automatically detected and the traffic
rerouted by the alternative path in the cycle. It is natural to impose a limited length
of these rings. This is equivalent to set a bound on the length of the shortest cycle
including each edge.

This leads to the problem of designing aminimum cost networkwith the following
constraints:

1. The constructed network contains at least two node-disjoint paths between every
pair of nodes (2-connectivity constraints),
and

2. each edge of the network belongs to at least one cycle whose length is bounded
by a given constant K (ring constraints).

This problem is called the Two-Connected Network with Bounded rings (2CNBR)
problem. The length of an edge can be unitary (i.e., similar to hop constraints), or
can be weighted, to represent for example the physical delay for flowing through a
given edge.

A useful tool to analyze feasible solutions of 2CNBR is the restriction of a graph
to bounded rings. Given a graph G = (N,E) and a constant K > 0, we define for each
subset of edges F ⊆ E its restriction to bounded rings FK as

FK =

{
e ∈ F : e belongs to at least one cycle

of length less than or equal to K in F

}
.
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The subgraph GK = (N,EK ) is the restriction of G to bounded rings. Note that an
edge e ∈ E\EK will never belong to a feasible solution of 2CNBR.

Further we denote by Y the set of incidence vectors of subsets F ⊆ E such that

1. F is two-connected,
2. F = FK .

Then, the 2CNBR problem consists in

Minimize
∑
e∈E

ceye

Subject to y ∈ Y.

Checking that GK is two-connected, i.e., that Y is nonempty, can be done in
polynomial time. We therefore assume in the remainder of this chapter that there
always exists a feasible solution to the problem.

Since all costs ce, e ∈ E are assumed to be nonnegative, there always exists
an optimal solution of 2CNBR whose induced graph is minimal with respect to
inclusion. More precisely, if FK is two-connected, as F ⊇ FK , F is also two-
connected and the cost of F is greater than or equal to the cost of FK . We can thus
relax the constraints and just require that FK is two-connected for a set of edges F
to be feasible. Hence, 2CNBR can be equivalently formulated as

Minimize
∑
e∈E

ceye

Subject to F y
K is two-connected,

ye ∈ {0,1}, ∀e ∈ E .

In order to formulate the problem using only design variables y, observe that if a
subset of edges F ⊆ E is such that (G −F )K is not two-connected, then G−F does
not contain a feasible solution. Therefore each feasible solution contains at least one
edge from F .

As we are only interested in minimal feasible solutions, this is sufficient to
formulate the 2CNBR problem as the following integer linear program:

Minimize
∑
e∈E

ceye (37)

Subject to y(F ) ≥ 1, ∀F ⊆ E, (G −F )K is not two-connected, (38)
ye ∈ {0,1}, ∀e ∈ E . (39)

Constraints (38) are called subset constraints.
As feasible solutions of 2CNBR are two-connected graphs, valid inequalities for

the design of 2-connected networks are also valid for 2CNBR. In particular, cut
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constraints (19) and node-partition inequalities (22) are very important in branch-
and-cut strategies to solve the problem. However, for general 2-connected networks,
cut constraints are facet-defining under very mild conditions, while in many cases
they do not define facets for 2CNBR. By studying conditions for these inequalities
to define facets, it is possible to strengthen them.

Given a subset of nodes S ⊆ N , ∅ , S ,N , the cut constraint imposes that there
are at least two edges leaving S, i.e.,

y(δ(S)) ≥ 2.

To characterize which cut constraints define facets, it is useful to know, for any pair
of edges e, f ∈ δ(S), if there exists a solution whose incidence vector lies in the face
y(δ(S)) = 2, i.e., if there exists a feasible solution containing e and f but no other
edge of δ(S)). This is the case if and only if

Ce, f = E(S)∪E(N\S)∪ {e, f }

is feasible, i.e., if (Ce, f )K is two-connected.
A useful tool to represent and analyze the vectors belonging to the face defined by

a cut constraint is the ring-cut graph: Given a graphG = (N,E), a constant K > 0, and
a subset of nodes S ⊂ N , ∅ , S ,N , the ring-cut graph RCGS,K = (δ(S),RCES,K )
induced by S is the graph defined by associating one node to each edge in δ(S) and
by the set of edges

RCES,K =
{
{e, f } ⊆ δ(S) : (Ce, f )K is two-connected

}
.

