UNA FAMIGLIA DI SUPERFICIE ALGEBRICHE DI CUI IL DIVISORE DI SEVERI VALE DUE.

DI LUCIEN GODEAUX, LIEGI

Si sa che quando il Severi ha introdotto il concetto di divisore di una superfice algebrica (¹), una sola superficie di divisore maggiore di uno era conosciuta. Era la superficie di Enriques, del sesto ordine, passante doppiamente per i spigoli di uno tetraedro, la quale ha il divisore $\sigma = 2$.

La superficie di Enriques è l'imagine di una involuzione del secondo ordine, senza punti uniti, appartenente ad una superficie di cui tutti i generi sono eguali a uuo (2). Da questo fatto, siamo stati condotti al seguente teorema: La superficie imagine di una involuzione ciclica, senza punti uniti, appartenente ad una superficie algebrica, ha il divisore di Severi $\sigma = p$, essendo p l'ordine della involuzione. Abbiamo dato alcune applicazioni di questo teorema.

In questa nota, vogliamo dare la costruzione, molte semplice, di una famiglia di superficie di divisore $\sigma = 2$.

Chiamiamo varietà di Veronese di indice n la varietà di ordine 2^n , di uno spazio ad $\frac{1}{2}n(n+3)$ dimensioni, di cui le sezioni iperpiane rappresentano le iperquadriche di uno spazio ad n dimensioni.

Consideriamo, in uno spazio S_R di

$$R = \frac{1}{2} m (m + 3) + \frac{1}{2} n (n + 3) + 1$$

(dimensioni $(m \ge 2 \ n \ge 2)$ due spazi Σ_1 di $\frac{1}{2} \ m \ (m+3)$ dimensioni, Σ_2 di $\frac{1}{2} \ n \ (n+3)$ dimensioni, che non si incontrano, ed in Σ_1 , una varietà di Veronese Ω_1 di indice m, in Σ_2 una varietà di Veronese

 Ω_2 di indice n. La varietà luogo delle rette appoggiate sopra Ω_1 ed Ω_2 , è tagliata da uno spazio lineare ad R-(m+n-1) dimensioni, in una superficie di divisore di Severi $\sigma=2$.

Si potrebbe nello stesso modo costruire varietà algebriche di divisore due. Si potrebbe anche costruire superficie e varietà di divisore p, prendente le mosse da una omografia ciclica di periodo p con solo due assi.

1. Consideriamo in uno spazio a r=m+n+1 dimensioni, l'omografia armonica

$$H = \begin{pmatrix} y_0 \ y_1 \ \dots \ y_m - z_0 - z_1 \ \dots - z_n \\ y_0 \ y_1 \ \dots \ y_m \quad z_0 \quad z_1 \ \dots \quad z_n \end{pmatrix}$$

di cui diremo σ_1 , σ_2 gli assi (y) (z) di dimensioni m e n.

Le iperquadriche mutate in sè da H formano due sistemi lineari di equazioni

(1)
$$\varphi(y_0, y_1, ..., y_m) + \psi(z_0, z_1, ..., z_n) = 0$$
,

dove φ e ψ sono forme algebriche quadratiche, e

(2)
$$\sum \lambda_{jk} y_i z_k = 0$$
, $(i = 0, 1, ..., m; k = 0, 1, ..., n)$.

Chiamiamo F la superficie intersezione completa di m+n-1 iperquadriche

(3)
$$\varphi_i(y) + \psi_i(z) = 0$$
 $(i = 1, 2, ..., m + n - 1)$

del sistema (1).

Sulla F, l'omografia H genera una involuzione I del secondo ordine. Supporremo $m \geq 2$, $n \geq 2$. Allora la superficie F non incontra gli assi σ_1 , σ_2 di H. L'involuzione I non ha punti uniti.

2. Per ottenere un modello proiettivo della superficie F' imagine della involuzione I, basta stabilire una proiettività fra le iperquadriche (1) ed gli iperpiani di uno spazio S_R di dimensione

$$R = \frac{1}{2} m (m + 3) + \frac{1}{2} n (n + 3) + 1.$$

Poniamo

$$Y_{jk} = y_i y_k,$$
 $(i, k = 0, 1, ..., m),$

$$Z_{jl} = z_j z_l, \qquad (j, l = 0, 1, ..., n).$$

Le equazioni della varietà V_{m+n+1} imagine della involuzione generata da H nello spazio S_{m+n+1} sono ottenute scrivendo che i determinanti

$$|Y_{jk}|, |Z_{jl}|$$

sono di caratteristica uno.

