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Dissipative phase transition: From qubits to qudits
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We investigate the fate of dissipative phase transitions in quantum many-body systems when the individual
constituents are qudits (d-level systems) instead of qubits. As an example system, we employ a permutation-
invariant XY model of N infinite-range interacting d-level spins undergoing individual and collective dissipation.
In the mean-field limit, we identify a dissipative phase transition, whose critical point is independent of d
after a suitable rescaling of parameters. When the decay rates between all adjacent levels are identical and
d � 4, the critical point expands, in terms of the ratio between dissipation and interaction strengths, to a
critical region in which two phases coexist and which increases as d grows. In addition, a larger d leads to a
more pronounced change in spin expectation values at the critical point. Numerical investigations for finite N
reveal symmetry-breaking signatures in the Liouvillian spectrum at the phase transition. The phase transition is
furthermore marked by maximum entanglement negativity and a significant purity change of the steady state,
which become more pronounced as d increases. Considering qudits instead of qubits thus opens new perspectives
on accessing rich phase diagrams in open many-body systems.
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I. INTRODUCTION

In quantum systems composed of many identical con-
stituents, the interplay of interactions, driving and dissipation
gives rise to various collective effects, such as sub- and
superradiance [1–8], spin squeezing [6,9–15], or dissipative
time crystals [6,16–24], with dissipative phase transitions
[13,19,25–32] connecting phases of distinct steady-state prop-
erties. With the emergence of experimental platforms such as
cold atoms in cavities and optical lattices [33,34], Rydberg
atoms [8,35], or trapped ions [36–38] that can now be imple-
mented in laboratories with a high degree of control, these
fundamental physical phenomena can be studied in detail to
determine, among other things, what distinguishes them from
their classical counterparts.

Besides bosons [19,29,33,39–42], in most theoretical mod-
els for dissipative interacting many-particle systems the
individual particles are two-level systems (qubits), i.e., the
simplest quantum systems possible. For these types of mod-
els, efficient numerical methods exist that can simulate the
dynamics of 100 qubits and more [6,43]. However, most
physical systems treated as qubits actually host more than
two levels, and their multilevel nature gives rise to effects
not explained by a qubit model [4,19,44,45]. Indeed, mul-
tilevel quantum systems (qudits) offer various advantages
over qubits, such as larger information capacity [46–48],
more efficient implementations of quantum gates and algo-
rithms [46,48–53] and also of quantum simulation schemes
[54], a better protection against noise [55–57], increased
security in quantum key distribution [58–61] and quantum
communication [47], more efficient quantum error correction
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schemes [62–67], and an enhanced sensitivity for quantum
imaging [68] and quantum metrology [69–71]. Implementa-
tions of qudits include a variety of systems, such as photons
[47,49,56,68–70,72], ultracold atoms [73,74], trapped ions
[75–78], Rydberg atoms [79], nuclear spins [80,81], supercon-
ducting devices [44,54,71,82–86] and solid-state defects such
as nitrogen-vacancy centers in diamond [87,88]. Furthermore,
qudits can emerge as an effective description of bosonic sys-
tems, when the system parameters allow a truncation of the
number of excitations [89,90]. Given the advantages of qudits
for quantum information tasks and their presence in many
different physical platforms, it is rather natural to investigate
qudit models also for collective effects in dissipative many-
particle systems.

In this work, we explore a multilevel generalisation of the
dissipative Lipkin-Meshkov-Glick model [91–93]. For qubits,
this model exhibits a dissipative phase transition between a
symmetric phase and a broken-symmetry phase, as the ratio
of interaction and (individual or collective) decay is varied
[13,94,95]. We go beyond these known results and examine
the presence of a transition, its nature and its characteristics
also for d > 2 levels per constituent, employing both a mean-
field analytical approach and finite-size numerics [19,96–98].
For all d , a dissipative phase transition arises. Through a
suitable rescaling of the decay rates, the position of the critical
point and the qualitative characteristics of the two phases can
be made insensitive to the number of single-particle levels and
to the exact nature of the decay, which can here be modeled
more flexibly than for two-level systems. For specific choices
of the decay, which are accessible only for d � 4, the criti-
cal point evolves into a critical region, whose size increases
with d . Furthermore, we show that the Liouvillian spectral
properties and steady-state spin expectation values, purity, and
entanglement become more sensitive indicators of the phase
transition as the number of levels per particle increases.

2469-9926/2024/110(6)/062208(20) 062208-1 ©2024 American Physical Society

https://orcid.org/0000-0002-9859-6660
https://orcid.org/0000-0003-1699-0195
https://orcid.org/0000-0002-9610-8387
https://orcid.org/0000-0003-0804-959X
https://ror.org/00afp2z80
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.110.062208&domain=pdf&date_stamp=2024-12-10
https://doi.org/10.1103/PhysRevA.110.062208


PAUSCH, DAMANET, BASTIN, AND MARTIN PHYSICAL REVIEW A 110, 062208 (2024)

This paper is organized as follows: After presenting the
model for a general number of single-particle levels in Sec. II,
we consider in Sec. III its mean-field limit to discuss the
properties of its dissipative phase transition for qubits and
for qudits, highlighting the differences between two-level and
multilevel systems. Sections IV and V are devoted to numeri-
cal results for the Liouvillian spectrum and for the steady-state
properties at finite numbers of particles. In Sec. VI we sketch
a possible experimental implementation of the model, before
we conclude in Sec. VII.

II. MODEL AND ITS SYMMETRIES

We consider N identical spins, each with d = 2 j + 1 lev-
els, where j is the spin quantum number. In the single-particle
basis |m〉i (i = 1, . . . , N , m = − j, . . . , j), the individual spin
operators of the ith particle are [99]

j (i)
+ =

j−1∑
m=− j

A j,m|m + 1〉i〈m|i, j (i)
− = ( j (i)

+ )†, (1a)

j (i)
x = 1

2
( j (i)

+ + j (i)
− ), j (i)

y = 1

2i
( j (i)

+ − j (i)
− ), (1b)

j (i)
z =

j∑
m=− j

m|m〉i〈m|i, (1c)

with Aj,m = √
( j − m)( j + m + 1), and the collective spin

operators are constructed as Jα = ∑N
i=1 j (i)

α , α = ±, x, y, z.
The unitary dynamics of the spins is assumed to be given by
the Hamiltonian [13]

H = V

N j

(
J2

x − J2
y

) = V

2N j
(J2

+ + J2
−). (2)

This model is a special case of the Lipkin-Meshkov-Glick
(LMG) model [91–93], with maximal anisotropy between J2

x
and J2

y and no effective magnetic field in the z direction. It can
also be understood as an XY model [100,101] with infinite-
range interactions. For any d , the Hamiltonian contains a
two-body interaction term ∼∑N

i=1

∑N
k=i+1( j (i)

+ j (k)
+ + j (i)

− j (k)
− )

leading to the joint excitation or deexcitation of two spins.
For d > 2, i.e., j > 1/2, the Hamiltonian furthermore con-
tains a single-particle term ∼∑N

i=1(( j (i)
+ )2 + ( j (i)

− )2), which
(de)excites each spin by two levels. Figure 1 shows a sim-
plified sketch of these terms and of their effect onto the
single-particle levels (blue arrows and labels). Note that the
d-level nature of the spins would allow us to define also a
more general LMG Hamiltonian than the one studied here,
whose spectrum and eigenstates have been investigated, e.g.,
in Refs. [102–108].

We study the steady-state properties of this model subject
to individual and collective spontaneous decay of the spins,
described by the following Lindblad master equation for the
density matrix ρ (with h̄ = 1):

ρ̇ = − i[H, ρ] + γI

j

N∑
i=1

(
L(i)ρ(L(i) )† − 1

2
{(L(i) )†L(i), ρ}

)

+ γC

N j

(
LCρL†

C − 1

2

{
L†

CLC, ρ
})

, (3)

FIG. 1. Effects of the model Hamiltonian [Eq. (2), blue] and the
dissipators [Eq. (4), red] on two spin- j particles labeled by i and
k, with single-particle levels |m〉i, |n〉k (m, n = − j, . . . , j) such that
j (i)
z |m〉i = m|m〉i and j (k)

z |n〉k = n|n〉k . We choose different symbols
m, n for the quantum numbers of particles i, k to stress that the two-
body interaction terms j (i)

± j (k)
± act on all states |m〉i ⊗ |n〉k , where m

and n need not be identical.

with decay rates γI for individual dissipation and γC for col-
lective dissipation, and corresponding Lindblad operators L(i),
LC . Specifically, we consider

L(i) =
j−1∑

m=− j

�m|m〉i〈m + 1|i (4)

and LC = ∑N
i=1 L(i), i.e., d-level generalizations of the two-

level dissipators L(i) = σ
(i)
− and LC = J−. This kind of

collective dissipation, where LC is the sum of identical in-
dividual dissipators, naturally arises in effective models of
N atoms coupled identically to a collection of modes in a
dissipative cavity, when the cavity dynamics can adiabatically
be eliminated [27,109,110], as we discuss also in Sec. VI.
Clearly, the operators L(i) that define LC might differ from
those that describe the individual dissipation. However, as
we will outline in Sec. VI, the collective dissipator LC can
be implemented experimentally in a tunable way and thus be
chosen as the sum of exactly the same L(i) that also define the
individual dissipation.

A simplified sketch of the effect of such operators L(i) and
LC is shown in Fig. 1 (red arrows and labels): the individual
dissipator L(i) corresponds to quantum jumps of particle i from
|m + 1〉i to |m〉i and the collective dissipator LC gives rise to
quantum jumps from collective states with Nm+1 and Nm par-
ticles in the single-particle states |m + 1〉, |m〉, respectively, to
collective states with Nm+1 − 1 and Nm + 1 particles in these
two states. Such dissipation processes typically arise when
the system is coupled to a zero-temperature bath that drives
the system into its ground state. With the Hamiltonian (2)
considered here, however, the processes described by the jump
operators do not necessarily lower the energy. This apparent
contradiction is resolved in the possible experimental imple-
mentation that we propose in Sec. VI: There the Hamiltonian
(2) arises as an effective Hamiltonian in a driven, i.e., time-
dependent system, whereas the dissipation processes indeed
lead to decays from higher to lower energy in the original,
undriven system.
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Jointly scaling �m �→ c�m (m = − j, . . . , j − 1) and γk �→
|c|−2γk (k = I,C) with c ∈ C leaves the master equation in-
variant. As a convention, we fix the decay rates and Lindblad
operators such that �− j = √

2 j. Examples of such operators
are the spin ladder operator

L(i)
spin = j (i)

− , (5)

with �m = Aj,m (m = − j, . . . , j − 1) and LC = J−, and the m-
independent dissipator

L(i)
≡ =

√
2 j

j−1∑
m=− j

|m〉i〈m + 1|i. (6)

Note that for d = 2 and d = 3, the latter two individual dis-
sipators (5) and (6) are identical to each other, but they differ
for d � 4.

For qubits (d = 2), this model [13,94] and variants of
it [95] have been studied previously with respect to their
steady-state properties and dissipative phase transitions in the
limit N → ∞. Furthermore, variants including more general
collective dissipation, but without individual dissipation, have
been considered in the limit N j → ∞ [111].

The right-hand side of Eq. (3) is invariant under permuta-
tions of the particles. Hence, a permutation-invariant density
matrix ρ, i.e., [ρ, π ] = 0 for any N-particle permutation oper-
ator π , stays permutation-invariant throughout the whole time
evolution provided by Eq. (3) [6,19,43].

