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1 GIGA-CRC In Vivo Imaging, Université de Liège, Liège, Belgique, 2 Psychology and Neuroscience of
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Abstract

Background and objectives

Genetic variability in the dopaminergic system could contribute to age-related impairments

in executive control. In this study, we examined whether genetic polymorphism for catechol-

O-methyltransferase (COMT Val158Met) is related to performance on updating, shifting and

inhibition tasks.

Methods

We administered a battery of executive tasks assessing updating, shifting and inhibition

functions to 45 older and 55 younger healthy participants, and created composite z-scores

associated to each function. Six groups were created based on genetic alleles (Val/Val, Val/

Met, Met/Met) derived from the COMT gene and age (younger, older). Age and genotype

effects were assessed with t-test and ANOVA (p<0.05).

Results

A lower performance was observed in the older group for the three executive processes,

and more particularly for inhibition. Moreover, older participants homozygous for the Val

allele have a lower performance on the inhibition composite in comparison to younger Val/

Val.

Conclusions

These results confirm presence of executive performance decrease in healthy aging. With

regard to genetic effect, older participants seem particularly disadvantaged when they have

a lower baseline dopamine level (i.e., Val/Val homozygous) that is magnified by aging, and

when the executive measure emphasize the need of stable representations (as in inhibition

task requiring to maintain active the instruction to not perform an automated process).
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1. Introduction

Aging is associated with subtle decline in cognitive functioning even in the absence of brain

pathology hallmark. However, the different functions do not undergo a general decline and

changes are primarily observed for high-level processes, such as in executive tasks [1,2]. Age

related executive difficulties were first observed in complex and multicompound tasks involv-

ing planning, conceptualization and problem solving (for a review, see [3]). For example,

lower performance by comparison to younger people is frequently reported for the three dis-

tinct functions of inhibition, shifting and updating of information identified by Miyake et al.

[4] as separate cognitive processes. However, shifting and inhibition tasks are not found sys-

tematically impaired during aging [3]. For the shifting process (that also refers to flexibility

abilities), the capacity to maintain and manipulate two mental sets simultaneously is more sen-

sitive to the age-effect than the capacity to alternate between the two sets [5,6]. In the inhibi-

tion domain, there is evidence in favor of the dissociation between automatic and controlled

inhibitory processes, with only the latter being sensitive to age [7–10].

Several authors proposed that changes in prefrontal cortex (PFC) structure and functions

explain a large part of changes in executive functioning, [11,12]. For example, specific and

global executive scores were notably found related to decreased grey matter volume in anterior

brain areas [13,14], and lower executive performance was associated to decreased brain activity

in prefrontal areas [15]. Presence of increased prefrontal brain activity and recruitment of

bilateral regions was associated with attempts for implementation of compensatory processes

(for reviews, [11,16]).

Cognitive performance during aging is also affected by diverse neurobiological factors such

as neurotransmitters pathways degeneration and genetic predispositions [17,18]. Specifically,

the decrease of dopamine concentration in the prefrontal cortex, [19,20] may be associated

with changes in executive functioning. Catechol-O-methyltransferase (COMT) is the major

enzyme involved in the degradation of released dopamine and accounts for more than 60% of

the metabolic degradation of dopamine in the frontal cortex [21]. A growing body of literature

reports the importance of Dopamine (DA) in human cognition [22,23], and more particularly

executive functions [24]. Several authors [25–28] postulate a nonlinear relationship, namely an

inverted U-shaped relationship, linking cognitive performance—notably performance to

working memory (WM) tasks—with levels of cerebral dopamine. Accordingly, the hypothesis

suggests that when the dopamine level is too high or too low, cognitive efficiency will decrease.

The metabolic activity of the COMT enzyme is affected by polymorphism on chromosome

22q11 [29–31], resulting in Val/Val, Val/Met and Met/Met genotypes. The COMT enzyme

containing Met158 is significantly less active than the Val158 enzyme, potentially resulting in a

greater synaptic dopamine level [32,33]. As a consequence, individuals homozygous for Val

allele (Val/Val) are those with the lowest level of cerebral synaptic dopamine, whereas homozy-

gous for Met allele (Met/Met) have the highest level. Heterozygote (Val/Met) carriers present

with an intermediate level of COMT activity [34].

Studies that investigated the effect of COMT polymorphism on executive functioning in

younger adults reported discrepant results. Several studies observed, as expected, a better per-

formance in the Met allele carriers population [35–38] while others reported a lack of associa-

tion between COMT polymorphism and executive functioning, [39–43] or even a deleterious

effect of the Met allele on executive and working memory performance [44–47].

