GÉOMÉTRIE ALGÉBRIQUE

Recherches sur la construction de surfaces algébriques irrégulières,

par Lucien GODEAUX, Membre de l'Académie.

(Troisième note)

Dans les notes précédentes (¹), nous nous sommes occupé de la construction de surfaces irrégulières représentant des involutions du troisième ordre appartenant à la surface image des couples de points d'une courbe contenant une involution cyclique d'ordre trois. Nous allons maintenant considérer le cas général où l'on part d'une courbe contenant une involution cyclique d'ordre premier p supérieur à deux. Nous indiquerons dans quels cas on peut déterminer le système canonique de la surface irrégulière considérée, sans déterminer la structure de tous les points unis de l'involution qu'elle représente.

1. Soit L une courbe non hyperelliptique de genre $\pi(\pi > 3)$ contenant une involution cyclique γ_p , d'ordre premier p(p > 2), de genre π' ($\pi' > 0$). Prenons comme modèle projectif de la courbe L une courbe canonique d'ordre $2\pi - 2$, de l'espace $S_{\pi-1}$ à $\pi - 1$ dimensions. Sur cette courbe L, l'involution cyclique γ_p est déterminée par une homographie τ de période p.

Désignons par L' la courbe de genre π' image de l'involution γ_p . Aux groupes canoniques de L' correspondent

⁽¹⁾ Bull. de l'Acad. roy. de Belgique, janvier 1947.

sur L des groupes de $p(2\pi'-2)$ points qui, augmentés des points unis de γ_{ν} , comptés chacun p-1 fois, donnent des groupes canoniques de L. Il en résulte que l'homographie τ possède un axe ponctuel a_0 de dimension $\pi'-1$, qui ne rencontre pas la courbe L.

Appelons a_1 , a_2 , ..., a_k ($k \le p-1$) les autres axes ponctuels de l'homographie τ . Soit A un point de L appartenant à l'un de ces axes, par exemple à a_1 . D'après le théorème que nous venons de rappeler, les hyperplans passant par a_1 , a_2 , ... a_k doivent avoir un contact d'ordre p-2 avec la courbe L, par conséquent l'espace à p-1 dimensions, ayant un contact d'ordre p-2 avec la courbe L en A, appartient à tous ces hyperplans. Il doit donc être uni pour l'homographie τ et s'appuyer sur les espaces a_2 , a_3 , ..., a_k de manière à être complètement déterminé par les espaces d'appui et le point A.

Nous allons tout d'abord démontrer que l'on a k>1. En effet, si k=1, les hyperplans de $S_{\pi^{-1}}$ passant par a_0 sont unis pour τ et découpent sur L une série d'ordre $2\pi-2$ appartenant à γ_p . Il correspond à cette série sur L' une série complète d'ordre $\frac{1}{p}(2\pi-2)$, non spéciale, de dimension $\frac{1}{p}(2\pi-2)-\pi'$. D'après la théorie des homographies, on a

$$\pi' - 1 \, + \frac{1}{p} \, (2\pi - 2) - \pi' \, + \, 2 = \pi \ ,$$

c'est-à-dire

$$(p-2)(\pi-1)=0$$
,

c'est-à-dire p=2 ou $\pi=1$, contrairement aux hypothèses.

2. Soit F la surface qui représente les couples de points non ordonnés de la courbe L. Cette surface a les genres (Severi)

$$p_{\sigma} = \frac{1}{2}\pi(\pi - 1), \ p_{\alpha} = \frac{1}{2}\pi(\pi - 3), \ p^{(1)} = (\pi - 2)(4\pi - 5).$$

Les points de la surface F correspondent aux cordes de la courbe L et aux cordes de cette courbe appartenant à un complexe linéaire de droites de $S_{\pi-1}$ correspondent les points d'une courbe canonique C de F (Severi). Nous prendrons comme modèle projectif de F la surface dont les sections hyperplanes sont les courbes canoniques C, dans un espace S_{ρ} à $\rho = p_{\sigma} - 1$ dimensions.

Soient P', Q' deux points de L'; P₁, P₂, ..., P_p et Q₁, Q₂, ..., Q_p les groupes de γ_p qui leur correspondent respectivement sur L. Appelons R_{ij} le point de F qui correspond au couple P_iQ_j de L. Il existe une transformation birationnelle T de F en soi faisant correspondre au point R_{ij} le point R_{i+1}, j+1, où i+1, j+1 sont éventuellement remplacés par les restes de leur division par p.

