Sur les surfaces liées à une suite de Laplace périodique

Au Professeur K. Strubecker, pour ses 60 ans

Par

LUCIEN GODEAUX

A une surface (x) rapportée à ses asymptotiques u, v, nous avons associé dans un espace linéaire à cinq dimensions, une suite de Laplace L déterminée par les points de l'hyperquadrique Q de Klein qui représentent les tangentes aux asymptotiques de la surface (x) [2]. Cette suite L nous a permis notamment d'étudier les couples de surfaces ayant mêmes quadriques de Lie, surfaces rencontrées autrefois par Demoulin [1]. Dans ce cas, les suites L attachées aux deux surfaces d'un couple coïncident en une suite de période six. Cela suggère l'étude des surfaces attachées à une suite périodique, la période etant nécessairement paire. Nous sommes parvenu à étudier la suite de période huit. Dans ce cas, il existe deux surfaces attachées à la suite, les quadriques de Lie de ces deux surfaces se touchant en quatre points, c'est-à-dire ayant en commun le quadrilatère de Demoulin. Dans cette note, nous apportons une contribution au cas général.

1. Soit (x) une surface de l'espace ordinaire rapportée à ses asymptotiques u, v. Dénotons par U, V les points de l'hyperquadrique Q de Klein, de S_5 , représentant les tangentes xx_u , xx_v aux lignes u, v en un point x de la surface (x). On a

$$U_u + 2bV = 0$$
, $V_v + 2aU = 0$.

Les points U, V sont donc transformés de Laplace l'un de l'autre et déterminent une suite de Laplace L,

$$(L) \qquad \dots, U^n, \dots, U^1, U, V, V^1, \dots, V^n, \dots$$

où chaque point est le transformé de Laplace du précédent dans le sens des u.

Nous poserons

$$U_v^n = U^{n+1} + U^n (\log b \, h_1 \cdots h_n)_v, \quad U_u^{n+1} = h_{n+1} \, U^n,$$

 $V_u^n = V^{n+1} + V^n (\log a \, k_1 \cdots k_n)_u, \quad V_v^{n+1} = k_{n+1} \, V^n,$

où

$$h_n = -(\log b h_1 \cdots h_{n-1})_{uv} + h_{n-1},$$

 $k_n = -(\log a k_1 \cdots k_{n-1})_{uv} + k_{n-1}.$

Pour abréger, nous écrirons

$$H^n = \log b h_1 \cdots h_n$$
, $K^n = \log a k_1 \cdots k_n$,

avec

$$H^0 = \log b$$
, $K^0 = \log a$.

Ceci rappelé, nous allons supposer que la suite L a la période 2n+2, c'est-à-dire que le point U^{n+1} coïncide avec le point V^n et le point V^{n+1} avec le point U^n .

Rappelons aussi que la suite L est autopolaire par rapport à Q; les points U^n et V^{n+1} sont conjugués, de même que les points U^{n+1} et V^n , ils appartiennent donc à l'hyperquadrique Q. Il en est de même de la droite $U^n V^n$. Il existe une surface (\bar{x}) d'asymptotiques u, v, telle que les tangentes $\bar{x}\bar{x}_u$, $\bar{x}\bar{x}_v$ ont pour images sur Q les points V^n , U^n . La suite L attachée à la surface (x) coı̈ncide avec la suite L liée à la surface (\bar{x}) .

2. La suite ayant la période 2n+2, le point U^{2n+2} coïncide avec le point U. Ce dernier satisfait à l'équation de Laplace

$$(1) U_{uv} - H_v^0 U_u - 4 a b U = 0$$

et le point U^{2n+2} à l'équation de Laplace

(2)
$$U_{uv}^{2n+2} - H_v^{2n+2} U_u^{2n+2} - h_{2n+2} U^{2n+2} = 0.$$

Posons, dans cette seconde équation, $U^{2n+2} = \lambda U$. Elle devient

$$\lambda U_{uv} + U_u[\lambda_v - H_v^{2n+2}] + \lambda_u U_v + [\lambda_{uv} - \lambda_u H_v^{2n+2} - h_{2n+2}] U = 0.$$

Cette équation étant identique à l'équation (1), on a

$$\frac{\lambda}{1} = \frac{\lambda_v - H_v^{2n+2}}{H_v^0} = \frac{\lambda_{uv} - \lambda_u H_v^{2n+2} - h_{2n+2}}{-4 a b}, \quad \lambda_u = 0.$$

On en deduit

(3)
$$(\log \lambda)_v = H_v^{2n+2} - H_v^0, \quad h_{2n+2} = 4 a b, \quad \lambda_u = 0$$

et

$$(\log \lambda)_v = (\log a \, b \, h_1 \cdots h_{2n+1})_v,$$

ou encore

$$(\log \lambda)_{uv} = (\log a b h_1 \cdots h_{2n+1})_{uv} = 0.$$

Réciproquement, si nous avons

$$(\log a b h_1 \cdots h_{2n+1})_{uv} = 0, \quad h_{2n+2} = 4 a b,$$

nous pourrons trouver une valeur de λ satisfaisant aux équations (3) et en remplaçant dans l'équation (1), U par λU , on retrouve l'équation (2). On a donc $U^{2n+2} = \lambda U$ et la suite L a la période 2n+2.