Due to the decrease of dopamine availability in prefrontal cortex in aging [48], a positive

effect of the homozygous Met/Met polymorphism (with the lower enzymatic activity and thus

increased level of DA availability) may be expected. However, studies using the COMT Val158-

Met polymorphism to understand the dopaminergic modulation of age-related effects on
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working memory and executive functioning performance also led to divergent results. Some

authors proposed that aging could magnify the Met allele advantage observed in younger

adults [49–51]. On the other hand, other studies did not observe such a positive effect of carry-

ing the Met allele in elderly [52–55] or even showed an advantage of carrying the Val allele

[56–58]. However, the tasks administered vary in the involvement of executive processes, and

one possible explanation to discrepancies observed is that not all executive processes are sensi-

tive to COMT genetic polymorphism.

Consequently, the aim of this study was to investigate the potential influence of COMT

genetic polymorphism on executive functioning through a battery of tasks, and to determine if

allelic group mitigate the effect of aging in a general or specific way. To obtain measures of

executive functioning relatively independent of non-executive processes, several tasks were

administered for each function and composite scores specific to updating, shifting and inhibi-

tion functions were created. We first tested the effect of age on executive functioning by com-

paring the performance of younger and older participants on each composite score. Second,

we tested the COMT allelic variance effects on the executive processes for which an age-effect

was found. This was done on the six groups of subjects by combining age (younger, older) and

genotype (Met/Met, Val/Met, Val/Val). At the age-group effect, we expected a higher overall

performance among younger participants when compared to the older participants. For

genetic effects, as Met phenotype carriers have a higher level of dopamine availability in pre-

frontal cortex [34], we expected they express a higher performance than the two other groups,

and that age effect is dampened in that group.

2. Methods

2.1. Participants

Fifty-five younger (F/M 27/28; Mean age = 23.47 years old; SD = 3.12; range = 18–30) and 45

older (F/M 26/19; Mean age = 67.37 years old; SD = 4.9; range = 60–75) subjects were included

in the present study. Participants were recruited from a local database at the GIGA-CRC. They

were initially enrolled through advertisement in senior centers, universities, and drugstores.

Possible subjects offered inclusion criteria presented at the laboratory first for DNA sampling

using Isohelix1 buccal swabs. For this study, all participants were Caucasian and native

French-speaking, had normal or corrected-to-normal vision and hearing. They were screened

for the following exclusion criteria: (1) neurological, psychological, or psychiatric disorders;

(2) abusive consumption of alcohol or drugs; (3) diagnosis of neurodegenerative disease or

dementia. The cognitive status of older participants was assessed using the Mattis Dementia

Rating Scale (DRS) [59]. All older participants scored above 129, which constituted the cut-off

threshold for risk of dementia [60], and scores ranged between 134–144. Sociocultural level

was assessed by asking the number of years completed at school. Participants were finally

ascribed to one of the six possible groups (2 age groups [younger vs older] * 3 genotypes [Val/

Val, Val/Met, Met/Met] according to their COMT Val158Met genotype and were invited for

the behavioral assessment. The selection of participants from an existing database made it pos-

sible to form groups of roughly equivalent size for each genotype (see [61] for a similar

procedure).

The study was approved by the Ethic Committee of the University Hospital in Liège

(approval Belgian number B707201110947). Each participant signed informed consent form

before starting the study. The study was conducted in accordance with the ethical standards

described in the Declaration of Helsinki (1964). The testing session lasted between 1h30 and

2h, with short breaks provided between cognitive tasks, when required by the participant.
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2.2. Genotyping

Genetic DNA was collected using SK-2 Isohelix1 buccal swabs (Ishohelix, Cell Projects Ltd,

Kent, UK). The DDK-50 DNA isolation kits were used to stabilize (during the week of the

sample collection) and extract DNA swabs. The concentration of the extracted DNA was quan-

tified using a NanoDrop 10001 or a NanoDrop Lite1 spectrophotometers (Thermo Fisher

Scientific, Delaware, USA). TaqMan1 polymerase-chain reactions (PCR) were performed in

a 96 well reaction plate containing 25 μl reaction mixture including 2 μl of DNA sample,

12.5 μl of TaqMan1 genotyping master mix (Life technologies; Thermo Fisher Scientific,

Darmstadt, Germany), 1.25 μl of drug metabolism genotyping assay (rs4680; Applied Biosys-

tems; thermos Fisher Scientific, Delaware, USA) and 9.25 μl of DNA free water. Allelic dis-

crimination was performed using fluorescence endpoint genotyping method by means of the

LightCycler1 480 Instrument (Software version 1.5, Roche Diagnostics Belgium, Vilvoorde,

BE). The amplification protocol encompassed a denaturation cycle of 10 minutes at 95˚C, fol-

lowed by 40 cycles of amplification including 15 seconds at 92˚C and 1 minute at 60˚C. Geno-

typing analyses were performed at the Human Molecular Genetics department of the

University Hospital (CHU) of Liège.

