GÉOMÉTRIE ALGÉBRIQUE

Sur la détermination du système canonique de certaines surfaces algébriques,

par Lucien GODEAUX, Membre de l'Académie.

Nous nous proposons d'indiquer, dans cette courte note, la construction du système canonique de quelques surfaces algébriques. En particulier, nous déterminerons quelques surfaces dont le système canonique est constitué par le système des sections hyperplanes,

1. Soient $\varphi_1, \varphi_2, \ldots, \varphi_{n-2}, \psi_1, \psi_2, \ldots, \psi_{n-2}$ des formes linéaires en x_0, x_1, \ldots, x_n . Les équations

représentent, dans l'espace linéaire S_n , une variété rationnelle V_3^{n-2} , d'ordre n-2. Cette variété est normale dans S_n .

Les équations (1) sont satisfaites si l'on pose

$$\varphi_1 = \lambda \psi_1, \ \varphi_2 = \lambda \psi_2, \ \dots, \ \varphi_{n-2} = \lambda \psi_{n-2}$$
 (2)

Les équations (2) représentant un plan σ qui appartient à la variété V_3^{n-2} . Lorsque λ varie, on obtient donc ∞^1 plans σ appartenant à cette variété. Deux plans σ ne se rencontrent pas et par un point de V_3^{n-2} passe un et un seul plan σ .

Considérons les équations

$$\lambda_1 \varphi_1 + \lambda_2 \varphi_2 + \dots + \lambda_{n-2} \varphi_{n-2} = 0,$$

 $\lambda_1 \psi_1 + \lambda_2 \psi_2 + \dots + \lambda_{n-2} \psi_{n-2} = 0.$

Elles représentent un espace S_{n-2} de S_n et cet espace S_{n-2} coupe V_3^{n-2} suivant une surface rationnelle normale V_2^{n-3} , d'ordre n-3. Ces surfaces V_2^{n-3} forment, sur V_3^{n-2} , un système linéaire $|V_2^{n-3}|$ de dimension n-3.

Deux surfaces V_2^{n-3} se coupent suivant une courbe d'ordre n-4. D'autre part, une surface V_2^{n-3} et un plan σ se coupent suivant une droite.

2. Considérons la surface F, intersection de la variété V_3^{n-2} et d'une hypersurface V_{n-1}^m , d'ordre m, contenant μ plans σ . La surface F est donc d'ordre $m(n-2)-\mu$.

Désignons par C_1 les courbes, d'ordre $m(n-3)-\mu$, intersections de V_{n-1}^m avec les surfaces V_2^{n-3} et par C_2 les courbes, d'ordre m, intersections de V_{n-1}^m avec les plans σ . Nous avons donc, sur F, un système linéaire $|C_1|$, de dimension n-3 et un faisceau linéaire $|C_2|$. Un plan σ et l'espace S_{n-2} d'une surface V_2^{n-3} déterminent un hyperplan de S_n , donc le système des sections hyperplanes de F est $|C_1+C_2|$.

Pour déterminer le système adjoint au système des sections hyperplanes de F, observons que la section de V_3^{n-2} par un hyperplan ξ est une surface réglée normale de cet hyperplan ; les droites de cette réglée sont découpées par les plans σ . Cette surface réglée peut être représentée dans un plan α par un système de courbes γ , d'ordre n-2, passant par un point O, multiple d'ordre n-3 et par n-3 points simples O_1 , O_2 , ..., O_{n-3} .

A la section de la réglée (V_3^{n-2}, ξ) par V_{n-1}^m , correspond une courbe d'ordre m(n-2), passant m(n-3) fois par O et m fois par O_1 , O_2 , ..., O_{n-3} , dont on doit défalquer μ droites passant par O, qui correspondent aux μ génératrices de la réglée situées dans les plans σ appartenant à V_{n-2}^m . A la section hyperplane de F par ξ , correspond donc dans α une courbe d'ordre $m(n-2)-\mu$, passant $m(n-3)-\mu$ fois par O et m fois par O_1 , O_2 , ..., O_{n-3} . Les adjointes à cette courbe sont des courbes d'ordre $m(n-2)-\mu$ and m and m and m and m and m and m are chacun des points m and m and m are chacun des points m and m are chacun des points m are chacun des points m are chacun des points m and m are chacun des points m and m are chacun des points m are chacun

$$(m-2)(n-2) - \mu + n - 4,$$

passant

$$(m-2)(n-3) - \mu + n - 4$$

fois par O et m-2 fois par chacun des points $O_1, O_2, ..., O_{n-3}$. Il en résulte que le système adjoint à la courbe envisagée est déterminé par le système $|(m-2)\gamma|$ auquel on ajoute $n-\mu-4$ droites passant par O. Par conséquent, les adjointes à la section $C_1 + C_2$ de F par ξ sont découpées sur F par les hypersurfaces d'ordre m-2 auxquelles on ajoute $n-\mu-4$ génératrices de la surface réglée (V_3^{n-2},ξ) . En d'autres termes, on a