Les conditions nécessaires et suffisantes pour que la suite L ait la période 2n+2 sont que l'on ait

$$(\log a b h_1 \cdots h_{2n+1})_{uv} = 0, \quad h_{2n+2} = 4 a b.$$

Observons que la condition $h_{2n+2}=4ab$ peut être remplacée par

$$(\log b^{2n+2}h_1^{2n+1}\cdots h_{2n+1})_{uv}=0.$$

3. Au lieu de partir du fait que les points U^{2n+2} et U coïncident, on aurait pu partir de l'identité des points V et V^{2n+2} . Si l'on pose $V^{2n+2} = \mu V$, on trouve les relations

$$(\log \mu)_u = K_u^{2n+2} - K_u^0, \quad k_{2n+2} = 4ab, \quad \mu_v = 0$$

et ensuite

$$(\log a b k_1 \cdots k_{2n+1})_{uv} = 0.$$

Ces conditions sont équivalentes aux précédentes, car les points U^{n-i} et V^{n+i+1} , doivent coïncider et les équations de Laplace auxquelles ils satisfont ont des invariants égaux. On a donc

$$h_{n-i+1}=k_{n+i+1},$$

où l'on doit poser $h_0 = 4ab$ et $k_0 = 4ab$.

4. Nous avons $U^{2n+2}=\lambda U$ avec $\lambda_u=0$. Dérivons totalement cette équation par rapport à u, nous trouvons

$$h_{2n+2}U^{2n+1} + 2b\lambda V = 0$$

et comme $h_{2n+2} = 4ab$,

$$\lambda V + 2a U^{2n+1} = 0$$
.

En dérivant de nouveau cette relation par rapport à u, on trouve

$$\lambda [V^1 + V K_u^0] + 2 a K_u^0 U^{2n+1} + 2 a h_{2n+1} U^{2n} = 0,$$

c'est-à-dire, puisque $h_{2n+1} = k_1$,

$$\lambda V^1 + 2 a k_1 U^{2n} = 0$$
.

En dérivant successivement cette relation et les suivantes par rapport à u, et en tenant compte de $h_{n+i} = k_{n-i}$, on trouve

$$\lambda V^{i} + 2 a k_{1} \cdots k_{i} U^{2n+1-i} = 0.$$

En particulier, on a

$$\lambda V^n + 2 a k_1 k_2 \cdots k_n U^{n+1} = 0$$
,

$$\lambda V^{n+1} + 2 a k_1 k_2 \cdots k_{n+1} U^n = 0.$$

Nous avons également $V^{2n+2} = \mu V$ avec $\mu_v = 0$. En dérivant la relation par rapport à v, on a

$$\mu \, U + 2 \, b \, V^{2n+1} = 0 \, .$$

En dérivant successivement par rapport à v, on obtient

$$\mu U^i + 2bh_1 \cdots h_i V^{2n+1-i} = 0.$$

En particulier, on a

$$\mu U^n + 2 b h_1 \cdots h_n V^{n+1} = 0$$
,

$$\mu U^{n+1} + 2bh_1 \cdots h_{n+1} V^n = 0.$$

En comparant les relations liant U^n et V^{n+1} , ou U^{n+1} et V^n , on trouve

$$\lambda \mu = 4 a b k_1 \cdots k_n h_1 \cdots h_{n+1}$$

c'est-à-dire, en tenant compte des relations entre les h et les k,

$$\lambda \mu = 4 a b h_1 \cdots h_{2n+1} = 4 a b k_1 \cdots k_{2n+1}.$$

5. Modifions les paramètres des asymptotiques de la surface (x) en posant

$$u = \varphi(u'), \quad v = \psi(v')$$

et appelons $h'_1, h'_2, \ldots, h'_{2n+1}$ ce que deviennent $h_1, h_2, \ldots, h_{2n+1}$. On sait que l'on a

$$h'_1 = h_1 \varphi' \psi', \quad h'_2 = h_2 \varphi' \psi', \dots, h'_{2n+1} = h_{2n+1} \varphi' \psi'.$$

Par conséquent, il vient

$$4 a b h'_1 h'_2 \cdots h'_{2n+1} = 4 a b h_1 h_2 \cdots h_{2n+1} (\varphi' \psi')^{2n+1}.$$

Si la suite L a la période 2n + 2, on doit avoir

$$(\log 4 a b h'_1 h'_2 \cdots h'_{2n+1})_{uv} = 0$$

et on peut choisir les fonctions φ , ψ de manière à avoir

$$4 a b h'_1 h'_2 \cdots h'_{2n+1} = 1.$$

Dans ces conditions, on a $\lambda_u = 0$, $\lambda_v = 0$ et λ est une constante.