2.3. Global cognition assessment

A short battery of tasks was administered to assess that the three genotype groups did not differ

on global measures of cognition, and to control for such differences in our main analyses if

needed. The Raven matrices [62] and the Mill-Hill vocabulary task [63] were administered to

evaluate fluid intelligence and crystallized intelligence, respectively. We also measured process-

ing speed with the XO comparison task [64] and, for older participants, global cognitive func-

tioning was assessed with the Mattis dementia rating scale [59], a screening tool for age-related

cognitive impairment. The Mattis scale was administered before the executive tasks and the

tasks assessing intelligence and processing speed were administered at the end of the testing

session.

2.4. Executive functions assessment

A battery of six neuropsychological tests was administrated to assess the executive processes of

updating, shifting and inhibition. Of the obtained scores several indices were derived to calcu-

late composite scores that reflect each process solely and independently of the idiosyncratic

characteristics of each task. Task administration was in the same order as presented below,

and similar for all participants.

2.4.1 Stroop test. This version of the standard Stroop test [65] used the word subtest

(reading color words printed in black and white), the color subtest (naming the color of crosses

[XXX], and the color-word interference subtest in which participants had to name the color of

the printed color and not read the word. In each subtest, participants were required to name

colors aloud as quickly as possible, and errors had to be orally corrected. Time allotted for each

subtask was 45 seconds. In each condition, the number of correct responses was recorded. The

interference index was calculated for each participant as follow: [(color-naming condition

score—color-naming word-color score) / color-naming condition score], with a low score

indicating good inhibition abilities.

2.4.2 2-Back test [66]. In this test, widely used to assess updating capacity in working

memory, a list of 30 letters was presented orally. For each letter, participants had to decide

whether it was identical to the one presented two steps back in the sequence. They gave their

answers orally and the number of correct responses constituted the updating measure score.
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2.4.3 Plus Minus test [67]. This task was administered to evaluate shifting abilities. This

test comprises three distinctive subtests. In the first subtest (A), subjects were instructed to add

three to each number, whereas during the second, they had to subtract three from each num-

ber. In the third subtest, participants were instructed to alternate between adding and subtract-

ing three to each presented number. Participants were instructed to complete the task as

quickly and accurately as possible. For each list, they had to note their answers and the time to

complete each list was recorded. The measure used was the shifting cost, computed with the

following formula: Time subtest C–((Time subtest A + Time subtest B) / 2). Higher scores

denote lower shifting capacity.

2.4.4 Verbal fluency. Phonemic (P, R, V) and category (animals, fruits, furniture) fluency

tasks were administered [68]. Participants were instructed to produce as many words as possi-

ble, beginning with the target letter or belonging to the semantic category in 60 second for

each letter and category. Measure of performance was the sum of words produced in the pho-

netic and semantic tasks, excluding repetitions and incorrect responses. Verbal fluency perfor-

mance is usually considered as a measure of shifting abilities [69]. Indeed, fluency tasks

require to implement and alternate between several search strategies. However, the contribu-

tion of search strategy processes may differ between phonological and semantic tasks [70,71],

and consequently the shifting score used included all verbal fluency tasks.

2.4.5 Wisconsin Card Sorting Test, WCST. In the classic version of this multi-com-

pound executive task, participants matched the stimulus card to one of the key cards according

to periodically changing rule (color, shape, number of items). Revealing sorting rule was

inferred by the examiner’s verbal feedback (correct or incorrect) given to the subject. Several

scores were computed based on the correct responses and errors made by the participant. We

defined a flexibility score based on the percentage of perseverative errors from one category to

the next one [4] and an inhibitory score corresponding to no-perseverative errors [72]. Higher

scores are indicative of lower shifting and inhibition abilities.

2.4.6 Random Number Generation (RNG) task. This is a widely used and complex task

allowing to assess several executive abilities [4,73,74]. In the version we used [75], participants

were asked to generate a random sequence of digits between 1 and 9, at a response pace of one

second indicated by a metronome. Randomness was explained with the analogy of “picking

digits out of a hat and putting them back after reading”. We emphasize that a random

sequence would not contain a preponderance of repetitions or adjacent number values. The

task was considered completed when the participant had achieved 100 correct answers or had

achieved 110 correct answers in case of one or more errors. Flexibility and inhibition indices

were computed using the RGCalc Quantifying order in response sequences Version1 software

[75].