In addition, the master equation obeys a Z2 symmetry
mediated by the unitary superoperator �1: A �→ eiπJz Ae−iπJz

and, if L(i) and LC are real operators (as is the case for
L(i)

spin and L(i)
≡ ), another Z2 symmetry given by the antiuni-

tary superoperator �2: A �→ eiπJz/2A∗e−iπJz/2, where A∗ is the
complex conjugate of A. These symmetries entail that for
any steady-state solution ρ of Eq. (3), �k[ρ] (k = 1, 2) are
also steady states. The expectation values of an observable
O in these states are related via 〈O〉�k [ρ] = 〈�†

k[O]〉ρ (where
〈O〉A = Tr[OA]), in particular 〈Jx〉�1[ρ] = −〈Jx〉ρ , 〈Jy〉�1[ρ] =
−〈Jy〉ρ , 〈Jz〉�1[ρ] = 〈Jz〉ρ and 〈Jx〉�2[ρ] = 〈Jy〉ρ , 〈Jy〉�2[ρ] =
〈Jx〉ρ , 〈Jz〉�2[ρ] = 〈Jz〉ρ .

III. DYNAMICS AND DISSIPATIVE PHASE TRANSITION
IN THE THERMODYNAMIC LIMIT

To get an understanding of the system dynamics, let us first
investigate the model in the limit N → ∞. For this purpose,
we derive the equations of motion of the following collective
Hermitian operators:

Sx;m,n = 1

2N

N∑
i=1

(|m〉i〈n|i + |n〉i〈m|i ), (7a)

Sy;m,n = 1

2iN

N∑
i=1

(|m〉i〈n|i − |n〉i〈m|i ), (7b)

where m, n = − j, . . . , j and by convention m � n (note,
however, that m = n for y corresponds to Sy;m,m = 0). Col-
lective spin operators are given in terms of these operators
as Jx/N = ∑ j−1

m=− j A j,mSx;m+1,m, Jy/N = ∑ j−1
m=− j A j,mSy;m+1,m,

Jz/N = ∑ j
m=− j mSx;m,m. The expectation values of the S op-

erators are the matrix elements of the averaged single-particle
density matrix ρ̄ = ∑N

i=1 ρ (i)/N , where ρ (i) is obtained from
the full density matrix ρ by taking the trace over all particles
but the ith one (i = 1, . . . , N):

〈Sx;m,n〉 = Re[ρ̄nm], 〈Sy;m,n〉 = Im[ρ̄nm]. (8)

Consequently,
∑ j

m=− j〈Sx;m,m〉 = Tr[ρ̄] = 1 and
∑ j

m,n=− j

〈Sx;m,n〉2 + 〈Sy;m,n〉2 = Tr[ρ̄2] � 1.
Assuming that the expectation values of the individ-

ual terms |m〉i〈n|i are independent of N and i for N →
∞, one can easily check that 〈Sα;m,n〉 (α = x, y) scales
as O(1), whereas the expectation value of the commuta-
tor [Sα;m,n, Sβ;o,p] (α, β = x, y) scales as O(N−1) and hence
vanishes as N → ∞. This justifies treating the S operators
as real numbers in that limit and in particular assuming
〈{Sα;m,n, Sβ;o,p}〉 − 2〈Sα;m,n〉〈Sβ;o,p〉 → 0 for N → ∞, an as-
sumption whose validity can also be proved analytically for
rather general cases including the γC = 0 and the γI = 0 limits
of our model [112,113]. Equations of motion for the expec-
tation values in the limit N → ∞ then become (for further
details see Appendix A)

〈Ṡα;m,n〉 = V fα;m,n(〈Sβ;o,p〉) + γI gα;m,n(〈Sβ;o,p〉)

+ γC hα;m,n(〈Sβ;o,p〉), (9)

where α, β = x, y and m, n, o, p = − j, . . . , j, and where
fα;m,n, hα;m,n are two different quadratic functions and gα;m,n

is a linear function of the 〈Sβ;o,p〉. The coefficients of fα;m,n

are of the form Aj,μAj,ν , whereas the coefficients of gα;m,n and
hα;m,n are of the forms Re[�∗

μ�ν], Im[�∗
μ�ν], and |�μ|2 + |�ν |2

(μ, ν = − j, . . . , j − 1). The steady states of this set of equa-
tions are the stable fixed points, i.e., solutions to 〈Ṡα;m,n〉(t ) =
0 such that the Jacobian matrix, i.e., the gradient of the right-
hand side of Eq. (9), has only eigenvalues with a negative real
part [114,115].

A. Qubits

Let us first recapitulate previously obtained results for the
qubit LMG model [13,94]. In this case, the system dynamics
can conveniently be described in terms of scaled spin expec-
tation values X = 〈Jx〉/N j = 2〈Sx;1/2,−1/2〉, Y = 〈Jy〉/N j =
2〈Sy;1/2,−1/2〉, Z = 〈Jz〉/N j = 〈Sx;1/2,1/2〉 − 〈Sx;−1/2,−1/2〉.
Equation (9) then reduces to [13,94]

Ẋ = −2VY Z − γI X + γCXZ, (10a)

Ẏ = −2V XZ − γIY + γCY Z, (10b)

Ż = 4V XY − 2γI (Z + 1) − γC (X 2 + Y 2). (10c)

For all V , γI , γC , the point X = Y = 0, Z = −1 is a fixed
point, which is stable for γI + γC > 2|V |. This state, which
we may call the spin-z polarized steady state, is invariant
under both symmetries �1 and �2. For γI + γC < 2|V | and
γI = 0, two different steady states emerge at X = sgn(V )Y =
±√

γI (2|V | − γI − γC )/(2|V | − γC ), Z = −γI/(2|V | − γC ).
Since these two states do not obey �1 symmetry (instead,
they are mapped to each other by �1), we may call them the
broken-symmetry steady states. The steady-state coordinates
X , Y , Z are continuous at γI + γC = 2|V |, while their first
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derivative with respect to γk/V (k = I,C) is not; i.e., this dis-
sipative phase transition is a second-order transition [13,94].

If γI = 0, the quantity r = √
X 2 + Y 2 + Z2, i.e., the length

of the total spin vector, is conserved and can be fixed at its
maximal value r = 1. The unique steady state for γC > 2|V | is
X = Y = 0, Z = −1 like for γI = 0 [13,116]. For γC < 2|V |,
this state becomes unstable, and four other fixed points emerge
[13], the two points

X =
√

1

2
± 1

2

√
1 −

( γC

2V

)2
, (11a)

Y = sgn(V )

√
1

2
∓ 1

2

√
1 −

( γC

2V

)2
, (11b)

Z = 0, (11c)

and the two points obtained from them via the mapping
(X,Y ) �→ (−X,−Y ), i.e., the symmetry operation �1. The
eigenvalues of the Jacobian at these four points are purely
imaginary, which means that the steady-state solutions of
Eq. (10) are periodic orbits around the fixed points. The time
averages along these orbits fulfill X (t ) = 0, Y (t ) = 0, Z (t ) =
0 [13]. Consequently, this time average is discontinuous at
γC = 2|V |, and the phase transition is of first order [13], in
contrast to the second-order transition for γI = 0 (even for
infinitesimally small γI � 0).

Remarkably, the steady states at γI = 0 and γC < 2|V |
differ strongly from the corresponding steady states at in-
finitesimally small γI � 0: In the first case the spin length r =√

X 2 + Y 2 + Z2 is fixed at 1, whereas r ≈ 0 for the steady
states of the second case. This strong effect of infinitesimal
γI can be explained from the interplay of the different terms:
The time derivative of r2 reveals that individual dissipation
reduces the length r as long as Z + 1 >

√
1 − r2, while the

other two terms do not change r. The oscillations induced
by the interaction periodically drive Z above that threshold,
such that a small dissipation rate γI eventually leads to r ≈ 0.
However, the timescales to reach this steady state are expected
to diverge as 1/γI for γI → 0. A similarly strong impact of
infinitesimally weak individual dissipation has been reported
also for the steady state of the Dicke model [117], where
a second-order dissipative phase transition transforms into a
first-order transition with a bistable region due to the presence
of individual dissipation.

If γI is larger, the effect of dissipation, which drives the
system towards Z = −1 (individual dissipation) or Z = −r
(collective dissipation), pushes the Z coordinate away from
0 and the steady state is found at a finite r, with Z + 1 =√

1 − r2. Finally, when the dissipation dominates, the inter-
action is too weak to lift the system into the parameter region
where r is reduced and the steady state obeys r = 1, Z = −1.

The above discussion is illustrated by the streamline
plots of Eq. (10) shown in Fig. 2 for two different ra-
tios (γI + γC )/|V | and three different values of (γI , γC ). In
the dissipation-dominated regime (γI + γC )/|V | > 2 (right
column) all trajectories converge to the unique steady
state (X,Y, Z ) = (0, 0,−1). In contrast, in the interaction-
dominated regime (γI + γC )/|V | < 2 (left column), the be-
havior depends on whether individual dissipation contributes

FIG. 2. Stream plots of the mean-field equations of motion for
qubits, Eq. (10), with only individual dissipation (top row), both
types of dissipation (middle row, with γC = 2γI ), or only collective
dissipation (bottom row), and with ratios (γI + γC )/|V | = 1.7, 2.3
around the critical value (γI + γC )/|V | = 2 (dashed line). Here only
V � 0 is considered. The red (brighter) dots represent the steady
states (in the bottom left plot, the center fixed points instead), and
blue (darker) dots are unstable fixed points. Axis labels of the upper
left plot apply to all panels.

or only collective dissipation is present: In the former case
(top and middle row), two broken-symmetry steady states are
found, with identical Z value but opposite X and Y values.
When both types of dissipation are present (middle row),
the broken-symmetry fixed points deviate farther from the
spin-z polarized state than for only individual dissipation (top
row). In the case of only collective dissipation (bottom row),
trajectories describe closed curves on the surface of the sphere
and the fixed points are never reached, except for trajectories
starting at the fixed points themselves.

B. Qudits

After having recovered and summarized the results for
the qubit LMG model in the preceding section, let us now
extend them to general d > 2. In the following, we will first
briefly discuss some analytically accessible results about the
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steady states for general d . As a next step, we will numerically
investigate in more detail the mean-field dynamics of Eq. (9)
for d = 4 and specific values of γI , γC and V , examining the
cases of only individual dissipation, both types of dissipation,
and only collective dissipation, and highlighting qualitative
similarities with d = 2. Finally, we will study the mean-field
steady states as a function of γI for several d , which reveals
quantitative deviations from d = 2.

Independently of L(i) and for all values of d , V , γI , γC , the
point

〈Sx;− j,− j〉 = 1, 〈Sα;m,n〉 = 0, (α; m, n) = (x; − j,− j)

(12)

is a fixed point in the limit N → ∞, which is stable if and
only if |�− j |2(γI + γC ) > 4 j|V |, as we show in more detail
in Appendix B. With our scaling convention �− j = √

2 j, the
transition point is thus independent of d and coincides with
the qubit case, γI + γC = 2|V |. The scaled spin expectation
values X = 〈Jx〉/N j, Y = 〈Jy〉/N j, Z = 〈Jz〉/N j (with N →
∞) are also independent of d for this steady state and thus the
same as for qubits, X = Y = 0, Z = −1. We may again refer
to that state as the spin-z polarized state.