$$(C_1 + C_2)' \equiv (m - 2)(C_1 + C_2) + (n - \mu - 4)C_2.$$

Le système canonique | K | de F est donc donné par

$$|K| = |(m-3)(C_1 + C_2) + (n - \mu - 4)C_2|.$$

3. Comme on a

$$(C_1 + C_2)' \equiv C_1' + C_2 \equiv C_1 + C_2',$$

on déduit de ce qui précède

$$|C_1'| = |(m-2)(C_1 + C_2) + (n - \mu - 5)C_2|$$

et

$$|C_2'| = |(m-3)(C_1 + C_2) + (n - \mu - 3)C_2|.$$

Le faisceau | C₂ | est de degré zéro ; on a donc

$$|(C_2', C_2)| = |(m-3)(C_1, C_2)|.$$

Comme le groupe (C_1, C_2) est situé sur une droite du plan σ de la courbe C_2 envisagée, on a une confirmation du résultat obtenu.

On peut d'autre part déterminer directement l'adjoint de $|C_1|$.

Une courbe C_1 est la section d'une surface réglée V_2^{n-3} par V_{n-1}^m , diminuée de μ générations de la surface. Les sections hyperplanes d'une réglée V_2^{n-3} sont représentées dans un plan α par des courbes γ' d'ordre n-3, passant n-4 fois par un point O et une fois par n-4 points $O_1, O_2, ..., O_{n-4}$.

Si nous représentons par a une droite passant par O dans a, l'homologue de la courbe C_1 dans a appartient au système

$$|m\gamma' - \mu a|$$
.

Les adjointes à cette courbe comprennent comme parties fixes les droites OO_1 , OO_2 , ..., OO_{n-4} . Débarrassées de ces droites, ces adjointes forment le système linéaire

$$|(m-2)\gamma' + (n-\mu-5)a|.$$

Retournant à la surface, on voit que l'on a bien

$$|C_1'| = |(m-2)(C_1 + C_2) + (u - \mu - 5)C_2|.$$

4. Si m = 3, on a

$$|K| = |(n - \mu - 4)C_2|$$

et le système canonique de F est composé au moyen du faisceau $|C_2|$.

En particulier, si n = 5, $\mu = 1$, on obtient une surface d'ordre huit, de S_5 , dont le système canonique est d'ordre zéro.

Si m = 3, on a

$$|C_2'| = |(n - \mu - 3)C_2|.$$

Les adjointes à une courbe C_2 ne rencontrent pas cette courbe, qui est d'ailleurs une cubique elliptique, donc à série canonique d'ordre zéro.

Si m = 4, on a

$$|K| = |C_1 + C_2 + (n - \mu - 4)C_2|$$

et si $\mu = n - 4$, le système canonique de F coïncide avec le système des sections hyperplanes.

On ne peut d'ailleurs prendre $\mu=n-4$ que si la courbe C_1 n'est pas dégénérée. Retournons au plan α sur lequel nous avons représenté les sections hyperplanes d'une réglée V_2^{n-3} au moyen de courbes γ' d'ordre n-3. L'homologue d'une courbe C_1 est représentée par une courbe du système

$$|4\gamma' - (n-4)a|$$
.

C'est donc une courbe d'ordre 3n-8, passant 3n-12 fois par O et 4 fois par O_1 , O_2 , ..., O_{n-4} . Cette courbe est de genre 3(n-3), non nul si n>3 et qui est irréductible. Or, on a nécessairement $\mu \geq 0$, d'où $n \geq 4$.

La surface F intersection de la variété V_3^{n-2} de S_n représentée par les équations (1) et d'une hypersurface du quatrième ordre contenant n-4 plans de V_3^{n-2} , est une surface à sections hyperplanes canoniques.

Pour n=4, la surface F est l'intersection d'une hyperquadrique conique et d'une hypersurface du quatrième ordre de S_4 . Dans ce cas, la surface F contient deux faisceaux $|C_1|$, $|C_2|$ de quartiques planes de genre trois et une courbe C_1 coupe une courbe C_2 en quatre points. On a

$$|C_1'| = |2C_1 + C_2|, |C_2'| = |C_1 + 2C_2|.$$

5. Le système canonique de F étant

$$|K| = |(m-3)C_1 + (m+n-\mu-7)C_2|,$$

il sera un multiple de $|C_1|$ si l'on peut prendre

$$\mu = n + m - 7.$$

A la courbe C_1 correspond dans le plan α une courbe d'ordre (m-1)(n-4)+3, passant (m-1)(n-5)+2 fois par O et m fois par O_1 , O_2 , ..., O_{n-4} . Le genre de cette courbe est

$$\frac{1}{2}(m-1)[(m-1)(n-3)-n+1].$$

Pour les valeurs de m, n rendant ce nombre positif, la surface F considérée existe.

On peut par exemple prendre n = 6, m = 7.

Liège, le 8 novembre 1949.