With the help of the ring-cut graph, it is possible to characterize which cut
constraints are facet-defining. Moreover, the ring-cut graph can be used to derive
new valid inequalities for 2CNBR. If F ⊆ δ(F ) is an independent subset in the
ring-cut graph RCGS,K , then

y(F )+2y(δ(S)\F ) ≥ 3 (40)

is a valid inequality for the 2CNBR problem. Inequalities (40) are called ring-cut
inequalities, and are also very useful to strengthen formulations of 2CNBR.

7 Bibliographical Notes

7.1 Connected Networks

The greedy algorithm for the Minimum Spanning Tree problem is due to Kruskal
(1956). The tree polytope is a special case of the matroid polytope first described
by Edmonds (1971). For a review on polyhedral results for tree related problems,
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see Magnanti and Wolsey (1995). Another compact formulation for the minimum
spanning tree problem (not described here) was proposed by Martin (1991).

Grötschel, Monma and Stoer studied in detail network design problems with
connectivity constraints. A survey of their work can be found in Grötschel et al.
(1995a) and Stoer (1992).A later survey byKerivin andMahjoub (2005) concentrates
on polyhedral aspects for some special cases and presents a general branch-and-cut
algorithm. They also consider problems with bounded rings and hop-constrained
problems.

7.2 Survivable Networks

In their earliest work on the subject, Grötschel and Monma (1990) introduced a
general model mixing edge and node survivability requirements. They examined the
dimension of the associated polytope and proved facet results for cut and node-cut
inequalities.

They also described completely the polytope of the (1-)connected network prob-
lem, based on the work of Cornuéjols et al. (1985), by the introduction of partition
inequalities. The first separation algorithm for these inequalities was proposed by
Cunningham (1985) and requires |E | min-cut computations. Barahona (1992) re-
duced this computing time to |N | min-cut computations. F -partition inequalities
were first proposed by Mahjoub (1994).

Low-connectivity constrained network design problems have been introduced
by Monma and Shallcross (1989) and Stoer (1992), who introduced most of the
terminology and models presented in Section 4. For high-connectivity requirements,
the reader is referred to Grötschel et al. (1995b) and Stoer (1992).

Directed multi-commodity flow formulations were studied by Magnanti and
Raghavan (2005), and they introduced improved directed flow models that are much
stronger than the cut formulations for some variants of the problem (in particular
when there are many nodes with unitary requirements).

The complexity of the minimum cost two-connected network problem was estab-
lished by Eswaran and Tarjan (1976). An in-depth survey of Steiner tree problems
was made by Winter (1987). The algorithm for solving the Steiner tree problem in
polynomial time when either the number of nodes of type 0 or the number of nodes
of type 1 is restricted is due to Lawler (1976). At the time of writing, the most recent
and efficient exact approaches for some variants of the Steiner tree problem are due
to Fischetti et al. (2017).

7.3 Hop Constraints

Hop-constraints were considered by Balakrishnan and Altinkemer (1992) as a means
of generating alternative base solutions for a network design problem. Later on,
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Gouveia (1998) presented a layered network flow reformulation whose linear pro-
gramming bound proved to be quite tight. This reformulation has, then, been used
in several network design problems with hop-constraints (Pirkul and Soni, 2003;
Gouveia and Magnanti, 2003; Gouveia et al., 2003) and even some hop-constrained
problems involving survivability considerations (more on this below). It is also inter-
esting to point out that the apparently simple general network design problem with
L = 2 already contains a complex structure (Dahl and Johannessen, 2004) who also
conduct a computational study of this variation of the problem.

The K-edge-disjoint L-hop-constrained network design problem was first studied
by Huygens et al. (2007) who only consider L ≤ 4 and K = 2. The node-disjoint
variant was studied by Gouveia et al. (2006) and later by Gouveia et al. (2008) who
consider a more complicated version. A summary of these results is also presented
in the survey by Kerivin and Mahjoub (2005). Itaí et al. (1982) and later Bley (2003)
study the complexity of this problem for the node-disjoint and the edge-disjoint
cases. More recently, Bley and Neto (2010) also studied the approximability of the
problem for L = 3 and L = 4.

Some authors focused on the formulation of some variants of the problem in the
space of design variables. For K = 1, Dahl (1999) has provided such a formulation
and shown that it describes the corresponding convex hull for L ≤ 3. Later on, Dahl
et al. (2004) have shown that finding such a description for L ≥ 4 would be much
more complicated. For K ≥ 2 the results are even worse. Huygens et al. (2004) have
extended Dahl’s result for K = 2 and L ≤ 3. For L ≥ 4, the only interesting result for
the moment is the one given by Huygens and Mahjoub (2007) for L = 4 and K = 2
where a valid formulation has been given. However, in terms of valid inequalities
and with the exception of the well known L-path cut inequalities, nothing is known
for larger values of L. This may also explain why the only cutting plane method for
the more general problem with several sources and several destinations by Huygens
et al. (2007) only considers L ≤ 3.