If there is only collective dissipation (i.e., γI = 0), all
points with 〈Sx;m+1,m〉 = 〈Sy;m+1,m〉 = 0 for m = − j, . . . ,
j − 1 are moreover fixed points. In addition to |�− j |2γC , |V |,
and j, the stability of these points also depends on the other
matrix elements of L(i) and on the differences 〈Sx;m+1,m+1〉 −
〈Sx;m,m〉 (see Appendix B for more details). Note that con-
servation of the total spin length |J| rules out these fixed
points for d = 2 (except for the spin-z polarized steady state
and the unstable fixed point with 〈Sx;1/2,1/2〉 = 1). For d > 2,
however, the length of the total spin is not conserved in gen-
eral, and these additional fixed points may be accessed by the
system.

Other steady states emerge in the region where the fixed
points discussed above become unstable, as was already the
case for d = 2. As these steady states turn out to be analyt-
ically accessible only for d = 2 and d = 3, we study them
numerically and restrict our investigations to the dissipators
L(i)

spin = j (i)
− and L(i)

≡ defined in Eqs. (5) and (6), and corre-
sponding collective dissipators.

Figure 3 shows, for d = 4, the time evolution of the scaled
spin expectation values X , Y , Z with N → ∞, for 20 trajecto-
ries starting at random configurations with maximal length of
the total spin, where the dissipation is given by L(i)

spin (a) and
L(i)

≡ (b), respectively. Remember that d = 4 is the smallest d
for which these two dissipators differ from each other. Note
furthermore that this figure is not a stream plot like Fig. 2,
since the dynamics depends on further variables that are not
shown.

When individual dissipation is present (top and middle
row of Fig. 3), independently of whether there is also col-
lective dissipation or not, the behavior is qualitatively very
similar to d = 2 (Fig. 2), for both spin-ladder dissipation
and m-independent dissipation: In the dissipation-dominated
regime γI + γC > 2|V | (right column of both subfigures), all
trajectories converge to the unique steady state with X = Y =
0, Z = −1. When the interaction dominates (left column of
both subfigures), two steady states emerge, with Z = −1 and

X = Y , which are identical to each other up to the sign of X
and Y . These are thus broken-symmetry steady states like in
the interaction-dominated regime for d = 2. With increasing
ratio γC/γI , the broken-symmetry steady states differ far-
ther from the spin-z polarized state, an effect that is slightly
stronger for m-independent dissipation than for spin-ladder
dissipation. Also in comparison to d = 2 (Fig. 2) one observes
that the d = 4 broken-symmetry steady states deviate more
strongly from the spin-z polarized steady state.

When only collective dissipation contributes (bottom row
of Fig. 3), the interaction-dominated regime (bottom left panel
of both subfigures) is characterized by oscillatory solutions
for both types of Lindblad operators, similarly as for d = 2.
In fact, the behavior for spin-ladder dissipation is exactly
identical to d = 2: When only collective dissipation is present
and LC is a function of collective spin operators (as is the
case if L(i) is a linear combination of single-particle spin
operators, such as L(i)

spin = j (i)
− ), Eq. (3) describes the dynamics

of a single spin with conserved spin quantum number J = N j
(for maximal spin length). This single spin can equivalently be
constructed as the symmetric superposition of J/ j = N spin- j
particles or of 2J = 2N j spin-1/2 particles [99,118] and its
limit for N → ∞ is thus identical for these two scenarios.
In contrast, m-independent dissipation according to L(i)

≡ does
lead to deviations from d = 2: The total spin length is no
longer conserved, but oscillates instead. This periodic change
of the total spin length can be seen, e.g., from the trajectory
highlighted in red in the bottom left panel of Fig. 3(b), which
starts at the surface of the sphere, then approaches its center,
before returning towards the surface again.

The fact that the total spin length is not fixed to 1 for
m-independent collective dissipation becomes apparent also
from the dynamics at dominating dissipation [bottom right
panel of Fig. 3(b)]: There, multiple steady states are found
with X = Y = 0, but different values of Z depending on the
initial conditions. These are the fixed points with 〈Sα;m,n〉 = 0
for m = n discussed above. In contrast, for spin-ladder dissi-
pation, only a single steady state with X = Y = 0, Z = −1
emerges, like for nonvanishing γI .

Despite the qualitative similarities with the qubit case,
the number of single-particle levels does have a significant
effect onto the steady state, also for spin-ladder dissipation.
This is exemplified in Fig. 4 by the scaled steady-state spin
expectation values |X | and Z for N → ∞ and only individ-
ual dissipation, γC = 0. The steady states for d > 2 are here
obtained numerically by solving Eq. (9) with 〈Ṡα;m,n〉 = 0
and then checking the stability of the resulting fixed points
by inserting them into the (analytically accessible) Jacobian
matrix of Eq. (9). For spin-ladder dissipation (solid lines),
both expectation values are continuous at the transition for all
d , whereas their slope (i.e., their first derivative with respect to
γI/|V |) changes noncontinuously at γI = 2|V |. The transition
thus remains of second order also for d > 2. However, as
fits with a power law ∼(2 − γI/|V |)βα (α = X, Z) reveal, the
behavior of X and Z + 1 for γI � 2|V | can be characterized by
critical exponents βα that decrease with d towards 0 (i.e., for
larger d , the spin expectation values change more rapidly at
the transition). For d = 2 to d = 7 shown in Fig. 4, we find in
particular βX ≈ 0.5, 0.26, 0.18, 0.14, 0.11, 0.10 and βZ ≈ 1.0,
0.55, 0.40, 0.33, 0.28, 0.25. Hence, the first derivatives at
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FIG. 3. Time evolution of the scaled spin expectation values X = 〈Jx〉/N j, Y = 〈Jy〉/N j, Z = 〈Jz〉/N j in the mean-field limit N → ∞
[Eq. (9)] for d = 4, with dissipator L(i)

spin (a) and dissipator L(i)
≡ (b), and only individual dissipation (top row), both types of dissipation (middle

row, with γC = 2γI ) or only collective dissipation (bottom row), and with ratios (γI + γC )/|V | = 1.7, 2.3 around the critical value (γI +
γC )/|V | = 2 (dashed line). Here only V � 0 is considered. The 20 initial states of the shown trajectories were chosen randomly from the states
with maximal spin length and are the same in all plots. Red dots denote the steady states and the red line (in grayscale, the brighter line at
negative X and Y ) in the lower left plot of (b) highlights a single trajectory referenced in the main text. Axis labels of the upper left plot in (a)
and (b) apply to all panels.

γI = 2|V | (except for Z with d = 2) diverge towards infinity
as ∼(2 − γI/|V |)−(1−βα ), but with an exponent 1 − βα that
increases with d .

Remarkably, m-independent dissipation for d � 4 (dashed
lines) gives rise to striking differences to the qubit case and
to spin-ladder dissipation for the same d: In the dissipation-
dominated regime close to the transition, i.e., γI � 2|V |, a
bistable regime emerges in which not only the spin-z polar-
ized state but also the broken-symmetry states observed for
dominating interaction (see Fig. 3) are stable. In fact, the
spin expectation values of the broken-symmetry steady states
extend continuously from the interaction-dominated regime
into the region γI � 2|V |. At the upper limit of the bistable
region, i.e., the point where the broken-symmetry states fi-
nally become unstable (visible in the figure as the end points
of the lines), the corresponding spin expectation values still
differ from X = 0 and Z = −1, i.e., the transition is of first
order, in contrast to the second-order transition observed for
d = 2 and for spin-ladder dissipation. As d increases, the
bistable region grows (from γI/|V | ∈ [2, 2.05] for d = 4 to

γI/|V | ∈ [2, 2.46] for d = 7), and the spin expectation values
of the broken-symmetry states at the upper limit of the bistable
region differ farther from those of the spin-z polarized state.
Note that a bistable region has recently been found also for the
Dicke model with individual and collective dissipation [117].
In that model, however, bistability emerges already for d = 2,
in contrast to our findings reported here.

Far from the transition point, the absolute value of the
spin expectation values decreases as γI is reduced, for both
L(i)

spin and L(i)
≡ . Comparison of the data for γI � 0 to a power

law (exemplified for X in the inset of Fig. 4) reveals that
X ∼ (γI/|V |)1/2, Z ∼ γI/|V | to leading order in γI/|V |, for
both dissipators and all d , and consequently limγI →0 X =
limγI →0 Z = 0 like for d = 2. However, the prefactor of
this convergence decreases as d is increased, for X from
1/

√
2 (d = 2) to 0.472 (d = 7, spin-ladder dissipation) and

0.378 (d = 7, m-independent dissipation), respectively, and
for Z from −1/2 (d = 2) to −0.087 (d = 7, spin-ladder
dissipation) and −0.073 (d = 7, m-independent dissipation),
respectively.
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FIG. 4. Scaled spin expectation values |X | = 〈Jx〉/N j and Z =
〈Jz〉/N j of the steady states vs γI/|V | at γC = 0 and N → ∞, for
dissipators L(i)

spin (solid) and L(i)
≡ (dashed), and for d = 2 to d = 7 as

indicated in the legend. The black dashed line highlights the transi-
tion point γI = 2|V |, below which the spin-z polarized steady state
(horizontal line at X = 0 and Z = −1, identical for all d and both
dissipators) becomes unstable. The broken-symmetry steady states
for L(i)

≡ and d � 4 remain stable above γI = 2|V | until γI/|V | ≈ 2.05
(d = 4), 2.16 (d = 5), 2.30 (d = 6), 2.46 (d = 7). The two broken-
symmetry steady states at γI < 2|V | (and at γI � 2|V | for L(i)

≡ ) have
identical |X | and Z . The inset shows |X | for γI/|V | ∈ [0.01, 0.1] in
comparison to a power law ∼(γI/|V |)1/2 (black dashed line).

Note that due to the symmetries of the system any result
discussed in this section for |X | is valid also for |Y | = |X |,
and the findings about the broken-symmetry states hold for
both of these states, since they differ from each other only in
the sign of X and Y .

We can finally conclude for spin-ladder dissipation that the
properties of the steady state for d > 2 remain qualitatively
the same as for d = 2, while features such as the divergence
from the spin-z polarized state for γI � 2|V | and the con-
vergence to r = 0 for γI → 0 become more prominent with
increasing d . For m-independent dissipation, in contrast, the
phase diagram changes also qualitatively through the emer-
gence of the bistable region.

C. Large-spin limit for spin-ladder dissipation

As we have seen in the preceding section for d = 2 to
d = 7, the features of the steady state for spin-ladder dissipa-
tion remain qualitatively unchanged as d increases in the limit
N → ∞. Motivated by this result, we will now investigate
whether these findings are still valid for an infinite number
of single-particle levels and whether, consequently, the two
limits N → ∞ and d → ∞ commute. To answer these ques-
tions, we consider the limit j → ∞ of scaled spins j (i)

α / j
(i = 1, . . . , N , α = x, y, z), where N is finite. Such a limit
can, for instance, be achieved by N collective spins of a large
number of atoms, in a similar fashion as, e.g., the models
discussed in Refs. [21,27].