Considérons, sur F, le tableau des p2 points

$$R_{11}, R_{22}, R_{33}, ..., R_{pp},$$
 $R_{12}, R_{23}, R_{34}, ..., P_{p1},$
 $R_{13}, R_{24}, R_{35}, ..., R_{p2},$
 $...$
 $R_{1p}, R_{21}, R_{32}, ..., R_{p,p-1}.$
(1)

Si l'on applique la transformation T successivement aux points d'une même ligne du tableau (1), on est porté au point suivant ; de plus T, appliquée au dernier point d'une ligne, conduit au premier point de la même ligne. La transformation T est cyclique de période p et engendre une involution I_p . Les p lignes du tableau (1) forment p groupes de I_p .

Désignons par F' la surface image de l'involution I_p . Aux p groupes de I_p du tableau (1) correspondent sur F' p points que nous représenterons par R'_1 , R'_2 , ..., R'_p . Soit Φ la surface qui représente les couples de points non ordonnés de la courbe L'. Cette surface a les genres

$$\pi_g = \frac{1}{2} \pi' (\pi' - 1), \quad \pi_a = \frac{1}{2} \pi' (\pi' - 3),$$

$$\pi^{(1)} = (\pi' - 2) (4\pi' - 5).$$

Désignons par R' le point de Φ qui représente le couple P'Q' de L'. Nous pouvons faire correspondre au point R' les p^2 points du tableau (1). Lorsque R' décrit Φ , ces p^2 points engendrent une involution J d'ordre p^2 , composée au moyen de I_p . Il en résulte que les points R_1 , R_2 , ..., R_p engendrent sur F' une involution I_p d'ordre p (non cyclique) représentée par la surface p. Cette dernière étant d'irrégularité p0 p1 a surface F' a l'irrégularité p2 p3 autre part, on a p3 p4 p5 p6.

3. Voyons quels sont les points unis de l'involution I_p . Pour que le point R_{11} soit uni pour I_p , c'est-à-dire pour qu'il coïncide avec R_{22} et par conséquent avec R_{33} , R_{44} , ..., R_{pp} , il faut que P_2 coïncide avec P_1 et Q_2 avec Q_1 . Il en résulte que les points unis de I_p sont les points qui représentent les couples de points unis de l'involution γ_p . En particulier, si Q_1 coïncide avec P_1 et si ce point est uni pour γ_p , le point correspondant sur F, c'est-à-dire le point de F qui représente un point uni de γ_p compté deux fois, est uni pour I_p .

Si δ est le nombre de points unis de γ_p , l'involution I_p possède

$$\binom{\delta}{2} + \delta = \frac{1}{2}\delta(\delta + 3)$$

points unis. Ces points sont isolés, c'est-à-dire que I_p possède un nombre fini de points unis.

On a d'autre part, par la formule de Zeuthen,

$$2p(\pi'-1)+(p-1)\delta=2(\pi-1).$$

Les points unis de I, sur F correspondent donc aux

cordes de la courbe L qui sont unies pour τ , c'est-à-dire les cordes passant par deux points unis de γ_r et les tangentes en ces points. Nous classerons ces cordes en trois catégories :

1) Cordes joignant deux points unis distincts de γ_p ,

appartenant à un même axes ponctuel de τ ;

2) Cordes joignant deux points unis de γ_p , appartenant à deux axes ponctuels distincts de τ ;

3) Tangentes à la courbe L aux points unis de γ_p .

4. La transformation T de F en soi laisse invariant le système canonique |C| de F, c'est-à-dire le système des sections hyperplanes de cette surface ; elle est donc déterminée par une homographie cyclique de S_{ρ} . Nous allons déterminer les axes ponctuels de cette homographie.

Commençons par observer qu'une homographie cyclique étant générale, on peut associer à chacun des axes de l'homographie τ dans $S_{\pi-1}$ une racine d'ordre p de l'unité. Si ϵ est une racine primitive d'ordre p de l'unité, nous associerons aux axes α_0 , α_1 , ..., α_k de τ les nombres

$$\epsilon^{\beta 0}, \ \epsilon^{\beta 1}, \ \epsilon^{\beta 2}, \ \ldots, \ \epsilon^{\beta k},$$

 $\beta_0, \beta_1, \beta_2, ..., \beta_k$ étant des entiers positifs tous distincts, inférieurs à p. Nous pouvons d'ailleurs supposer, sans

restriction, $\beta_0 = 0$, $\beta_1 = 1$, ce que nous ferons.