The Turning Point Index (TPI) corresponds to the number of responses that, as numerical

value, correspond to a change between ascending and descending sequences. This value is

compared to a theoretical random distribution over a 100-digit sequence. A higher score

denoted the subject’s ability to achieve a higher random sequence, and to inhibit stereotyped

responses. The Adjacency score corresponds to the number of ascending [4,5] or descending

[7,8] number pairs by comparison to the total number of response pairs. As ascending and

descending pairs represent typical and relatively automatic responses, a low adjacency score is

indicative of good inhibition capacity. The runs Index corresponds to the variability of phase

length, namely the variability in the number of items between two “turning points”. Based on

the previous framework proposed by Miyake et al. [4], the inhibitory score was computed

using the formula: (TPI–Adjutancy + Runs) / 3.

Additionally, three indices associated with updating of information were calculated. The

Redundancy Index (RI) reflects the frequency at which each response alternative is produced.
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As the selection frequency among alternatives deviates from equality, the sequence can be said

to have more redundancy. The Coupon score indicates (across the entire set) the mean number

of responses produced before all the response alternatives are given, with a range between 9

and 100, meaning that the participant has not used up all alternatives. Higher score indicates

lower updating performance. Third, the Mean Repetition Gap (MRG) Index corresponds to

the mean number of responses between two productions of the same digit. A higher score rep-

resents better updating capacity. Consequently, at individual level, low redundancy and Cou-

pon index, and high MRG score express good updating capacities. Following the previous

framework proposed by Miyake et al. [4], the updating score was calculated as (- redundancy–

Coupon + Mean RG)/3.

2.5. Executive composite scores

The development of the executive composite scores is based on the proposal of Miyake et al.

[4] that statistically demonstrated the separability of updating, shifting and inhibition pro-

cesses. Specific standardized scores were created to assess the effects of age and genotype. The

procedure common to the two analyses is three-steps. (1) We first standardized the eight mea-

sures extracted from the six executive tasks. (2) A mean composite score corresponding to

each executive process was created by averaging the corresponding Z-scores [mean inhibition:

(“Z RNG inhibition”–“Z stroop interference”–“Z WCST no-perseverative errors)/3; mean

shifting: (-Z” WCST no-perseverative errors–“Z plus-minus” + “Z total fluency”)/3; mean

updating: (“Z correct responses 2-Back” + “Z RNG update score”)/2]. The minus sign was

used when a low score corresponds to a high-level performance. So final values associated to

each composite correspond to higher value = best performance. (3) The three mean composites

scores were again Z-scored. These final scores were used in statistical analyses.

For assessment of age-related effects, at step (1), data from the older group were Z-scored

based on the mean and standard deviation of the younger group. At step (3), the three mean

composites scores of the older participants were again Z-scored by reference to the younger

group. Consequently, final composites scores in the younger group had a mean of 0 and stan-

dard deviation of 1, and we assessed deviation of performance in the older group by compari-

son to the younger one [76]. The same rationale was used to assess genotype effects, except

that at steps (1) and (3) the Z scores were created based on the whole sample, and we assessed

deviations in each of the six subgroups.

2.6. Statistical analyses

Statistical analyses were conducted by using JASP (Version 0.11.1.0; JASP Team, 2020). Results

with p< .05 were considered as statistically significant. Analyses were run on the sample size

of 100 participants. Missing data (four for the whole dataset) were replaced by the mean value

in the participant group for this variable.

With regard to demographic data (Sex, education) and global measures of cognition (fluid

and crystallized intelligence, speed of processing, Mattis scale), the effect of age was assessed

with Student t test between younger and older participants for education level and cognitive

performance. Moreover, analyses of variance (ANOVA) were performed separately in younger

and older participants to determine effect of COMT polymorphism on these variables in each

group. A Pearson chi-square (χ2) test of independence assessed Sex distribution across age

groups and, for each age group, across the three genotypes.

The effect of age on executive functioning was assessed with Student t test between younger

and older participants. As detailed in the method section, measures were composite Z scores

centered on mean and standard deviation of the younger group. To determine if age-related
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changes in executive functioning is modulated by COMT polymorphism, we performed an

analysis of variance (ANOVA) with the 6 groups as an independent variable, and executive

scores as an intra-subject measure. The dependent variables were composite Z-scores centered

on mean and standard deviation on the whole sample. Bonferroni post-hoc tests were carried

out to explore, for each executive process, the presence of difference between younger and

older participants from a same genotype group or between the three genotypes within the

same age group. If another comparison was statistically significant, it was reported in the result

section for sake of completeness only. Data distribution and variance homogeneity for com-

posite scores used in Student t test and ANOVA were analyzed with Shapiro-Wilk and Levene

tests, respectively.