One can easily check that 〈 j (i)
α 〉/ j = O(1), whereas

〈[ j (i)
α / j, j (k)

β / j]〉 = iδik
∑

γ=x,y,z εαβγ 〈 j (i)
γ 〉/ j2 (with i, k =

1, . . . , N and α, β = x, y, z) converges to 0 as j → ∞. In

this limit, we can thus apply a mean-field assumption in
the equations of motion for the scaled spins, which, with
α(i) = 〈 j (i)

α 〉/ j (i = 1, . . . , N , α = x, y, z), leads to

ẋ(i) = −2V

N

(
N∑

k=1

y(k)

)
z(i) + γI x

(i)z(i) + γC

N

(
N∑

k=1

x(k)

)
z(i),

(13a)

ẏ(i) = −2V

N

(
N∑

k=1

x(k)

)
z(i) + γI y

(i)z(i) + γC

N

(
N∑

k=1

y(k)

)
z(i),

(13b)

ż(i) = 2V

N

N∑
k=1

(x(k)y(i) + y(k)x(i) ) − γI [(x
(i) )2 + (y(i) )2]

− γC

N

N∑
k=1

(x(k)x(i) + y(k)y(i) ). (13c)

While the squared length (x(i) )2 + (y(i) )2 + (z(i) )2 = ( j +
1)/ j of the single-particle spins is constant throughout time
evolution, the squared length (

∑N
i=1 x(i) )2 + (

∑N
i=1 y(i) )2 +

(
∑N

i=1 z(i) )2 of the total spin is not necessarily conserved.
However, if the system is initialized in a state with maxi-
mum total spin length, then α(i) = α(k) (i, k = 1, . . . , N , α =
x, y, z) for all times [119]. Then

ẋ(i) = −2V y(i)z(i) + (γI + γC )x(i)z(i), (14a)

ẏ(i) = −2V x(i)z(i) + (γI + γC )y(i)z(i), (14b)

ż(i) = 4V x(i)y(i) − (γI + γC )[(x(i) )2 + (y(i) )2], (14c)

which is nothing other than the mean-field equations for
N → ∞ and d = 2, Eq. (10), with collective dissipation at the
rate γI + γC and vanishing individual dissipation. Hence, the
transition point remains at γI + γC = 2|V | like for N → ∞ at
finite d , but the transition is now of first order also for finite
γI and the steady states in the interaction-dominated regime
are always oscillatory, no matter whether γI is present or not.
Consequently the steady-state properties for a finite number
of infinitely long collective spins (i.e., d → ∞ at fixed N)
are strikingly different from those for an infinite number of
particles with finite spin (i.e., N → ∞ at fixed d), even though
the model for finite N and d is exactly the same.

IV. SPECTRAL FINGERPRINTS OF THE DISSIPATIVE
PHASE TRANSITION

In the following sections, we investigate numerically how
the different phases manifest themselves at finite particle num-
bers N , restricting to γI = 0 for simplicity. To this end, we
interpret the right-hand side of Eq. (3) as a linear superoper-
ator L (the Liouvillian) acting on the density matrix ρ. The
steady states are then eigenmatrices of L with eigenvalue 0.
We express the Liouvillian as a (D × D)-dimensional matrix
and employ its permutation invariance [19,96–98] to reduce
its matrix dimension from D = d2N to ( N+d2−1

N ), which scales

with N as Nd2−1, i.e., polynomially. Due to the Z2 symme-
tries �1 and �2, L is block-diagonal with four blocks of
approximately equal size, i.e., of dimensions that are further
reduced by a factor ≈1/4 compared to the full Liouvillian
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dimension. Nevertheless, since the order of this polynomial
grows quadratically with d , the numerics remain limited to
rather small particle numbers already for moderately large
d: For instance, blocks of dimension ≈150 000 correspond
to N ≈ 150 two-level systems, but to only N = 6 five-level
systems [exact values of the four block dimensions: 149 226,
143 450, 146 300, 146 300 for (N, d ) = (150, 2) and 149 535,
147 580, 148 330, 148 330 for (N, d ) = (6, 5)].

From the symmetry-resolved (with respect to �1 and �2)
spectrum of L, one can detect dissipative phase transitions
and symmetry breaking [25,30]: Within each symmetry sec-
tor induced by the Z2 symmetries, here labeled by parities
pk ∈ {+1,−1} with respect to �k (k = 1, 2), let λ

(p1,p2 )
i

be the eigenvalues of L, sorted such that | Re[λ(p1,p2 )
i ]| �

| Re[λ(p1,p2 )
i+1 ]| (i = 0, 1, 2, . . .). The steady state is contained

in the fully symmetric sector with respect to the Z2 symme-
tries [25], which is here the space characterized by parities
p1 = p2 = +1. When a symmetry of the equations of motion
is broken by the steady states, the gaps

�(p1,p2 ) = − Re
[
λ

(p1,p2 )
0

]
, (p1, p2) = (+1,+1), (15)

between the eigenvalue λ
(+1,+1)
0 = 0 of the steady state and

the lowest eigenvalue λ
(p1,p2 )
0 in the sector (p1, p2) vanish as

N → ∞, for all sectors (p1, p2) corresponding to the broken
symmetry [25,30]. In our model the steady states remain sym-
metric with respect to �2 for all V > 0 and with respect to
�1�2 for all V < 0, while the symmetry �1 is spontaneously
broken in the thermodynamic limit for γI + γC < 2|V |; see
Sec. III. The symmetry sector corresponding to the symme-
try breaking at V > 0 (V < 0) is hence the one, where the
parity of �1 differs from the fully symmetric space and the
parity of �2 (of �1�2) remains the same, i.e., (p1, p2) =
(−1,+1) [(p1, p2) = (−1,−1)]. Furthermore, when several
steady states not related by symmetry coexist in the thermody-
namic limit for the same parameter values, e.g., at the critical
point of a first-order phase transition [25], also the gap

�(+1,+1) = − Re
[
λ

(+1,+1)
1

]
(16)

between λ
(+1,+1)
0 = 0 and the first nonzero eigenvalue λ

(+1,+1)
1

of the same symmetry sector vanishes as N → ∞.
Figure 5 shows the values of the gaps �(p1,p2 ) for all

symmetry sectors, both dissipators L(i)
spin, L(i)

≡ , and d = 3 to
d = 5, with particle numbers N such that the dimensions of
the symmetry sectors are between ≈30 000 and ≈40 000 for
all d . Even for the small particle numbers considered here, the
gap �(−1,+1) clearly closes in the interaction-dominated phase
where symmetry breaking occurs in the thermodynamic limit,
for both types of dissipators. Furthermore, for m-independent
dissipation and d = 4, 5, the region where �(−1,+1) signifi-
cantly decreases appears to be slightly shifted towards larger
γI + γC as compared to spin-ladder dissipation, most promi-
nently visible for d = N = 5. This suggests that �(−1,+1) →
0 (N → ∞) also in the bistable region, as expected from the
existence of broken-symmetry steady states in that domain.

In contrast, the behavior of the other gaps �(+1,+1),
�(±1,−1) is less clear, and a significant closing of the
gaps in the interaction-dominated phase is not observed.

FIG. 5. Gaps �(p1,p2 ) for spin-ladder (a) and m-independent
(b) dissipation, vs γI/|V | and γC/|V | (only V � 0), with parities
(p1, p2) as indicated in the top row and for different N , d (rows)
such that the dimension of the Liouvillian is comparable. The color
bar is identical for all panels. The black line indicates the mean-field
transition point γI + γC = 2|V |. White areas denote parameter val-
ues, for which not all the necessary eigenvalues could be computed.
Since L(i)

spin = L(i)
≡ for d = 3, the upper rows of panels (a) and (b) are

identical.

Nevertheless, �(+1,+1) and �(±1,−1) are reduced as compared
to the dissipation-dominated phase.

Note that there is a tendency of all gaps to close for
γI , γC → 0. This can be understood from the exact limit γI =
γC = 0: There only the unitary dynamics survives, which in
the thermodynamic limit has four steady states related to each
other by symmetry [given by Eq. (11) for γC = 0]. Conse-
quently, both symmetries �1, �2 are broken, and we expect
all gaps �(p1,p2 ) with (p1, p2) = (+1,+1) to close.

To get a clearer understanding of the gaps also for
(p1, p2) = (−1,+1), we plot �(p1,p2 ) in Fig. 6 as functions of
γI/|V | and of particle number at constant γC/|V | = 0.2 (i.e.,
along the vertical direction of Fig. 5 for dominating individual
dissipation), for spin-ladder and m-independent dissipation.
All four gaps are found to decrease as γI/|V | is reduced.
However, no trace of the phase transition is visible in the two
gaps �(±1,−1), except for a small kink in the vicinity of the
critical point γI/|V | = 1.8 for some (N, d ). But note that for
other (N, d ) such a feature is either absent or appears far from
the critical point, i.e., this kink might as well be unrelated to
the phase transition and due to finite-size effects. Furthermore,
increasing the number of particles at constant d does not
significantly reduce these gaps in the interaction-dominated
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FIG. 6. Gaps �(p1,p2 ) at γC/|V | = 0.2, for spin-ladder and m-independent dissipation as indicated in the top row: (a) vs γI/|V |, for d = 3,
N = 3, 6, 9, 12, 15, 18 (red solid), d = 4, N = 3, 6, 9 (blue dashed), d = 5, N = 2, 4, 6 (green dash-dotted), where stronger color means larger
particle number and N = 6 is indicated for �(+1,+1) by circles accompanying the lines, (b) vs 1/N at the transition point γI/|V | = 1.8 [black
dashed line in (a)], for d = 2 (purple circles), d = 3 (red squares), d = 4 (blue diamonds), d = 5 (green triangles). Dashed lines in (b) are
linear fits to the last three points. Since L(i)

spin = L(i)
≡ for d = 2, 3, the red lines in (a) and the red and purple data points in (b) are identical for

both dissipators.

phase. In fact, as visible from Fig. 6(b), directly at the critical
point (γI/|V |, γC/|V |) = (1.8, 0.2), the gaps �(±1,−1) may
even slightly increase with particle number, for both types of
dissipation. These results clearly show that the symmetry �2

remains intact at the phase transition.
In contrast, �(+1,+1) and �(−1,+1) do display features of

the phase transition: Similarly to Fig. 5, the symmetry-related
gap �(−1,+1) is greatly reduced in the interaction-dominated
phase and decreases strongly with increasing particle num-
ber. Note, however, that an extrapolation to infinite N at
(γI/|V |, γC/|V |) = (1.8, 0.2) [dashed lines in Fig. 6(b), ob-
tained as linear fits to the three largest N] suggests small
but still finite gaps �(−1,+1) ∈ [0.066, 0.142] for spin-ladder
dissipation and �(−1,+1) ∈ [0.056, 0.076] for m-independent
dissipation. This is probably a finite-size effect due to the
limited range of numerically accessible particle numbers.

As a function of γI/|V |, the gap �(+1,+1) within the fully
symmetric sector of the Z2 symmetries shows a pronounced
minimum, which for sufficiently large N is found directly
at the transition for spin-ladder dissipation and at slightly
larger γI/|V | for m-independent dissipation and d = 4, 5.
With increasing N , the gap keeps reducing for all γI in-
vestigated, and an extrapolation from the available particle
numbers to N → ∞ at (γI/|V |, γC/|V |) = (1.8, 0.2) yields
gaps �(+1,+1) ∈ [0.207, 0.357] for spin-ladder dissipation and
�(+1,+1) ∈ [−0.006, 0.237] for m-independent dissipation.
The data thus suggest that the gap within the same sym-
metry sector might close as N → ∞, at least at the critical
point, even though this cannot clearly be confirmed from
the available finite-size data. Note that, for d = 4, 5 and

m-independent dissipation, the minimal �(+1,+1) is at slightly
larger γI/|V | than the critical point γI/|V | = 1.8. Hence, if
the gap closes directly at the critical point, then �(+1,+1) → 0
(N → ∞) also in a region directly above γI/|V | = 1.8.