Une droite joignant deux points unis de τ est unie pour cette homographie et a pour image un point de S_{ρ} uni pour l'homographie T. Si y, z sont ces deux points et s'ils appartiennent respectivement à des axes de τ correspondant aux entiers β_i , β_j , les coordonnées de la droite yz se trouveront, par l'homographie T, multipliées par

 $\epsilon^{\beta i + \beta j}$

où $\beta_i + \beta_j$ sera éventuellement remplacé par le reste de sa division par p. Les points y, z pourront d'ailleurs

appartenir à un même axe de τ ; on aura alors $\beta_i = \beta_i$. Cela étant, l'homographie T de S_ρ possèdera un certain nombre h+1 d'axes ponctuels $(h \ge k)$:

Un axe σ_0 contenant les points image des droites de α_0 et les points images des droites joignant les points de deux axes distincts α_i , α_i (i > 0, j > 0) tels que

$$\beta_i + \beta_j \equiv 0,$$
 (mod. p).

Un axe σ_1 contenant les images des droites joignant les points de σ_0 aux points de σ_1 et, éventuellement les images des droites d'un espace σ_i tel que

$$2\beta_i \equiv 1, \pmod{p}$$

et les images des droites joignant les points de deux espaces a_i , a_j tels que

$$\beta_i + \beta_j \equiv 1,$$
 (mod. p).

Un espace σ_2 contenant les points image des droites de α_1 et les points images des droites joignant les points de deux espaces α_i , α_j tels que

$$\beta_i + \beta_i \equiv 2, \pmod{p}.$$

Et ainsi de suite.

Les hyperplans de S_{ρ} passant par h des espaces σ_0 , σ_1 , σ_2 , ..., σ_h découpent sur F un système linéaire partiel appartenant à l'involution I_p . Nous désignerons par $|C_i|$ le système découpé par les hyperplans passant par les h espaces σ dont on a retiré σ_i . L'un des systèmes $|C_0|$, $|C_1|$, $|C_2|$, ..., $|C_h|$ est le transformé du système canonique de F'.

5. Soit A un point uni de l'involution I_p ; il appartient à l'un des axes σ_0 , σ_1 , ..., σ_h , par exemple à σ_1 . Le point A est par conséquent un point-base de chacun des systèmes C_0 , C_2 , C_3 , ..., C_h .

Le point uni A peut être uni parfait ou non pour l'involution I_p .

Dans le premier cas, T opère comme l'identité sur les points de F du domaine du premier ordre de A. Le plan tangent à F en A coupe suivant une droite un des espaces σ_0 , σ_2 , σ_3 , ..., σ_h et T détermine dans ce plan une homologie de centre A. Supposons pour fixer les idées que le plan tangent en A à F coupe σ_2 suivant une droite. Alors, les courbes C_2 passent simplement par A avec une tangente variable en ce point. Inversement, si l'on peut déterminer un des systèmes $|C_0|$, $|C_2|$, $|C_3|$, ..., $|C_h|$ dont les courbes passent simplement par A et y ont une tangente variable, le point A sera uni parfait pour l'involution I_p .

Dans le second cas, T détermine une involution d'ordre p dans le domaine du premier ordre de A sur F et il y a dans ce domaine deux points unis pour I_p . Le plan tangent à F en A s'appuie en un point sur deux des es-

paces σ_0 , σ_2 , σ_3 , ..., σ_h .

Appelons a la corde de L, unie pour τ , qui a pour image le point A. Soit a_1 une corde de L infiniment voisine de a. S'il est possible de trouver un espace $S_{\pi-3}$ s'appuyant sur les droites a, a_1 , sans les contenir, uni pour τ , la réglée formée par les cordes de L s'appuyant sur $S_{\pi-3}$ sera transformée en elle-même par τ et la droite a_1 sera unie pour τ . Il revient au même de construire un espace $S_{\pi-3}$ uni pour τ , coupant a en un seul point, distinct des points d'appui de a sur L et d'ailleurs quelconque. Dans ce cas, le point A sera uni parfait pout l'involution I_{τ} et dans ce cas seulement.

6. Considérons un point uni de I_p correspondant à une droite de la première catégorie. Soient M_1 , M_2 deux points de L appartenant à un même axe de τ , par exemple à α_1 . La droite M_1M_2 est unie pour τ et appartient à α_1 .

