Geometria algebrica

LUCIEN GODEAUX

Ancora sopra una particolare involuzione di GEISER

SUNTO. — Si mostra che una critica del Prof. Turri ad un risultato stabilito in una nota dello stesso titolo (Questi Rendiconti, XXI pp. 1-3) è senza valore.

In una nota dello stesso titolo di questi *Rendiconti* (XXI pp. 1-3), ho dimostrato che esiste una particolare involuzione di GEI-SER che muta in sè il sistema lineare delle cubiche piane per sei punti. Era una risposta ad una critica del Prof. Turri sopra un ragionamento — classico — che si trova in uno mio libro (1).

In una nuova nota di questi Rendiconti (XXI, pp. 4-6), il Prof. Turri vorrebbe provare che la mia costruzione è falsa! Il tutto riviene a studiare la rappresentazione della superficie cubica F di equazione

$$x_4 f_1 (x_1, x_2, x_3) + f_3 (x_1, x_2, x_3) = 0$$

sopra un piano o.

La superficie F è mutata in sè dall'omologia armonica T':

$$\frac{x'_1}{x_1} = \frac{x'_2}{x_2} = \frac{x'_3}{x_3} = \frac{x'_4}{-x_4}.$$

Colle notazioni della mia prima nota, alle rette di σ corrispondono sopra F le cubiche gobbe K che incontrano le rette b_1 , b_{12} , b_{21} , b_{22} , b_{31} , b_{32} in due punti. Si vede facilmente che T' fa corrispondere alle curve K le cubiche gobbe K' che incontrano le

⁽¹⁾ Géométrie algébrique (Liège, Sciences et Lettres et Paris, Masson, tome II, 1949), N.o 463.

rette a_{11} , a_{12} , a_{21} , a_{22} , a_{31} , a_{32} in due punti. A queste cubiche K' corrispondono nel piano σ curve Γ del quinto ordine aventi sei punti doppi $A_{11}, A_{12}, \ldots, A_{32}$ (che corrispondono alle rette a_{11} , a_{12}, \ldots, a_{32}). Le rette A_{11} , A_{12} , A_{21} , A_{22} , A_{31} , A_{32} hanno in comune il punto A che corrisponde al punto O (0, 0, 0, 1) di F. Ne! piano σ corrisponde all'omologia T' una trasformazione di GEISER che fa corrispondere alle rette le quintiche Γ .

I punti uniti di T sono il punto isolato A e i punti della cubica Δ che corrisponde alla curva

$$x_4 = 0, f_3(x_1, x_2, x_3) = 0$$

di F.

Fra i cinque punti di intersezione di una retta generica r di σ e della curva Γ corrispondente, tre sono sopra Δ , i due rimanenti si corrispondono (doppiamente) nella T.

Ad una retta r che contenga A corrisponde una curva Γ che tocca r nel punto A e incontra ancora r in tre punti di Δ (ed è quì la svista del Prof. Turri). Infatti sopra F, ad una cubica K che contenga O (0, 0, 0, 1) corrisponde, nella T, una cubica K, che tocca K in O.

Dunque: esiste una particolare involuzione di Geiser che muta in sè il sistema delle cubiche piane per sei punti.

Liegi (Università), il 20 ottobre 1952.