Sur une surface à sections hyperplanes hyperelliptiques,

par Lucien GODEAUX, Professeur à l'Université de Liége.

Nous nous proposons de construire, dans cette note, la surface rationnelle de l'espace linéaire à n dimensions représentant le système linéaire des courbes hyperelliptiques planes d'ordre n-1 ayant comme groupe-base un point multiple d'ordre n-3 et 2(n-2) points simples alignés par couples sur le point-base multiple.

Nous partons de la surface commune à n-2 hyperquadriques passant par un espace linéaire σ_{n-3} à n-3 dimensions, telle qu'il existe un espace linéaire à n-2 dimensions touchant cette surface le long de la courbe qu'elle a en commun avec l'espace σ_{n-3} . On trouve le système linéaire de courbes planes envisagé en projetant la surface à partir de l'espace σ_{n-3} sur un plan ne rencontrant pas cet espace.

1. Soit, dans un espace linéaire S_n à n dimensions, n-2 hyperquadriques ayant en commun un espace linéaire σ_{n-3} à n-3 dimensions. Si nous désignons par $x_0, x_1, ..., x_n$ les coordonnées ponctuelles de S_n et par $x_0 = x_1 = x_2 = 0$ les équations de σ_{n-3} , les équations des hyperquadriques s'écriront

$$x_3 a_{i3} + x_4 a_{i4} + \dots + x_n a_{in} + a_i (x_0, x_1, x_2) = 0,$$

$$(i = 1, 2, \dots, n - 2),$$
(1)

où α_{ik} sont des formes linéaires et α_i des formes quadratiques en x_0 , x_1 , x_2 . Ces hyperquadriques ont en commun, en dehors de σ_{n-3} , une surface F; la projection de la section de F par l'hyperplan

 $\lambda_0 x_0 + \lambda_1 x_1 + \dots + \lambda_n x_n = 0,$

à partir de σ_{n-3} , sur le plan $x_3 = \dots = x_n = 0$, a pour équation

$$\begin{vmatrix} \alpha_{13} & \alpha_{14} & \dots & \alpha_{1n} & \alpha_{1} \\ \vdots & \ddots & \ddots & \ddots & \ddots \\ \alpha_{n-23} & \alpha_{n-24} & \dots & \alpha_{n-2n} & \alpha_{n-2} \\ \lambda_{3} & \lambda_{4} & \dots & \lambda_{n} & \lambda_{0} & \alpha_{0} + \lambda_{1} & \alpha_{1} + \lambda_{2} & \alpha_{2} \end{vmatrix} = 0.$$
 (2)

Les courbes (2) sont d'ordre n-1 et forment un système linéaire ∞^n ayant $\frac{1}{2}(n+1)$ (n-2) points-base et par conséquent de

degré $\frac{1}{2}(n^2-3n+4)$. F est donc d'ordre $\frac{1}{2}(n^2-3n+4)$ (1). L'espace σ_{n-3} coupe F suivant une courbe d'ordre $\frac{1}{2}(n-1)(n-3)$.

2. Nous allons considérer le cas particulier de la surface F obtenu en supposant que le plan tangent à cette surface, en tout point de celle-ci appartenant à l'espace σ_{n-3} , est situé dans un espace à n-2 dimensions contenant σ_{n-3} ; nous supposerons que cet espace a pour équations $x_1 = x_2 = 0$. Dans ces conditions, l'hyperplan tangent à une des hyperquadriques (1), en un point de F appartenant à σ_{n-3} , doit contenir l'espace $x_1 = x_2 = 0$; il en résulte que les formes α_{ik} sont indépendantes de x_0 .

Appelons F' le cas particulier de la surface F obtenu. La surface F' admet encore comme représentation plane le système des courbes (2), mais actuellement les courbes (2) ont la multiplicité n-3 au point $O_0(x_1=x_2=0)$ et passent simplement par 2(n-2) points simples. En effet, les points-base du système formé par les courbes (2) sont représentés par les équations

Le déterminant obtenu en supprimant dans cette matrice la dernière colonne s'annule pour n-2 droites passant par O_0 . En supprimant l'avant-dernière colonne, on obtient un déterminant qui, égal à zéro, représente une courbe d'ordre n-1 ayant la multiplicité n-3 en O_0 . Les 2(n-2) points de rencontre de cette courbe et des n-2 droites dont il vient d'être question sont des points-base du système formé par les courbes (2).

La surface F' représente le système linéaire de courbes planes d'ordre n-1 ayant un point-base multiple d'ordre n-3 et 2(n-2) points-base simples situés par couples sur n-2 droites passant par le point-base multiple.

On en conclut que la surface F' est d'ordre 2(n-2).

3. Désignons par \overline{w} le plan des courbes (2), par Γ ces courbes, par A_{ii} , A_{i2} les points-base simples de $|\Gamma|$ situés sur la droite a passant par $O_0(i=1,2,...,n-2)$.

Les courbes Γ touchant en O_0 la droite $x_2 = \lambda x_4$ forment un système linéaire ∞^{n-4} . Si nous posons

$$\alpha_i(x_0, x_1, x_2) \equiv x_0^2 \alpha_{i0} + x_0 \alpha_{i1} + \alpha_{i2},$$

⁽¹⁾ Voir notre note « Sur les courbes canoniques ». (Bull. de l'Acad. roy. de Belgique, Cl. des Sc., 1935, pp. 481-489.)

ces courbes sont données par la relation

Si nous représentons par Δ_n le coefficient de λ_n dans cette équation, aux courbes considérées correspondent dans S_n les hyperplans passant par le point

$$x_0 = x_1 = x_2 = 0, \quad x_3 : x : \dots : x_n = \Delta_3 : \Delta_4 : \dots : \Delta_n.$$
 (4)

Les équations (4), lorsque λ varie, représentent une courbe rationnelle normale C_{n-3} d'ordre n-3, appartenant à σ_{n-3} , intersection de cet espace et de F'. Cette courbe correspond au domaine du point O_0 dans le plan ϖ .