Considérons un espace $S_{\pi-3}$ passant par $a_2, a_3, ..., a_k$, coupant a_0 suivant un espace à π' — 2 dimensions et a_1 suivant un hyperplan de cet espace coupant M_1M_2 en

un seul point M distinct de M_1 et de M_2 . Cet espace $S_{\pi^{-3}}$ est uni pour τ ; les cordes de L qui le rencontrent forment une réglée transformée en soi par τ et la droite de cette réglée infiniment voisine de M_1M_2 est unie pour τ .

Faisons varier M sur M₁M₂, la droite infiniment voisine de M₁M₂ considérée varie et par conséquent, le point

de F qui représente M₁M₂ est uni parfait pour T.

Observons que a_0 ne rencontrant pas L, les droites analogues à M_1M_2 appartiennent nécessairement à a_1 , a_2 , ..., a_k . Par conséquent les points de F représentant de telles droites appartiennent à des espaces σ_1 , σ_2 , ..., σ_k mais ne peuvent appartenir à σ_0 .

7. Considérons maintenant un point uni de I, qui correspond à une corde unie de L de la seconde catégorie. Pour fixer les idées, considérons deux points M, N

de L appartenant le premier à a_1 , le second à a_2 .

Il n'est pas possible de trouver un espace $S_{\pi-3}$ uni pour τ rencontrant la droite MN en un seul point P, distinct de M, N, car ce point P devrait être uni pour τ , ce qui est absurde. La droite s'appuyant sur un espace $S_{\pi-3}$ passant par P, infiniment voisine de MN, varie avec P et ne peut donc être unie pour τ . Le point correspondant à MN sur F est donc uni non parfait pour I_{τ} .

Il y a deux cordes de L infiniment voisines de MN, unies pour τ ; on les construit de la manière suivante : Les cordes de L s'appuyant sur un espace $S_{\pi-3}$ passant par M forment une réglée comprenant comme partie le cône projetant L du point M. Ce cône est transformé en lui-même par τ et la droite de ce cône infiniment voisine de MN est unie pour τ .

8. Considérons enfin un point uni de I_p correspondant à une tangente à la courbe L. Supposons pour fixer les idées que ce soit la tangente en un point M de L appartenant à l'axe a_1 . Cette tangente s'appuie sur

un autre axe de τ , distinct de a_0 , par exemple sur a_2 ,

en un point M'.

Le raisonnement qui vient d'être fait à propos de la droite MN, peut être repris point par point et le point de F, image de la tangente MM', est uni non parfait pour l'involution I_p.

La droite infiniment voisine de MM', appartenant

au cône projetant L du point M, est unie par 7.

Considérons d'autre part un espace $S_{\pi-3}$ passant par a_2, a_3, \ldots, a_k , coupant a_0 suivant un espace à $\pi'-2$ dimensions et l'espace a_1 suivant un hyperplan de cet espace ne passant pas par M. Cet espace $S_{\pi-3}$ est uni pour τ ; la réglée lieu des cordes de L s'appuyant sur cet espace est unie pour τ et la génératrice de cette surface infiniment voisine de MM' est unie pour τ .

On obtient ainsi, sur F, les deux points unis de I_p, infiniment voisins du point image de la tangente MM'.

9. De ce qui précède, on conclut que les points unis parfaits de l'involution I_p ne peuvent appartenir à l'axe σ_0 de l'homographie T. Les points unis non parfaits

peuvent au contraire appartenir à tous les axes.

Nous avons démontré que les courbes canoniques de F, transformées des courbes canoniques de F', ont la multiplicité p-2 en un point uni parfait de I_p . On en conclut que ces courbes sont découpées par les hyperplans passant par ceux des espaces σ_1 , σ_2 , ..., σ_h contenant des points unis parfaits de I_p .

Supposons que l'on ait k = p - 1 et que chacun des axes $a_1, a_2, \ldots, a_{p-1}$ contienne au moins deux points de la courbe L. Alors, on a h = p - 1 et chacun des espaces $\sigma_1, \sigma_2, \ldots, \sigma_{p-1}$ contient au moins un point uni parfait de I_p . Le système canonique de F' a pour homo-

logue, sur F, le système | Co |.

Aux différents points unis de I correspondent sur F' des points de diramation singuliers pour la surface. Aux

points unis appartenant à σ_0 doivent correspondre des points doubles, donc les points unis de I_p appartenant à σ_0 sont des points symétriques. Au contraire, les points unis non parfaits de I_p appartenant aux espaces $\sigma_1, \sigma_2, ..., \sigma_{p-1}$ ont pour homologues sur F' des points de multiplicité supérieure à deux, puisqu'ils imposent des conditions au système canonique de F.

Liège, le 10 janvier 1947.