Nello spazio Σ_1 ($z_0 = z_1 = \dots z_n = 0$), le equazioni ottenute del primo determinante rappresentano una varietà di Veronese di indice m, Ω_1 e nello spazio Σ_2 ($y_0 = y_1 = \dots = y_m = 0$) abbiamo una varietà di Veronese di indice n, Ω_2 .

La varietà V_{m+n+1} è il luogo delle rette appoggiate sulle varietà Ω_1 , Ω_2 . Il suo ordine è 2^{m+n} .

Alle iperquadriche (3) corrispondono m+n-1 iperpiani di S_R che hanno in comune uno spazio lineare Σ di dimensione

$$R-(m+n-1),$$

che non incontra le varietà Ω_1 , Ω_2 . Questo spazio taglia la varietà V_{m+n+1} nella superficie F' imagine dell'involuzione I.

3. La superficie F' rappresenta una involuzione senza punti uniti, dunque ha il divisore di Severi $\sigma = 2$. Questo fatto può essere stabilito agevolmente.

Dalla equazione delle iperquadriche (2) deduciamo

$$(4) \Sigma \Sigma \lambda_{i\lambda} \lambda_{jl} Y_{ij} Z_{kl} = 0,$$

dunque a queste iperquadriche corrispondono in S_R iperquadriche. Le ipersuperficie del quarto ordine

$$[\varphi(y) + \psi(z)]^2 = 0, \qquad [\Sigma \lambda_{jk} y_i z_k]^2 = 0$$

appartengono ad un sistema lineare di cui tutti gli elementi sono trasformati in sè dalla omografia H. Quindi, le iperquadriche (4) toccano la varietà V_{m+n+1} in ogni punto di intersezione.

Se diciamo C le sezioni iperpiane di F' e C' le curve tagliate sulla superficie dalle iperquadriche (4), abbiamo

$$|2C| = |2C'|$$
.

4. La superficie F è regolare ed ha il genere aritmetico (4)

$$p_a = [(m+n)^2 - 7(m+n) + 14] 2^{m+n+4} - 1.$$

Fra i generi aritmetici p_a di F' e p'_a di F', abbiamo la relazione (5)

$$p_a + 1 = 2(p'_a + 1),$$

dunque $p'_a = [(m+n)^2 - 7(m+n) + 14] 2^{m+n-5} - 1$. Il genere lineare di F' è

$$p^{(1)} = 2^{m+n} + 1$$
.

La superficie F' è regolare.

5. Supponiamo m=n=2. La superficie F' è la sezione della varietà V_5^{16} luogo delle rette appoggiate sopra due superficie di Veronese appartenente a spazi a cinque dimensioni che non si incontrano, in uno spazio da 11 dimensioni, da uno spazio ad otto dimensioni.

La superficie F è un modello della superficie di Enriques, di generi $p_a = p_g = 0$, $p^{(1)} = 1$, $P_6 = 1$.

BIBLIOGRAFIA

- [1] Severi, La base minima pour la totalité des courbes tracées sur une surface algébrique (Annales de l'Ecole Normale Supérieure, 1908, pp. 449-488).
- [2] F. Enriques, Un'osservazione relativa alle superficie di bigenere uno (Rendiconto dell'Accademia di Bologna, 1907-1908, pp. 40-45). Abbiamo dato recentemente una dimostrazione di questo teorema: Sopra un teorema di F. Enriques (VIIº Congresso Nazionale dell'Unione Matematica Italiana, Sunti delle comunicazioni, Genova, 1963), Sur un théorème di F. Enriques (Bulletin des Sciences Mathématiques, 1963, pp. 138-141).
- [3] Sur certaines surface algébriques de diviseur supérieur à l'unité (Bulletin de l'Académie de Cracovie, 1914, pp. 362-388). Vedere anche la nostra monografia Théorie des involutions cycliques appartenant à une surface algébrique et applications (Roma, Edizioni Cremonese, 1963), p. 125).
- [4] Sur les courbes et surfaces intersections d'hyperquadriques (Bulletin de l'Académie roy. de Belgique, 1944, pp. 262-269.
- [5] Recherches sur les involutions douées d'un nombre fini de points de coincidence appartenant à une surface algebrique (Bulletin de la Société Mathématique de France, 1919, pp. 1-16). Vedere anche la monografia già citata.