4. Les courbes Γ passant par un point de la droite a_1 , distinct de O_0 , A_{41} , A_{42} , comprennent cette droite comme partie; elles sont complétées par des courbes d'ordre n-2, ayant la multiplicité n-4 en O_0 et 2(n-3) points simples, formant un système linéaire ∞^{n-1} de degré 2(n-3). A ces courbes correspondent dans S_n les hyperplans passant par un point A_1 , appartenant à la courbe C_{n-3} , double pour la surface F'. Celle-ci possède donc n-2 points doubles appartenant à la courbe C_{n-3} .

Le plan tangent en un point $0, 0, 0, y_3, y_4, ..., y_n$ de C_{n-3} à la surface F' est donné par

$$y_3 \alpha_{i3}(x_1, x_2) + y_4 \alpha_{i4}(x_1, x_2) + \dots + y_n \alpha_{in}(x_1, x_2) = 0,$$

(i = 1, 2, ..., n - 2).

Il y est indéterminé si l'on a

$$\left\| \begin{array}{l} y_3 \, \alpha_{i3} \, (1,0) + y_4 \, \alpha_{i4} \, (1,0) + \dots + y_n \, \alpha_{in} \, (1,0) \\ y_3 \, \alpha_{i3} \, (0,1) + y_4 \, \alpha_{i4} \, (0,1) + \dots + y_n \, \alpha_{in} \, (0,1) \end{array} \right\| = 0$$

$$(i = 1,2,\dots,n-2).$$

Ces équations, dans σ_{n-3} , donnent les n-r points doubles de F'.

La surface F' est touchée par un espace à n-2 dimensions suivant une courbe rationnelle normale d'ordre n-3 et possède n-2 points doubles situés sur cette courbe.

5. Aux droites du plan ϖ passant par le point O_0 correspondent sur F' des coniques γ formant un faisceau linéaire $|\gamma|$. La conique γ qui correspond à la droite $x_2 = \lambda x_4$ est découpée sur F, en dehors

de la courbe C_{n-3} comptée deux fois, par l'hyperplan $x_2 = \lambda x_1$ Les équations du plan de cette conique sont

$$\left\| \begin{array}{c} x_3 \alpha_{i3} (1, \lambda) + \cdots + x_n \alpha_{in} (1, \lambda) + x_0 \alpha_{ii} (1, \lambda) + x_1 \alpha_{i2} (1, \lambda) \\ \alpha_{i0} \\ (i = 1, 2, ..., n - 2). \end{array} \right\| = 0,$$

$$x_2 = \lambda x_4.$$

Les courbes Γ et les sections hyperplanes C de F' sont des courbes hyperelliptiques de genre n-3 et la série linéaire g_2^4 d'une courbe C est découpée par les coniques γ .

6. Inversement, partons d'un système linéaire $|\Gamma|$ de courbes d'ordre n-1 d'un plan ϖ ayant un point-base A multiple d'ordre n-3 et n-2 couples de points-base simples A_{ii} , A_{i2} tels que les droites $a_i = A_{ii}$ A_{i2} passent par A (i=1, 2, ..., n-2). Le système $|\Gamma|$ a la dimension n et en rapportant projectivement les courbes Γ aux hyperplans d'un espace linéaire S_n , on obtient une surface F' représentée point par point sur le plan ϖ .

Nous allons montrer que la surface F' est bien celle qui vient d'être étudiée.

Une droite du plan ϖ appartient à une seule courbe Γ qui est complétée par les n-2 droites a_i . A une droite du plan correspond sur Γ' une courbe rationnelle normale C_{n-1} , appartenant à un seul hyperplan de S_n . La surface Γ' étant d'ordre 2(n-2), cet hyperplan coupe encore Γ' suivant une courbe C_{n-3} d'ordre n-3. Les ∞^2 hyperplans contenant les courbes C_{n-1} homologues des droites de ϖ ont en commun un espace linéaire σ_{n-3} contenant la courbe C_{n-3} et l'on obtient la représentation de Γ' sur ϖ en projetant la surface à partir de σ_{n-3} sur ce plan.

La courbe C_{n-3} correspond à l'ensemble des n-2 droites a_i ; à chacune de celles ci correspond sur F' le domaine d'un point A_i , double pour la surface. Aux points de C_{n-3} correspondent donc les points de \overline{w} infiniment voisins de A. Cela implique que le plan tangent à F' en un point de C_{n-3} doit appartenir à l'espace à n-2 dimensions déterminé par σ_{n-3} et le point A. D'où l'identité (projective) de la surface F' étudiée actuellement et de celle qui a été rencontrée plus haut.

On peut observer que la surface F' est l'intersection complète de $\frac{1}{2}n(n+3)-4(n-1)$ hyperquadriques linéairement indépendantes V_{n-1}^2 de S_n ; n-2 de celles ci contiennent σ_{n-3} , les autres contiennent la courbe C_{n-3}

Liége, le 16 juin 1935.