As discussed at the beginning of the section, we expect
such closing of the gap �(+1,+1) if several steady states not
related by symmetry are present in the thermodynamic limit.
The latter is the case in the bistable region for m-independent
dissipation and d � 4, where the broken-symmetry and the
spin-z polarized steady states coexist in the thermodynamic
limit and where our data indeed suggest �(+1,+1) → 0 (N →
∞). Interestingly, our data are compatible with a closing
of the gap directly at the transition γI + γC = 2|V | for both
types of dissipation. If �(+1,+1) indeed vanishes there, this
means that the symmetry breaking is not the only mechanism
inducing the second-order phase transition in the LMG model
for spin-ladder dissipation, but instead it is accompanied by a
nonanalytic change of the steady state within the symmetric
sector of the Z2 symmetries. This finding is in line with
Ref. [30], where it is shown that symmetry breaking can
be removed from a second-order dissipative phase transition
without removing the transition itself.

When comparing different d in the regions where the gaps
�(+1,+1) and �(−1,+1) close as N → ∞, one finds that this
convergence to 0 is faster with increasing d . This is exem-
plified by �(+1,+1) for N = 6 and d = 3, 4, 5 [indicated in
Fig. 6(a) by the filled circles accompanying the lines], where
the minimum of the gap as a function of γI/|V | is deeper for
larger d , and it is also visible from Fig. 6(b), where �(+1,+1)

and �(−1,+1) tend to decrease with d once N is large enough.
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FIG. 7. Steady-state purity Tr[ρ2
ss] for spin-ladder (a) and m-

independent (b) dissipation, vs γC/|V | and γI/|V |, for particle
numbers N = 5 and N = 7 (rows) and single-particle dimensions
d = 2 to d = 5 (columns). The color bar is identical for all panels.
The black line indicates the mean-field critical point γI + γC = 2|V |.
Since L(i)

spin = L(i)
≡ for d = 2, 3, the two leftmost columns of panels

(a) and (b) are identical. Liouvillian dimensions [sector (p1, p2) =
(+1,+1)] range up to 30 087 (N = d = 5) and 43 186 (N = 7,

d = 4).

We can explain this finding from the fact that the dimension
of L grows with d at fixed particle numbers, which means that
for larger d the system is effectively closer to the thermody-
namic limit (where we expect the gaps to close exactly).

The spectrum thus reveals the symmetry breaking in the
interaction-dominated phase and the bistable region and hints
towards the coexistence of steady states not related by sym-
metry (in the bistable region for m-independent dissipation)
and towards a nonanalytic change of the steady state at the
second-order transition (for spin-ladder dissipation). A larger
number d of single-particle levels makes the corresponding
spectral features more prominent for finite particle numbers.

V. PURITY AND ENTANGLEMENT
IN THE STEADY STATE

To further understand the properties of the different phases
at finite N , we numerically investigate also the steady states
themselves, focusing in particular on their purity and on their
bipartite entanglement properties, which we here quantify by
the negativity [120–123]. Note that for finite N and γI = 0 our
model always hosts a unique steady state ρss [124] (provided
that all �m = 0), despite the existence of several steady states
for the interaction-dominated and bistable phases in the limit
N → ∞. The finite-size steady state therefore has to be a
mixture of the mean-field steady states.

Figure 7 shows the purity Tr[ρ2
ss] of the numerically com-

puted steady state ρss as a function of γC/|V | and γI/|V |, for
d = 2 to d = 5 and N = 5, N = 7. As γC/|V | or γI/|V | is

increased, the steady state turns from a highly mixed state
with Tr[ρ2

ss] � 1 into an almost pure state with Tr[ρ2
ss] ≈ 1,

with a drastic change directly at the phase transition. This
rise of the purity at the transition gets ever sharper as N or
d are increased. While for spin-ladder dissipation [Fig. 7(a)]
the boundary between highly mixed and approximately pure
steady states is almost exactly at γI + γC = 2|V |, it is slightly
shifted to larger γI + γC for d = 4, 5 and m-independent
dissipation [Fig. 7(b)], and this shift increases from d = 4
to d = 5. Consequently, for m-independent dissipation the
switch from a highly mixed to an almost pure steady state is
related to the transition between the bistable region and the
dissipation-dominated phase.

The observed behavior of the purity is in line with the
mean-field results: Since the unique steady state ρss for finite
N is a mixture of all the mean-field steady states, it is a
mixed state (and consequently Tr[ρ2

ss] < 1) once two or more
steady states exist in the thermodynamic limit. As discussed
in Sec. III, this is the case exactly in the interaction-dominated
and bistable phases. For the dissipation-dominated phase, the
pure state ρ = (|− j〉〈− j|)⊗N of N particles in level m = − j
can be shown to be the steady state in the exact limit V = 0,
and we can thus expect the steady state to be close to this state
(and hence to be almost pure) also for small but finite V .

Note that the mean-field assumptions of Sec. III imply that
the steady states for N → ∞ are well approximated by prod-
uct states �⊗N of identical single-particle density matrices �

for all particles, and the finite-N steady state for N � 1 is thus
approximately of the form

∑n
i=1 pi�

⊗N
i with n the number of

mean-field steady states. Hence, its purity is approximately∑n
i,k=1 pi pk Tr[�i�k]N and thus decays exponentially with N

once Tr[�i�k] < 1 for all i, k. This explains the enhanced
contrast between the dissipation-dominated and the other two
phases as N is increased.

For the sharpening with d , note that Tr[ρ2
ss] � 1/ rank ρss,

where rank ρss � dN is the rank of ρss. The rank thus yields
a rough estimate of the purity, which, however, is exact only
if 1/ rank ρss is the only nonzero eigenvalue of ρss. Since any
diagonal state in the eigenbasis of H constitutes a steady state
in the exact limit γI = γC = 0, we can expect the steady state
at small but finite dissipation to be close to such a diagonal
state over a large number of eigenstates and to thus have
almost maximal rank, rank ρss = dN , such that its purity de-
creases with d roughly as Tr[ρ2

ss] ∼ d−N . Indeed, for N and
d as in Fig. 7 and γI = γC = 0.35|V | (lower left corner of
the panels) we find dN Tr[ρ2

ss] ∈ [3.41, 14.22], i.e., the purity
deep in the interaction-dominated phase is approximately of
the order d−N .

To further reveal the impact of the dissipative phase tran-
sition on the steady state, we investigate its entanglement
negativity NA|B[ρss] with respect to bipartitions into subsys-
tems A and B of NA = �N

2 � and NB = �N
2 � particles. NA|B[ρ]

is defined as [120–123]

NA|B[ρ] =
∑

λ eigenvalue of ρTB ,
λ<0

|λ|, (17)

where ρTB is the partial transpose of ρ with respect to subsys-
tem B. Note that, due to permutation invariance, the bipartite
entanglement properties of ρss are exactly the same for all
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FIG. 8. Steady-state negativity with respect to a bipartition
into NA = (N + 1)/2 and NB = (N − 1)/2 particles, for spin-ladder
(a) and m-independent (b) dissipation, vs γC/|V | and γI/|V |, for
particle numbers N = 5 and N = 7 (rows) and single-particle di-
mensions d = 2 to d = 5 (columns). The color bar is identical for
all panels. The black line indicates the mean-field critical point
γI + γC = 2|V |. Since L(i)

spin = L(i)
≡ for d = 2, 3, the two leftmost

columns of panels (a) and (b) are identical. Liouvillian dimensions
[sector (p1, p2) = (+1, +1)] range up to 30 087 (N = d = 5) and
43 186 (N = 7, d = 4).

bipartitions with the same particle numbers NA, NB, i.e., there
is no need to distinguish them.

Figure 8 shows NA|B[ρ] for the steady state as a function
of γC/|V | and γI/|V | for N = 5, N = 7 and d = 2 to d = 5,
i.e., the same N and d as in Fig. 7. For both dissipators
and for all N and d investigated here, the negativity shows
a pronounced maximum on the dissipation-dominated side
of the phase transition, which slightly increases as a func-
tion of N . As a function of d , the negativity maximum gets
sharper—most prominently from d = 2 to d = 3—whereas
its height is rather robust against changes of d . Independently
of the ratio of γI to γC , the maximal negativity for spin-ladder
dissipation is always larger than the corresponding value for
m-independent dissipation. If one aims to prepare as much
steady-state entanglement as possible, the former type of dis-
sipation should therefore be preferred over the latter.

While such an entanglement maximum at the phase tran-
sition thus emerges for both dissipators and has in fact been
found also in other models [32,125–130], its dependence on
γI and γC is strikingly different for the two dissipators: With
spin-ladder dissipation [Fig. 8(a)] the largest negativity at the
phase transition is found for dominating collective dissipation,
while the presence of individual dissipation slightly reduces
the maximal negativity. In contrast, for m-independent dis-
sipation and d � 4 [Fig. 8(b)], the negativity maximum is
largest when γI dominates and collective dissipation actually
leads to a strong suppression of negativity. This is a surprising
result, given that individual dissipation on its own, due to

FIG. 9. Steady-state negativity for (N, d ) = (2, 4) and a biparti-
tion into NA = NB = 1, along the line γC + γI = 2.2, for spin-ladder
(red) and m-independent (blue) dissipation. Solid lines correspond
to full-system negativities, and dashed lines denote the negativity of
the restriction ρss,sym to the symmetric subspace. Insets show |ρss,sym|
in the basis |J, M〉, J = 3, 1, M = −J, . . . , J (sorted from |J, −J〉
to |J, J〉), for specific (γC, γI ) marked by stars of the same color as
depicted above each matrix. Dashed lines in the insets separate J = 3
and J = 1.

its local nature, cannot induce any entanglement, but instead
breaks entanglement after sufficiently long times [131]. (Note,
however, the model of Ref. [15], where individual dissipation
enhances entanglement on transient timescales.)

A first understanding of this surprising result might be
obtained from comparing the effects of unitary evolution and
collective dissipation on the density matrix to those of individ-
ual dissipation: Whereas H and LC are block-diagonal with
respect to the subspaces induced by permutation symmetry
(such as the symmetric subspace given by πρ = ρπ = ρ for
all permutations π ) and therefore do not mix the dynamics of
different subspaces, individual dissipation may induce tran-
sitions between these subspaces. In comparison to collective
m-independent dissipation, the dynamics induced by collec-
tive spin-ladder dissipation is even more restricted, as J− is
block-diagonal even with respect to the (smaller) subspaces
spanned by collective spin states |J, M, α〉, M = −J, . . . , J ,
where α labels different subspaces characterized by the same
collective spin quantum number J . To check the relation
between the negativity and the different structures of collec-
tive and individual dissipation, we study the simplest system
for which we expect a behavior of negativity like for d =
4, 5 in Fig. 8, i.e., N = 2 particles with d = 4 levels, and
we restrict to the specific line (γC + γI )/|V | = 2.2, which
is in the region slightly above the phase transition where
we expect the negativity maximum. As shown in Fig. 9,
for m-independent dissipation the negativity decreases with
γC like for N = 5 and N = 7 (Fig. 8), but furthermore the
negativity increases again for dominating γC outside the pa-
rameter range shown in Fig. 8. Since the restriction ρss,sym

to the symmetric subspace, ρss,sym = SρssS/ Tr[SρssS] with
S = ∑

J=3,1

∑J
M=−J |J, M〉〈J, M| here, shows qualitatively

the same behavior of negativity as the full steady state, the
essence of this phenomenon should be understandable from
investigating just ρss,sym. As shown in the (blue) insets, the
minimal negativity corresponds to strong couplings between
|J = 1, M = −1〉 and |J = 3, M〉 and a comparably large
weight on the J = 1 subspace, whereas a smaller weight on
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FIG. 10. Example of level and excitation scheme for d = 3
ground states and d + 2 = 5 excited states. The levels couple to
four cavity modes a1, a2, b1, b2 (solid lines, with labels indicating
the modes) and to a total of 6(d − 1) = 12 driving fields (dotted,
dash-dotted, and dashed lines, with driving frequencies as indicated
in the legend). For ease of visualization, the driving frequencies ω

↑
0,m,

ω
↓
0,m, ω2

−1,m−1, ω2
0,m−1 are not shown, and the modes a2, b1, b2 are

shown only for a single pair of ground-state levels. Notations are
explained in the main text.