A sensitivity analysis was performed for our ANOVA including the three executive com-

posite scores. Regarding the between effect (Group effect), with a total sample size of 100 and

six groups, we were able to detect effect size of f = .30 which corresponds to an η2 = .08 and is

an intermediate effect size (d Cohen = 0.60).

3. Results

3.1. Demographic data

Demographic data associated to age group are summarized in Table 1. A Pearson chi-square

(χ2) test of independence showed that the Sex distribution did not significantly differ between

the younger and older subgroups [Pearson χ(5)2 = 1.45, p = .92]. The two groups also did not

differ on education level [t(98) = 0.11, p = 0.91]. However, older adults had a higher vocabulary

level on the French adaptation of the Mill Hill test [63] [t(98) = -6.28, p< .001], and younger

adults better performance on Raven’ matrices [t(98) = 7.38, p< .001] and processing speed [t
(98) = 10.45, p< .001] tasks.

Demographic data associated to genetic polymorphism for younger and older subjects are

presented in Table 2. Pearson chi-square (χ2) test of independence showed that the Sex distri-

bution did not significantly differ between the three genotypes for younger (Pearson χ(2)2 =

0.99, p = .61) and older adults (Pearson χ(2)2 = 1.34, p = .51). ANOVAs on educational level [F

(2,52) = 0.22], fluid intelligence [F(2,52) = 0.89], vocabulary level [F(2,52) = 2.72] and speed of

processing [F(2,52) = 1.75] did not show significant between-group differences in younger

Table 1. Demographic data.

Younger (N = 55) Older (N = 45)

Sex (F/M) 27/28 26/19

Genotype (Val/Val, Val/Met, Met/Met) 21/17/17 15/12/18

Age (1) 23.49 (3.2) 67.33 (4.9)

Education (years completed) 14.55 (1.87) 14.49 (3.15)

Raven’s matrices task (2) * 84.3 (9.64) 68.15 (12.25)

Mill Hill vocabulary task (2) * 70.75 (10.04) 83.79 (10.67)

Processing Speed task (2) * 69.06 (11.07) 48. 35 (8.11)

Mattis Dementia Rating Scale (3) / 140.71 (2.67)

Values are expressed as mean (standard deviations), except for Sex and Genotype.
(1) Median age is 23 for young and 67 for older
(2) percentage of correct responses
(3) Total score /144

*: p<0.001.

https://doi.org/10.1371/journal.pone.0303343.t001
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participants (all p>0.05). For older adults, a lower performance for the processing speed task

was observed for Val/Met participants [F(2,42) = 5; p = 0.01, η2 = 0.19, Bonferroni post-hoc

test] while there is no significant group differences (all p>0.05) for educational level [F(2,42) =

0.63], fluid intelligence [F(2,42) = 1.56], vocabulary level [F(2,42) = 1.62] and score at the Mat-

tis dementia rating scale [F(2,42) = 1.04].

3.2. Age-related effects on executive functioning

The specific standardized scores created to assess age-related effects are graphically repre-

sented in Fig 1. As described in the methods section, the final composites scores in the younger

group had a mean of 0 and standard deviation of 1, and we assessed deviation of performance

in the older group by comparison to the younger one [76]. Results indicated lower perfor-

mance in the older group for the three executive scores [Inhibition: t (98) = 6.2, p<0.001, η2 =

0.28; Updating: t (98) = 2.45, p<0.05, η2 = 0.06; Shifting: t(98) = 2.00, p<0.05, η2 = 0.04], with

the larger effect size for inhibition [77]. Scores [mean (standard deviation)] for older are -1.42

(1.28) for inhibition, -0.49 (1.01) for updating and -0.44 (1.2) for shifting.

As the inhibition variable was not normally distributed and we observed slight inhomoge-

neity of variance for updating, the analyses were also done with Satterthwaite t and Mann-

Withney U, respectively. The analyses confirmed between group differences. Inhibition: tSat-

terthwaite (82.06) = 6.05, p<0.001; Updating: U = 1578.5, p<0.05.

3.3. Genetic-related effects on executive functioning

To determine if the aging effect previously observed on executive functioning is modulated by

COMT polymorphism, we performed a repeated measure analysis of variance (ANOVA) with

group (Younger-Met/Met, Younger-Val/Met, Younger-Val/Val, Older-Met/Met, Older Val/

Table 2. Demographic data for the three genotype groups, in younger (A) and older (B) adults.