The extended formulation for the general case presented in Section 5 was intro-
duced by Botton et al. (2013) who also proposed an efficient Benders decomposition
method to solve it. They also applied this algorithm to a generalisation of the model
with so-called reliable edges (Botton et al., 2015). For the single commodity case,
Botton et al. (2018) proposed valid inequalities that completely describe the poly-
hedron of incidence vectors of feasible solutions for K = 2 and L = 3 (hence for
arbitrary costs), extending results by Bendali et al. (2010) for non-negative costs.

A version of the problemwhere the hop constraint limit is different in the nominal
graph and in case of failures was introduced by Gouveia and Leitner (2017) and an
efficient branch-and-cut approach for this problem was proposed by Gouveia et al.
(2018).

Another application of extended formulations for hop constrained problems in the
context of distribution networks was proposed by De Boeck and Fortz (2018), where
some preprocessing techniques to reduce the size of the resulting formulations are
also discussed.

Recently, Gouveia et al. (2019) published a survey of layered graph approaches
for hop constrained problem.
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7.4 Rings

The Two-ConnectedNetworkwith BoundedRings problemwas first studied by Fortz
et al. (2000). More polyhedral results can be found in Fortz (2000); Fortz and Labbé
(2002). Fortz and Labbé (2004) studied the particular case of unit edge lengths. The
edge-connectivity version of the problem was studied by Fortz et al. (2006).

Other network design problems involve the creation of rings of bounded lengths.
Goldschmidt et al. (2003) study the problem of connecting subsets of customers to
a concentrator through a self-healing ring connected to a backbone ring of concen-
trators. This problem, called the SONET Ring Assignment Problem (SRAP) has the
drawback that many instances are infeasible. Carroll et al. (2013) studied a gener-
alization of the SRAP, called the Ring Spur Assignment Problem (RSAP). In this
problem, the objective is to design a set of bounded disjoint local rings that are
interconnected by a backbone ring, like in the SRAP. Since no SRAP solution exist
in some real world instances, locations that have no possible physical route due to
limitations of geography can be connected to local rings by spurs off the local rings.

8 Conclusions and Perspectives

Topological network design is a very important topic, and is often used as first step
of network planning, considering a long-term horizon where demand is not known
in advance. Decoupling the decisions on capacity and routing from the physical
design is possible because technology in telecommunications make these two sets
of decisions independent, as fiber optics cables have almost infinite capacity, but
capacity restrictions arise from equipments that are subsequently added to the nodes.

However, when considering topological design, the simplest model that consists
of building a connected network (and that can be solved in polynomial time), is not
sufficient as survivability and quality of service aspects must be ensured: one must
guarantee that redundancy exists in the network to cover different cases of failures,
and that paths used for connecting demand nodes are not too long. Unfortunately,
as soon as such constraints are added, all problems become NP-hard and more
challenging. Therefore, there is also quite a lot of literature (not covered in this
chapter) dealing with the development of heuristics for the problems presented here.

Concerning exact methods, problems with survivable requirements only (as those
presented in Section 4) have been extensively studied from the polyhedral point of
view. The problems are usually modeled in the “natural” space of design variables
and several classes of facet-inducing valid inequalities have been proposed in the
literature, leading to powerful branch-and-cut algorithms able to solve realistic size
instances very efficiently.

As soon as constraints on the length of the paths are added, formulating the
problems in the space of design variables only becomes much more challenging, and
most approaches rely on extended formulations. But, despite the progress of modern
solvers, these formulations quickly become intractable because of their large size,
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and decomposition methods like Lagrangian relaxation, Benders decomposition or
branch-and-price are often used.

Interesting open problems involve a better understanding of Benders cuts arising
from Benders decomposition methods for these problems in order to develop more
efficient separation algorithms, as currently most approaches rely on solving linear
programs for the separation. Given that large size instances remain intractable, there
is also a large unexplored research direction in matheuristics, i.e., methods using
structural knowledge from exact methods to derive effective heuristics and provide
a certificate of quality for the solutions obtained. To the best of our knowledge, the
state-of-the-art heuristics are meta-heuristics that do not use any knowledge gained
from exact method development.

On amoremanagerial side, it would also be interesting tomeasure more precisely,
on realistic instances, the loss in solution quality due to the separation of topological
design and capacity allocation / routing decisions compared to an integrated strategy.
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