J = 1 (smallest γC shown) as well as suppressed couplings
between |J = 1, M = −1〉 and |J = 3, M〉 (largest γC , with
even larger weight on J = 1) are both linked to a larger
negativity. Comparison with spin-ladder dissipation (shown in
Fig. 9 in red) confirms this observation: There the negativity
increases monotonously with γC and the largest negativity cor-
responds to suppressed couplings between J = 3 and J = 1
(as expected from the block-diagonal form of J−). However,
the relation between the matrix structure of ρss and the un-
usual behavior of negativity is still not fully clear, and further
research on other system sizes and also on more general dis-
sipators would be needed for a deeper understanding.

VI. PROPOSAL FOR EXPERIMENTAL
IMPLEMENTATION

To complement our theoretical study, let us briefly dis-
cuss a possible experimental realization using cavity QED,
based on ideas presented in Refs. [3,27,109,110]. The gen-
eral scheme is sketched in Fig. 10: N identical atoms
with a ground-state manifold of d = 2 j + 1 levels |m〉g at
energies ωg,m (m = − j, . . . , j) are coupled off-resonantly
to d + 2 excited-state levels |m′〉e at energies ωe,m′ (m′ =
− j − 1, . . . , j + 1), where we set h̄ = 1 for simplicity. The
existence of the additional excited-state levels m′ = ±( j + 1)
ensures that the two ground-state levels m = ± j can be cou-
pled to the excited manifold in the same way as the other
levels, and that the transition |m = 0〉g ↔ |m = 0〉e is not for-
bidden, as would be the case for identical j in both manifolds
[118,132]. The frequencies �ωg,m = ωg,m+1 − ωg,m are as-
sumed to be distinct for different m, which could be achieved,
e.g., by off-resonant driving fields coupling the ground-state
manifold to another excited-state manifold [132].

The transitions between ground and excited states are
driven off-resonantly by 6(d − 1) lasers of Rabi frequencies
�

↑
0,μ, �

↓,l
0,μ, �+1,μ, �l

−1,μ and corresponding driving

frequencies ω
↑
0,μ, ω

↓,l
0,μ, ω+1,μ, ωl

−1,μ (l = 1, 2, μ =
− j, . . . , j − 1), with polarizations such that the frequencies
with first lower index n couple only to the transitions
|m〉g ↔ |m + n〉e. Furthermore, the atomic transitions
couple off-resonantly to two pairs of cavity modes al , bl

(l = 1, 2) with frequencies ωal , ωbl , polarized such that al

(bl ) are coupled only to the |m〉g ↔ |m〉e (|m〉g ↔ |m ± 1〉e)
transitions, with coupling strengths gl

0,m (gl
±1,m).

The frequencies of driving and cavity modes are as-
sumed to fulfill the resonance conditions (l = 1, 2, m =
− j, . . . , j − 1)

ωal ≈ ωl
−1,m + �ωg,m, ωa1 + �ωg,m ≈ ω+1,m, (18a)

ωbl ≈ ω
↓,l
0,m + �ωg,m, ωb1 + �ωg,m ≈ ω

↑
0,m, (18b)

as sketched in Fig. 10, and consequently also

ω+1,m ≈ ω1
−1,m′ + �ωg,m′ + �ωg,m, (18c)

ω
↑
0,m ≈ ω

↓,1
0,m′ + �ωg,m′ + �ωg,m, (18d)

for all m, m′ = − j, . . . , j − 1.
Any combination of frequencies that is not constrained by

Eq. (18) to be in resonance is assumed to be off-resonant.
Adiabatic elimination [133] of the excited-state manifold

then yields the effective Hamiltonian

Heff =
∑

k=a1,a2,b1,b2

⎛
⎝δkk†k −

j∑
m=− j

ζk,mk†kSx;m,m

⎞
⎠

+
j∑

m=− j

εmSx;m,m −
∑

k=a1,a2,b1,b2

(Xkk + X †
k k†)

−
j−1∑

m=− j+1

(ξx,mSx;m+1,m−1 + ξy,mSy;m+1,m−1). (19)

Here, Xk = N
∑ j−1

m=− j (αk,mSx;m+1,m + βk,mSy;m+1,m ) is a su-
perposition of the operators Sx;m,n, Sy;m,n introduced in Eq. (7),
with coefficients

αal ,m = �l∗
−1,mgl

0,m

2�m
+ �l∗

+1,mgl
0,m+1

2�m+1
, (20a)

αbl ,m = �
↓,l∗
0,m gl

+1,m

2�m+1
+ �

↑,l∗
0,m gl

−1,m+1

2�m
, (20b)

βal ,m = i

(
�l∗

−1,mgl
0,m

2�m
− �l∗

+1,mgl
0,m+1

2�m+1

)
, (20c)

βbl ,m = i

(
�

↓,l∗
0,m gl

+1,m

2�m+1
− �

↑,l∗
0,m gl

−1,m+1

2�m

)
, (20d)

where �m is of the order of the detuning between the tran-
sition frequencies and the driving frequencies and where
�2

+1,m = �
↑,2
0,m = 0, consequently βa2,m = iαa2,m, βb2,m =

iαb2,m. Further details on the derivation of this equation can
be found in Appendix C, where, in Eq. (C6), also the other
parameters of Heff are defined.

The full system dynamics, including the decay of the cavity
modes with dissipation rates κk (k = a1, a2, b1, b2) but ne-
glecting individual dissipation for simplicity, is then described
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by the master equation

ρ̇full = − i[Heff, ρfull]

+
∑

k=a1,a2,b1,b2

κk (2kρfullk
† − {k†k, ρfull}). (21)

Assuming that the dynamics of the cavity modes alone is
much faster than the coupled dynamics of atoms and modes
according to Eq. (21) (bad cavity limit), we can adiabatically
eliminate the cavity modes [134] (for details see Appendix C)
and arrive at the following master equation for just the atomic
density matrix ρ = Trphotons[ρfull]:

ρ̇ = − i[H, ρ] +
∑

k=a1,a2,b1,b2

κk

κ2
k + δ2

k

(2X †
k ρXk − {XkX †

k , ρ})

(22)

with

H =
j∑

m=− j

εmSx;m,m −
∑

k=a1,a2,b1,b2

δk

κ2
k + δ2

k

XkX †
k

−
j−1∑

m=− j+1

(ξx,mSx;m+1,m−1 + ξy,mSy;m+1,m−1). (23)

Note that terms ∼k†kSx;m,m vanish in this limit, since the
adiabatic elimination here effectively corresponds to an empty
cavity.

By choosing Rabi frequencies, driving frequencies, and
mode frequencies such that

(1) εm is independent of m and can thus be discarded
(2) |δa1 | � κa1 , |δb1 | � κb1 and the corresponding contri-

bution to dissipation is hence negligibly small
(3) −δa1/(δ2

a1
+ κ2

a1
) = δb1/(δ2

b1
+ κ2

b1
) = ω−2

c V/(N j),
αa1,m = βb1,m = Aj,mωc, βa1,m = αb1,m = 0 with an arbitrary
constant nonzero frequency ωc

(4) αa2,m = �∗
m[γC (κ2

a2
+ δ2

a2
)/N jκa2 ]1/2/2 and αb2,m =

�∗
m[γC (κ2

b2
+ δ2

b2
)/N jκb2 ]1/2/2

(5) δa2/κa2 = −δb2/κb2 and
(6) ξx,m = ξy,m = 0,

this effective model is identical to Eq. (3), except for the in-
dividual dissipation that we neglected here. Since αa2,m, αb2,m

can be tuned independently for each m, we can freely choose
�m (within the ranges given by the accessible Rabi frequen-
cies and detunings) and hence implement arbitrary collective
dissipators LC . Note that one might need to introduce further
driving fields in order to jointly fulfill conditions 3 and 6.

As an example, we consider the transition between the
5S1/2, F = 2 and 5P3/2, F ′ = 3 hyperfine manifolds in 87Rb,
which has recently been employed as an experimentally ac-
cessible model system for the effects of multilevel systems on
collective atom-cavity couplings [45]. We assume the driving
frequencies to be larger than the transition frequencies by � ≈
1 GHz, a magnetic field of 5 mT providing Zeeman splittings
of 35 MHz, N ≈ 104 atoms like in Ref. [45], cavity decay
rates κk ≈ 10 kHz (compare Ref. [135], k = a1, a2, b1, b2),
and coupling constants g ≈ 210 kHz (compare Ref. [45]).
The coupling constants of each transition |m〉g ↔ |n〉e are
then given as gcm,n, where cm,n is a Clebsch-Gordan coeffi-
cient [132]. By off-resonantly driving the transition between

5S1/2, F = 2 and 5P1/2, F ′ = 1, the level distances �ωg,m are
modified by few MHz and become distinct for different m.
Furthermore, by tuning the offsets between driving frequen-
cies and mode frequencies, we set δal = −δbl = 102.9 kHz �
κal , κbl (l = 1, 2). Choosing Rabi frequencies �1

−1,μ=−2 =
6 MHz, �2

−1,μ=−2 = �
↓,2
0,μ=−2 = 50 MHz and appropriately

adjusting the other Rabi frequencies in a range between
≈4 MHz and ≈50 MHz to fulfill conditions 3 and 4
(with LC = J− or LC = ∑N

i=1 L(i)
≡ ), we obtain the interaction

strength |V | ≈ 12.7 kHz and the collective dissipation rate
γC ≈ 25.8 kHz ≈ 2|V |. By tuning the Rabi frequencies from
that configuration, one can then access the interaction- and
dissipation-dominated regimes γC < 2|V | and γC > 2|V |.

VII. CONCLUSIONS

We have thoroughly investigated a d-level generalization
of the dissipative LMG model with individual and collective
decay in the mean-field limit of infinite particle numbers and
numerically for finite system sizes. For any number of levels
d , a dissipative phase transition has been identified as a func-
tion of interaction and dissipation, encompassing in particular
the case of qubits studied earlier [13,94]. The two phases are
a symmetric, spin-z polarized phase and a phase of broken
symmetry, which hosts two static steady states in the presence
of individual dissipation and an infinite number of oscillatory
solutions in the case of only collective dissipation.

Under suitable parameter scaling, the position of the
critical point can be made identical for all numbers d of
single-particle levels and independent of the exact form of the
dissipators. However, as d increases, the critical exponents
characterizing the behavior of spin expectation values at the
phase transition reduce towards 0. Furthermore, when d � 4
and the decay rates between adjacent single-particle levels
|m〉 and |m + 1〉 are identical for all m, the critical point
transforms into a bistable region, in which both phases are
present.