Younger participants

Val/Val

N = 21

Val/Met

N = 17

Met/Met

N = 17

Sex (M/F) 12/9 7/10 8/9

Education (years completed) 14.76 (2.07) 14.41 (2.03) 14.41 (1.5)

Raven’s matrices task (1) 84.52 (9) 81.96 (10.45) 86.37 (9.61)

Mill Hill vocabulary task (1) 71.57 (11.17) 66.44 (10.35) 74.05 (6.68)

Processing Speed task (1) 66.23 (10.88) 68.74 (11.36) 72.88 (10.51)

Older participants

Val/Val

N = 15

Val/Met

N = 12

Met/Met

N = 18

Sex (M/F) 7/8 7/5 12/6

Education 14 (2.39) 15.33 (3.52) 14.33 (3.48)

Raven’s matrices task (1) 65.22 (12.86) 65.97 (11.86) 72.04 (11.6)

Mill Hill vocabulary task (1) 79.8 (13) 85.54 (9.83) 85.95 (8.47)

Processing Speed task (1) * 49.75 (7.17) 42.59 (7.57) 51.03 (7.63)

Mattis Dementia Rating Scale (2) 141.4 (1.76) 139.92 (2.94) 140.67 (3.07)

Values are expressed as mean (standard deviations), except for Sex and Genotype.
(1) percentage of correct responses
(2) Total score /144

*: p = 0.01.

https://doi.org/10.1371/journal.pone.0303343.t002
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Met, Older -Val/Val) as an independent variable, and executive scores (Inhibition, shifting,

Updating) as an intra-subject measure. Results of assumptions check showed that the repeated

measures ANOVA can be applied because the data did not severely violate the conditions of

application. Shapiro-Wilk tests showed a normal distribution of the data [Inhibition

W = 0.984 p = 0.253; Flexibility W = 0.988 p = 0.528; Updating W = 0.976 p = 0.061]. Levene’s

test indicates that variance are approximatively equal across the six groups [inhibition F(5,94)

= 1.26, p = 0.29; Flexibility F(5,94) = 1.47, p = 0.21; Updating F(5,94) = 0.44, p = 0.82]. The

Mauchly test revealed that sphericity was not respected χ2(5) = 12.86, p<0.005). However, the

epsilon values of the Greenhouse (0.886) and Huynh-Feldt (0.949) correction being close to 1

suggest a slight violation of sphericity.

As described in the methods section, the executive indices are the composite scores values

based on the means and standard deviations of the whole sample. Results show a main group

effect [F(5,94) = 4.3, p<0.001, η2 = 0.1], corresponding to a large effect size [77], with a higher

performance in younger participants. There is no significant effect of the executive factor [F

(2,188) = 0.11, p = 0.9, η2 = 0.001] and no interaction between group and executive scores fac-

tors [F(10,188) = 1.46, p = 0.16, η2 = 0.07]. The results are graphically presented in Fig 2 (see

S1 Table for summary data).

Fig 1. Age-related effects on the three executive scores. Composite Z-scores for the inhibition, shifting and updating functions. Scores of older participants

were Z-scored by reference to the younger group, with higher values corresponding to better performance. Box plots show the median (horizontal line) and the

interquartile (25–75%) range, and the whiskers indicate the 8 to 92% range. Dots indicate outlier participants.

https://doi.org/10.1371/journal.pone.0303343.g001
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As we were particularly interested by the age-effect in each genotype group for each execu-

tive process separately, Bonferroni post-hoc tests were carried out on the interaction effect.

These analyses indicated that Younger Val/Val participants have a higher performance than

Older Val/Val on the inhibition composite z-score (p = 0.03).

Fig 2. Age-related effect on executive scores according to COMT polymorphism. (A) Inhibition, (B) Shifting, (C)

Updating. Z scores were created based on the whole sample, with higher values indicating better performance.

Box plots show the median (horizontal line) and the interquartile (25–75%) range, and the whiskers indicate the 8 to

92% range. Dots indicate outlier participants.

https://doi.org/10.1371/journal.pone.0303343.g002

PLOS ONE COMT and executive functions in aging

PLOS ONE | https://doi.org/10.1371/journal.pone.0303343 May 13, 2024 10 / 19

https://doi.org/10.1371/journal.pone.0303343.g002
https://doi.org/10.1371/journal.pone.0303343


Significant differences across genotype and age groups were also observed between Youn-

ger Val/Val and Older Val/Met (p = 0.04), Younger Met/Met and older Val/Val (p = 0.04),

Younger Met/Met and Older Val/Met (p = 0.04). These results are reported only for sake of

completeness as we do not have specific hypotheses for these differences.