Si la suite L a la periode 2n + 2, on peut choisir les parametres des asymptotiques de la surface (x) de telle sorte qu'il existe une constante λ telle que $U^{2n+2} = \lambda U$.

Observons que ce choix étant fait, on a $\lambda\mu=1$ et μ est également une constante.

6. Considérons les plans $U^m U^{m+1} U^{m+2}$ et $V^m V^{m+1} V^{m+2}$, où $m \leq n-2$. Ils sont conjugués par rapport à Q et leurs sections par cette hyperquadrique représentent deux demi-quadriques de même support Φ_m . On obtient ainsi une suite de n-1 quadriques $\Phi_0, \Phi_1, \ldots, \Phi_{n-2}$ dont la première est la quadrique de Lie attachée au point x la surface (x) et la dernière Φ_{n-2} la quadrique de Lie attachée au point \bar{x} à la surface (\bar{x}) .

Nous avons établi que deux quadriques consécutives de cette suite se touchent en quatre points caractéristiques pour les deux quadriques. La quadrique de Lie oscule la surface (x) au point x et la quadrique Φ_{n-2} oscule la surface (\bar{x}) au point \bar{x} .

7. La droite U^1V^1 coupe l'hyperquadrique Q en deux points W^1 , W^2 qui représentent les directrices de Wilczynski w^1 , w^2 de la surface (x) au point x. Nous supposerons que w^1 passe par x et donc que w^2 se trouve dans le plan tangent ξ à (x) au point x.

De même, la droite $U^{n-1}V^{n-1}$ coupe l'hyperquadrique Q en deux points $\overline{W}^1, \overline{W}^2$ représentant les directrices de Wilzynski $\overline{w}^1, \overline{w}^2$ de la surface (\bar{x}) au point \bar{x} . Nous supposerons que \bar{w}^1 passe par \bar{x} et donc que \bar{w}^2 se trouve dans le plan tangent $\bar{\xi}$ à (\bar{x}) au point \bar{x} .

Les plans $U V W^1$, $U^n V^n \overline{W}^1$ appartiennent à Q et représentent respectivement les gerbes de rayons de sommets x, \bar{x} . Ils ont en commun le point R^1 image de la droite $x\bar{x}$. Ils appartiennent donc à un hyperplan $U V U^n V^n R^1$ tangent à Q en R^1 .

Les plans UVW^2 , $U^nV^n\bar{W}^2$ appartiennent également à Q et représentent les plans réglés $\xi, \bar{\xi}$ tangents aux surfaces (x), (\bar{x}) . Ils ont en commun un point R^2 représentant la droite intersection des plans $\xi, \bar{\xi}$. Ces deux plans appartiennent à un hyperplan $UVU^nV^nR^2$ touchant Q en R^2 .

Les points R^1 , R^2 sont conjugués des points U, V, U^n , V^n de sorte que la section de Q par l'espace à trois dimensions UVU^nV^n représente la congruence de droites dont les directrices sont les droites $x\bar{x}$ et $\xi\bar{\xi}$.

8. Désignons par $\Omega(p,q)=0$ la condition pour que deux points p,q soient conjugués par rapport à l'hyperquadrique Q, de telle sorte que l'équation de celle-ci soit $\Omega(p,p)=0$. Posons

$$\Omega(U^{n-1}, U^{n-1}) = 2A\Delta$$
, $\Omega(V^{n-1}, V^{n-1}) = 2B\Delta$,

où

$$\Delta = |x x_u x_v x_{uv}|$$

est une constante (voir [2]).

Dérivons la première relation par rapport à v. On a, en observant que

$$\Omega(U^{n-1}, U^n) = 0, \quad \Omega(U^{n-1}, U^{n-1}) H_v^{n-1} = A_v \Delta,$$

c'est-à-dire

$$2AH_v^{n-1}=A_v.$$

On en conclut

$$A = (b h_1 h_2 \cdots h_{n-1})^2 \chi_1(u),$$

où $\chi_1(u)$ est une fonction arbitraire de u.

On obtient de même

$$B = (a k_1 k_2 \cdots k_{n-1})^2 \chi_2(v),$$

où $\chi_2(v)$ est une fonction arbitraire de v.

On voit donc que les points U^{n-1} , V^{n-1} ne peuvent appartenir à Q, les invariants h et k étant nécessairement différents de zéro.

Bibliographie

- [1] A. Demoulin, Sur la quadrique de Lie. C. R. Acad. Sci. Paris 147, 493-496 (1908).
- [2] L. GODEAUX, La Théorie des Surfaces et l'Espace réglé. Paris 1934.
- [3] L. GODEAUX, Sur les surfaces ayant mêmes quadrilatères de Demoulin, I, II. Acad. Roy. Belgique, Bull. Cl. Sci., V Sér. 39, 245—254, 363—368 (1953).

Eingegangen am 16. 1. 1964

Anschrift des Autors:

Lucien Godeaux 37, quai Orban Liège, Belgique