The numerically computed spectrum of the Liouvillian
confirms the existence of the phase transition and the sponta-
neous symmetry breaking accompanying it: At the transition
to the broken-symmetry phase, the associated gap in the Liou-
villian spectrum closes and remains closed within that phase.
In addition, the bistable region is signaled by a vanishing gap
in the Liouvillian spectrum of the symmetric subspace (with
respect to the model’s Z2 symmetries).

The purity of the steady state reveals that the two
phases can be characterized as almost pure (spin-z polarized
phase) and highly mixed (broken-symmetry phase), where the
bistable region is found to belong to the highly mixed phase.
As with other open systems [32,125–130], the dissipative
phase transition is accompanied by a maximum of steady-
state entanglement. Surprisingly, the interplay of individual
and collective terms can lead to stronger entanglement than
collective terms alone, an effect that is present only for d � 4.

We have thus found that the d-level generalization of the
dissipative LMG model not only allows for a richer phase dia-
gram, with a bistable region not present in the two-level case,
but also for changed effects of dissipation onto steady-state
entanglement (as compared to d = 2). In particular this last
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point would deserve further investigation in future research.
Understanding in detail the reasons for the suppression and
enhancement of entanglement by the individual or collective
nature of dissipation could lead to new schemes of prepar-
ing entangled steady states. Furthermore, as spin squeezing
is related to entanglement [11], it might show a similar
dependence on individual and collective dissipation as the en-
tanglement negativity investigated in this work. Consequently,
individual dissipation could, for particular dissipators, ease
the preparation of spin-squeezed steady states, a finding that
could widely be applied in the context of quantum metrology.
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APPENDIX A: MEAN-FIELD EQUATIONS OF MOTION

When the time evolution of the density matrix ρ is given
by Eq. (3), the expectation value 〈O〉 = Tr[Oρ] of a time-
independent Hermitian operator O evolves according to

d〈O〉
dt

= i〈[H, O]〉 + γI

2 j

N∑
i=1

〈[(L(i) )†, O]L(i) + H.c.〉 + γC

2N j
〈[L†

C, O]LC + H.c.〉, (A1)

where H.c. stands for the Hermitian conjugate of the preceding term, i.e., for ([(L(i) )†, O]L(i) )† = (L(i) )†[O, L(i)] and
([L†

C, O]LC )† = L†
C[O, LC] here. Applying the commutation relations

−2iN[Sx;m,n, Sx;o,p] = δn,oSy;m,p + δn,pSy;m,o + δm,oSy;n,p + δm,pSy;n,o, (A2a)

−2iN[Sy;m,n, Sy;o,p] = −δn,oSy;m,p + δn,pSy;m,o + δm,oSy;n,p − δm,pSy;n,o, (A2b)

−2iN[Sx;m,n, Sy;o,p] = −δn,oSx;m,p + δn,pSx;m,o − δm,oSx;n,p + δm,pSx;n,o (A2c)

to the unitary part yields

i[H, Sx;m,n] = V

2 j

({
Jx

N
,A y;mn

+1,+1

}
+
{

Jy

N
,A x;mn

−1,−1

})
, (A3a)

i[H, Sy;m,n] = V

2 j

({
Jy

N
,A y;mn

−1,+1

}
−
{

Jx

N
,A x;mn

+1,−1

})
, (A3b)

where we defined the short-hand notation

A α;mn
σ1,σ2

= Aj,n−1Sα;m,n−1 + σ1σ2Aj,m−1Sα;n,m−1 + σ1Aj,nSα;m,n+1 + σ2Aj,mSα;n,m+1 (A4)

and used that Jx/N = ∑ j−1
m=− j A j,mSx;m+1,m and Jy/N = ∑ j−1

m=− j A j,mSy;m+1,m. Similarly, expressing LC as LC =
N
∑ j−1

m=− j �m(Sx;m+1,m − iSy;m+1,m ) and applying the commutation relations gives

[L†
C, Sx;m,n]LC + H.c. = N

2

j−1∑
o=− j

(−{Ry;mno
+1,+1 + I x;mno

−1,−1, Sy;o+1,o
}− {

Rx;mno
−1,−1 − I y;mno

+1,+1, Sx;o+1,o
}

+ i
[
Rx;mno

−1,−1 − I y;mno
+1,+1, Sy;o+1,o

]− i
[
Ry;mno

+1,+1 + I x;mno
−1,−1, Sx;o+1,o

])
, (A5a)

[L†
C, Sy;m,n]LC + H.c. = N

2

j−1∑
o=− j

(−{Ry;mno
−1,+1 + I x;mno

+1,−1, Sx;o+1,o
}+ {

Rx;mno
+1,−1 − I y;mno

−1,+1, Sy;o+1,o
}

+ i
[
Rx;mno

+1,−1 − I y;mno
−1,+1, Sx,o+1,o

]+ i
[
Ry;mno

−1,+1 + I x;mno
+1,−1, Sy;o+1,o

])
. (A5b)

Here we introduced the short-hand notations

Rα;mno
σ1,σ2

= Re[�∗
n−1�o]Sα;m,n−1 + σ1σ2 Re[�∗

m−1�o]Sα;n,m−1 + σ1 Re[�∗
n�o]Sα;m,n+1 + σ2 Re[�∗

m�o]Sα;n,m+1, (A6a)

I α;mno
σ1,σ2

= Im[�∗
n−1�o]Sα;m,n−1 + σ1σ2 Im[�∗

m−1�o]Sα;n,m−1 + σ1 Im[�∗
n�o]Sα;m,n+1 + σ2 Im[�∗

m�o]Sα;n,m+1. (A6b)

For the individual dissipators, note that

[|o + 1〉i〈o|i, Sx;m,n] = δo,m

2N
|o + 1〉i〈n|i + δo,n

2N
|o + 1〉i〈m|i − δo+1,n

2N
|m〉i〈o|i − δo+1,m

2N
|n〉i〈o|i, (A7a)

[|o + 1〉i〈o|i, Sy;m,n] = δo,m

2iN
|o + 1〉i〈n|i − δo,n

2iN
|o + 1〉i〈m|i − δo+1,n

2iN
|m〉i〈o|i + δo+1,m

2iN
|n〉i〈o|i. (A7b)
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Inserting these expressions into [(L(i) )†, Sα;m,n]L(i) with α = x, y and summing over i yields

N∑
i=1

[(L(i) )†, Sx;m,n]L(i) + H.c. = 2

(
Re[�∗

m�n]Sx;m+1,n+1 − Im[�∗
m�n]Sy;m+1,n+1 − |�n−1|2 + |�m−1|2

2
Sx;m,n

)
, (A8a)

N∑
i=1

[(L(i) )†, Sy;m,n]L(i) + H.c. = 2

(
Re[�∗

m�n]Sy;m+1,n+1 + Im[�∗
m�n]Sx;m+1,n+1 − |�n−1|2 + |�m−1|2

2
Sy;m,n

)
. (A8b)

Since the commutator [Sα;m,n, Sβ;o,p] vanishes as N → ∞
[compare Eq. (A2)], we can treat the S operators as real
numbers in the limit N → ∞. In particular we approximate
〈{Sα;m,n, Sβ;o,p}〉 ≈ 2〈Sα;m,n〉〈Sβ;o,p〉 and consequently also〈{

Jα

N
,A β;mn

σ1,σ2

}〉
≈ 2

〈Jα〉
N

〈
A β;mn

σ1,σ2

〉
, (A9a)

〈{
Rα;mno

σ1,σ2
, Sβ,o+1,o

}〉 ≈ 2
〈
Rα;mno

σ1,σ2

〉〈Sβ,o+1,o〉, (A9b)〈{
I α;mno

σ1,σ2
, Sβ,o+1,o

}〉 ≈ 2
〈
I α;mno

σ1,σ2

〉〈Sβ,o+1,o〉, (A9c)

while we set all commutators to 0. This yields a closed set
of differential equations for 〈Sα;m,n〉, with two quadratic terms
stemming from the unitary time evolution and from the col-
lective dissipation [ fα;m,n and hα;m,n in Eq. (9)], and a linear
term due to the individual dissipation [gα;m,n in Eq. (9)].

APPENDIX B: FIXED POINTS AND THEIR STABILITY

Simple fixed points of the mean-field equations derived in
the preceding Appendix can be found by individually setting

each contribution (unitary part, individual and collective dissi-
pation) to 0. When γI = 0, the individual dissipation vanishes
only if 〈Sx;m,n〉 = 〈Sy;m,n〉 = 0 for all m, n = − j, . . . , j with
�m−1 = 0 or �n−1 = 0. This can be seen by an induction over
n, starting from n with �n = 0 (e.g., n = j). For the most
general form of L(i), thus only 〈Sx;− j,− j〉 and 〈Sy;− j,− j〉 are
allowed to be nonzero. Noting that 〈Sy;− j,− j〉 = 0 by definition
and that the normalization condition

∑ j
m=− j〈Sx;m,m〉 = 1 fixes

〈Sx;− j,− j〉 = 1, one obtains exactly the spin-z polarized steady
state defined in Eq. (12). It is easy to see that this choice of
〈Sα;m,n〉 also makes the unitary part and the collective dissipa-
tion vanish and thus constitutes a fixed point for all values of
d,V, γI , γC , and L(i).

To study the stability of a fixed point s, one computes
the eigenvalues of the Jacobian matrix J (s) [114,115], i.e.,
the matrix of partial derivatives J α;m,n

β;o,p (s) = ∂Fα;m,n

∂〈Sβ;o,p〉 (s) at s,
where Fα;m,n(〈Sβ;o,p〉) = V fα;m,n(〈Sβ;o,p〉)+γI gα;m,n(〈Sβ;o,p〉)+
γChα;m,n(〈Sβ;o,p〉) is the right-hand side of Eq. (9). After
eliminating 〈Sx;− j,− j〉 via the condition

∑ j
m=− j〈Sx;m,m〉 = 1,

one obtains for the spin-z polarized steady state

J x;m,n
x;o,p (s) = −γC

2 j
Re[�∗

− j�p]δo,p+1δ− j+1,mδ− j,n + γI

j

(
Re[�∗

m�n]δm+1,oδn+1,p − |�m−1|2 + |�n−1|2
2

δm,oδn,p

)
, (B1a)

J x;m,n
y;o,p (s) =

(
VAj,pA j,− j

j
− γC

2 j
Im[�∗

− j�p]

)
δo,p+1δ− j+1,mδ− j,n − γI

j
Im[�∗

m�n]δm+1,oδn+1,p, (B1b)

J y;m,n
x;o,p (s) =

(
VAj,pA j,− j

j
+ γC

2 j
Im[�∗

− j�p]

)
δo,p+1δ− j+1,mδ− j,n + γI

j
Im[�∗

m�n]δm+1,oδn+1,p, (B1c)

J y;m,n
y;o,p (s) = −γC

2 j
Re[�∗

− j�p]δo,p+1δ− j+1,mδ− j,n + γI

j

(
Re[�∗

m�n]δm+1,oδn+1,p − |�m−1|2 + |�n−1|2
2

δm,oδn,p

)
. (B1d)

When the rows and columns of J (s) are sorted into groups of identical m − n or o − p, respectively, within which the respective
index m or o increases monotonically, the Jacobian matrix is triangular except for a block of size 2 × 2, which reads⎛

⎝−|�− j |2(γI +γC )
2 j 2V

2V −|�− j |2(γI +γC )
2 j

⎞
⎠, (B2)

and thus has eigenvalues −(|�− j |2(γI + γC ))/(2 j) ± 2V . The
other eigenvalues of J (s) are the remaining diagonal el-
ements: the −1 + d (d − 1)/2 doubly degenerate values
−γI (|�m−1|2 + |�n−1|2)/2 j, with m = − j + 2, . . . , j, n =
− j, . . . , m − 1, �− j−1 = 0, and the d − 1 nondegenerate val-
ues −γI |�m−1|2/ j, with m = − j + 1, . . . , j. For |�− j |2(γI +
γC ) > 4 j|V |, all eigenvalues are negative and the spin-z-
polarized steady state is thus a stable fixed point, whereas for
|�− j |2(γI + γC ) < 4 j|V | one of the eigenvalues in the 2 × 2

block becomes positive and consequently the fixed point be-
comes unstable.