4. Discussion

Our study aimed to investigate possible influence of the single nucleotide polymorphism of the

Val158Met COMT gene on executive functions during normal aging. We first replicated previ-

ous studies that showed decreased executive functioning in aging. Regarding the genetic

effects, we have not observed advantage of carrying Met allele in younger, while there exists

age-related effect for Val homozygous individuals on inhibition, with a lower performance for

older adults by comparison to younger ones.

4.1. Aging and executive functions

It is now well established that aging is associated to a decrease of executive functioning; [3,78].

Here we assessed the functions of updating, shifting and inhibition with several tasks and we

computed z-scores grouping together measures from the different tasks associated to the same

executive process. This allows us a measurement of executive functioning relatively indepen-

dent of non-executive processes [79–81]. In that way, we observed that the effect of age encom-

passes the three executive processes explored, with large effect size for inhibition, while

shifting and updating processes are associated to small and medium effect, respectively. A

decrease in performance affecting different aspects of executive functioning simultaneously

has been reported by [82]. The presence of a large age-related effect size for inhibition can

seem surprising as not all inhibitory processes does seem to be impaired with aging [83]. How-

ever, the tasks used here necessitate controlled processes (i.e., to actively suppress a dominant

response or routine), and not automatic processes that are generally not affected by aging.

4.2. COMT and executive functions

At this time, few genome-wide association studies (GWAs) were conducted to assess the

potential genetic contribution to executive functioning. Dueker et al. [84] observed that a com-

posite measure of executive function is associated with four SNPs located in the long intergenic

non-protein coding RNA 1362 gene, LINC01362, on chromosome 1. The associated SNPs

have been shown to influence expression of the tubulin tyrosine ligase like 7 gene, TTLL7 and

the protein kinase CAMP-activated catalytic subunit beta gene, PRKACB, in several regions of

the brain involved in executive function. Hatoum et al. [85] observed that genes related to

GABAergic pathways influence executive functions (assessed by a common factor) while the

effect of COMT Val/Met polymorphism was not significant at the genome-wide level.

We predicted a higher performance in carriers of Met allele, due to their higher level of

dopamine availability in prefrontal cortex. However, we do not observe effect of COMT geno-

type between the three younger groups, neither for the three older groups. The advantage of

carrying Met allele was frequently related to superior performance on a number of executive

tasks, both in younger and older adults, as well as in pathological populations such as schizo-

phrenia [35,86–88], while this is not systematic (for a metanalysis see [39]). There exists evi-

dence that COMT polymorphism alone is not sufficient to explain genetic effects on executive

performance. For example, Bertolino et al. [89] reported that both COMT and DAT genotypes

have an additive effect on brain activity during an updating 2-back task, with COMT Met/Met

and DAT 10/10-repeat individuals having a more focused cortical brain response (lesser brain

activity for similar behavioral performance), whereas COMT Val and DAT 9-repeat alleles
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have the least focused brain response. In our lab, we assessed the effect of COMT rs4680,

MAOA rs6323 and DRD1 rs4532 polymorphism on inhibition abilities. We observed an inter-

active effect of the DRD1 and COMT polymorphisms on a motor inhibitory task, and an inter-

active effect of the three genes on a Stroop task, according to requirement of flexibility

associated to the tasks [90]. Finally, in a review of the literature, Barnes et al. [91] suggest that

variants of the dopamine transporter gene (DAT1) and dopamine D4 receptor gene (DRD4)

may explain individual differences in both behavioral and neural measures of inhibitory con-

trol. As our protocol was restricted to Val158Met COMT polymorphism, we could have missed

an effect of dopaminergic genes in our groups of younger and older participants.

4.3. COMT, aging and executive functions

Our initial prediction was a dampening of the age-effect on executive functioning in the Met/

Met group, due to their higher baseline dopamine level in prefrontal cortex [34] that should

help to compensate decrease in dopamine availability associated to aging [20]. However, we

observed an effect of COMT polymorphism only for older Val homozygous, by comparison to

their younger counterpart. This suggests lower executive abilities in older Val/Val participants,

although we were unable to identify any difference between the three genotypic groups includ-

ing older participants, as previously reported by Nagel et al. [49]. These authors proposed that

aging would cause individuals to migrate to the left side of the inverted U-shaped curve linking

dopamine levels to cognitive performance [92,93], and Val/Val individuals would be charac-

terized by a greater shift to the left than Met/Met ones. This greater shift of Val/Val individuals

could explain the difference in cognitive performance observed here between younger Val/Val

and older Val/Val subjects, whereas no significant difference was observed between younger

and older Met/Met. However, this shift may be insufficient in our participants to generate a

difference between the older genotype groups.

Capitalizing on previous studies, we tentatively propose that age of our participants and the

use of only one genetic polymorphism can be partly responsible for the negative result we

observed. Indeed, some data suggest that age-related genetic effects on cognition are observed

in relatively younger participants. Two studies that assessed longitudinal decline in cognition

reported an effect of COMT polymorphism only in participants younger than 60 [93,94]. Our

participants are 60–75 years old, and therefore may have been outside the age range to detect a

deleterious influence of the Val allele in aging if such an influence is specific to the 5th decade

of life [94]. Moreover, it is also possible that the effect of COMT genotype in aging is expressed

only in interaction with other genes not necessarily linked to the dopaminergic system. For

example, Nagel et al. [49] observed that older COMT Val homozygotes have particularly low

levels of performance if they were also BDNF Met carriers. Erickson et al. [95] reported that

the COMT polymorphism does not affect the trajectory of age-related executive control

decline, whereas the Val/Val polymorphism for BDNF may promote faster rates of cognitive

decay in older age. Sapkota et al. [96] observed that additive effects of COMT and BDNF poly-

morphisms predicted lower executive performance. In a subsequent study, the authors also

showed that APOEε4+ carriers with increased allelic risk for COMT and BDNF genes had

lower composite executive score [97]. Finally, an interactive effect was also observed for both

COMT and APOE for semantic fluency, with Val/Met heterozygous individuals performing

better only in the context of an ApoE ε4 allele [98].

4.4. COMT, aging and inhibition

We observed an age-related effect for Val homozygous carriers only for inhibition abilities.

One possible interpretation is in line with the findings of Bilder et al. ([48]; see also [99]) that
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COMT polymorphism has allelic specific and opposite effects on the stability and flexibility of

cognitive processes. According to these authors and our results, the COMT Met allele supports

the stability of representations necessary for the ongoing cognitive task while the Val allele

favors switching abilities and consequently updating/flexibility of these representations. Con-

sequently, the Val carriers might be advantaged on tasks requiring flexibility and updating

mechanisms and the Met carriers by tasks requiring stable maintenance abilities [48,99–101].

In other words, Val/Val individuals would have lower capacity for tasks requiring stability of

representations, which underlies inhibition processes [102]. This would explain why we

observed and effect of age for inhibitory abilities, but not updating nor shifting, in Val homo-

zygous carriers. A similar interpretation was proposed by de Frias et al. [103] to explain differ-

ences in pattern of brain activity during an 2-back task: increased transient activity in the

medial temporal lobe was observed in the Met/Met group and interpreted as a decrease of

updating abilities while increased sustained activity in the prefrontal cortex was reported for

the Val/Val group and attributed to less efficient maintenance processes (see also [101,104]).

4.5. Strengths and limitations

To the best of our knowledge this is the first study to incorporate and analyze the three execu-

tive processes of inhibition, shifting and updating among younger and older participants in

the context of COMT allelic variance. We demonstrated that inhibition, shifting and updating

performances are distinctly affected by COMT polymorphism in each age group. Another

strength of our study is the use of composite scores which enabled us to obtain a purer and

more distinguishable measure of the executive processes core components, thus taking further

the prominent model proposed by Miyake et al. [4].

As previously discussed, one possible limitation is the restricted age range of our older sam-

ple which does not allow us to determine whether the effects of COMT polymorphism differ

in young-old and old-old participants [94]. Finally, our sample size is well in line with other

behavioral studies which were aiming to investigate cognitive processes, but slightly smaller,

however adequately sized, compared to the previous studies on executive functioning and

COMT effect in aging [105]. Consequently, presence of a lower performance during aging on

the composite score of inhibition (but not on shifting or updating scores) for homozygous Val

carriers needs replication with protocols targeting for example one specific executive process.

This will allow inclusion of a larger number of participants than in this study.

5. Conclusion

This study used a battery of tasks to explore the effect of COMT polymorphism on executive

performance in aging by using compound scores that allow a purer measure of the executive

processes of updating, shifting and inhibition. We showed, as expected, lower performance in

the older group for the three executive processes. However, older participants seem disadvan-

taged only when the executive measure emphasize the need of stable representations (as in

inhibition task requiring the instruction to not perform an automated process) and when they

are homozygous for Val allele, with a lower baseline dopamine level that is magnified by aging.

Until now, studies on the effect of COMT polymorphism on executive functioning (and more

generally cognition) in aging led to divergent results, however we can conclude here on the

evidence of COMT allelic variance effect on the inhibitory component of executive function-

ing in older participants. Further studies are needed to investigate and disentangle the effect of

task characteristics, interaction with other genes (e.g., BDNF) or if the effect is specific to a

very narrow age range.
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