From Eqs. (A3) and (A5), it is clear that the unitary part and
the collective dissipation vanish also at any other point that
fulfills 〈Sx;m+1,m〉 = 〈Sy;m+1,m〉 = 0 for all m = − j, . . . , j −
1. Consequently, each such point is a fixed point for γI =
0. This includes, for instance, the diagonal states, where
only the terms 〈Sx;m,m〉, m = − j, . . . , j, are allowed to be
nonzero. The Jacobian at such a diagonal state reads, with
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Sn = 〈Sx;n+1,n+1〉 − 〈Sx;n,n〉,
J x;m,n

x;o,p (s) = γC

2 j
Re[�∗

n�p]Snδo,p+1δm,n+1, (B3a)

J x;m,n
y;o,p (s) =

(
−VAj,pA j,n

j
+ γC

2 j
Im[�∗

n�p]

)
Snδo,p+1δm,n+1,

(B3b)

J y;m,n
x;o,p (s) = −

(
VAj,pA j,n

j
+ γC

2 j
Im[�∗

n�p]

)
Snδo,p+1δm,n+1,

(B3c)

J y;m,n
y;o,p (s) = γC

2 j
Re[�∗

n�p]Snδo,p+1δm,n+1, (B3d)

i.e., it vanishes except for a block of dimension 2(d − 1) ×
2(d − 1). To get a basic understanding of the stability cri-
teria for these states, we study a simple diagonal state with
〈Sx;m+1,m+1〉 = 〈Sx;m,m〉 for m = − j, . . . , j − 1 except for one
specific m = m0. The Jacobian has then only two nonzero
eigenvalues, which read

Sm0

2 j

(∣∣�m0

∣∣2γC ± 2A2
j,m0

|V |). (B4)

This diagonal state is thus stable if and only if Sm0 < 0 (which
is equivalent to 〈Sx;m0+1,m0+1〉 < 〈Sx;m0,m0〉) and |�m0 |2γC >

2A2
j,m0

|V |, i.e., a similar stability criterion as for the spin-z
polarized state, but with dependence on �m0 instead of �− j . For
more general diagonal states, where the Jacobian is a function
of �m and Sm for all m, we expect also the stability to depend
on all the �m and Sm.

As discussed in Sec. III, further fixed points may in gen-
eral emerge, for which the unitary part and the collective
and individual dissipation do not vanish separately and the
fixed points depend explicitly on L(i), V , γC and γI . For
d = 2, these fixed points can be found analytically and are
given in Sec. III A. The corresponding eigenvalues of the
Jacobian matrix for γI = 0 are −(4|V |γI )/(2|V | − γC ) and
−γI ± √

γI (5γI + 4γC − 8|V |), whose real part is negative as
long as γI + γC < 2|V | and turns positive for (at least) one
eigenvalue when γI + γC > 2|V |. Hence, these fixed points
are stable exactly for γI + γC < 2|V |, which is also the range
of parameters for which the corresponding values of 〈Jα〉,
α = x, y, are real and thus physically meaningful. For γI = 0,
the eigenvalues of the Jacobian matrix are ±

√
2γ 2

C − 8V 2

(note that there are only two eigenvalues due to the condition
X 2 + Y 2 + Z2 = 1), which are imaginary for γC < 2|V | and

one of which becomes positive for γC > 2|V |. The corre-
sponding fixed points are thus centers for γC < 2|V |, which
is, again, also the range of physically meaningful values of
〈Jα〉, α = x, y, and they are unstable for γC > 2|V |. For d > 2,
these fixed points and their stability are calculated numeri-
cally, as described in Sec. III B.

APPENDIX C: DETAILS OF THE EXPERIMENTAL
PROPOSAL

As sketched in Fig. 10, we consider N identical atoms
labeled by i = 1, . . . , N , with d ground states at energies ωg,m

(m = − j, . . . , j) and d + 2 excited states at energies ωe,m

(m = − j − 1, . . . , j + 1), coupled via 6(d − 1) driving fields
and four cavity modes. We first move into the interaction
picture with respect to the Hamiltonian

H0 =
N∑

i=1

⎡
⎣ j∑

m=− j

ω′
g,m|m〉g,i〈m|g,i +

j+1∑
m=− j−1

ω′
e,m|m〉e,i〈m|e,i

⎤
⎦

+
∑

k=a1,a2,b1,b2

ω′
kk†k, (C1)

where ω′
g,m and ω′

k are energies close to ωg,m and ωk , respec-
tively, chosen such that

ω′
al

− ωl
−1,m = ω′

bl
− ω

↓,l
0,m

= ω′
g,m+1 − ω′

g,m

(l = 1, 2) (C2)

and

ω
↑
0,m − ω

↓,1
0,m′ = ω+1,m − ω1

−1,m′

= ω′
g,m+1 + ω′

g,m′+1 − ω′
g,m − ω′

g,m′ (C3)

for all m, m′ = − j, . . . , j − 1. The energy difference ω′
e,m −

ωg,m (for m = ±( j + 1), the difference ω′
e,±( j+1) − ωg,± j) is

of the order of the driving frequencies, and we assume that
�m = ωe,m − ω′

e,m is much larger than the Rabi frequencies,
the coupling strengths and the energy differences ωg,m −
ω′

g,m and ωk − ω′
k (m = − j, . . . , j, k = a1, a2, b1, b2). With

a rotating-wave approximation, the Hamiltonian in the inter-
action picture is then

H = Ha + Hph + Ha-ph + Hd, (C4a)

with

Ha =
N∑

i=1

⎛
⎝ j∑

m=− j

(ωg,m − ω′
g,m)|m〉g,i〈m|g,i +

j+1∑
m=− j−1

�m|m〉e,i〈m|e,i

⎞
⎠, (C4b)

Hph =
∑

k=a1,a2,b1,b2

(
ωk − ω′

k

)
k†k, (C4c)

Ha-ph =
N∑

i=1

j∑
m=− j

∑
l=1,2

[ei(ω′
e,m−ω′

g,m−ω′
al

)t gl
0,mal |m〉e,i〈m|g,i + ei(ω′

e,m+1−ω′
g,m−ω′

bl
)t gl

+1,mbl |m + 1〉e,i〈m|g,i

+ ei(ω′
e,m−1−ω′

g,m−ω′
bl

)t gl
−1,mbl |m − 1〉e,i〈m|g,i] + H.c., (C4d)
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Hd =
N∑

i=1

j∑
m=− j

j−1∑
m′=− j

⎡
⎣ei(ω′

e,m−ω′
g,m )t
(
�

↑
0,m′e

−iω↑
0,m′ t + �

↓,1
0,m′e

−iω↓,1
0,m′ t + �

↓,2
0,m′e

−iω↓,2
0,m′ t
)

2
|m〉e,i〈m|g,i

+ �+1,m′ei(ω′
e,m+1−ω′

g,m−ω+1,m′ )t

2
|m + 1〉e,i〈m|g,i + ei(ω′

e,m−1−ω′
g,m )t
(
�1

−1,m′e
−iω1

−1,m′ t + �2
−1,m′e

−iω2
−1,m′ t

)
2

|m − 1〉e,i〈m|g,i
]

+ H.c., (C4e)

where H.c. is the Hermitian conjugate.

Since �m is much larger than the other frequencies, the
excited states are only populated virtually. We can thus restrict
to the subspace of maximally one excitation and adiabati-
cally eliminate the excited-state manifold [133]. With P and
Q being the projectors onto the subspaces of zero and one
excitation, respectively, adiabatic elimination corresponds to
the effective ground-state Hamiltonian

Heff = PHP − PHQ(QHQ)−1QHP, (C5)

with (QHQ)−1 ≈ ∑N
i=1

∑ j+1
m=− j−1 �−1

m |m〉e,i〈m|e,i (neglecting
small contributions to QHQ from the cavity modes and the
ground states). Inserting our specific model and neglecting
any off-resonant contributions according to Eq. (18) yields
Eq. (19) with αk , βk given in Eq. (20) and further parameters

δk = ωk − ω′
k − Nδ+

k , (C6a)

δ+
al

= 1

d

j∑
m=− j

∣∣gl
0,m

∣∣2
�m

, (C6b)

δ+
bl

= 1

d

j∑
m=− j

(∣∣gl
+1,m

∣∣2
�m+1

+
∣∣gl

−1,m

∣∣2
�m−1

)
, (C6c)

ζal ,m

N
=
∣∣gl

0,m

∣∣2
�m

− δ+
al
, (C6d)

ζbl ,m

N
=
∣∣gl

+1,m

∣∣2
�m+1

+
∣∣gl

−1,m

∣∣2
�m−1

− δ+
bl
, (C6e)

εm

N
= (ωg,m − ω′

g,m)

−
j−1∑

m′=− j

⎛
⎝ |�↑

0,m′ |2 + ∣∣�↓,1
0,m′
∣∣2 + ∣∣�↓,2

0,m′
∣∣2

4�m

+ |�+1,m′ |2
4�m+1

+
∣∣�1

−1,m′
∣∣2 + ∣∣�2

−1,m′
∣∣2

4�m−1

)
, (C6f)

ξx,m = ξm + ξ ∗
m, ξy,m = i(ξm − ξ ∗

m), (C6g)

ξm

N
= �1∗

−1,m−1�+1,m + �1∗
−1,m�+1,m−1

4�m
. (C6h)

Note that the coupling strengths are typically given as gl
0,m =

gal cm,m, gl
±1,m = gbl cm,m±1 with Clebsch-Gordan coefficients

cm,n [132] and thus all have a similar magnitude given by gal or
gbl , respectively. Hence, if we also assume that �m ≈ �m′ for
all m, m′ = − j − 1, . . . , j + 1, the averages |δ+

k | are typically
larger than the deviations |ζk,m|/N from these averages.

To adiabatically eliminate the cavity modes in the regime,
where the dynamics of the cavity alone is much faster than the
coupled atom-cavity dynamics, we follow Ref. [134]: For our
model, the Liouville operator of the full system can be writ-
ten as L = Lphotons + εLatoms + εLint with Liouville operators
Lphotons, Latoms and Lint acting on just the photons, just the
atoms and the joint system, respectively, and ε � 0 (here, e.g.,
ε = (

∑
k δ2

k + κ2
k )−1/2, after an appropriate rescaling of the

time, t �→ t/ε). Then the full density matrix ρfull and the time
evolution of the reduced density matrix ρ can be expanded
as ρfull = ∑∞

n=0 εnKn[ρ], ρ̇ = ∑∞
n=1 εnLn[ρ], where Kn, Ln

are linear time-independent superoperators. The zeroth order
yields Lphotons[K0[ρ]] = 0, which is here solved by K0[ρ] =
ρ ⊗ ρvac, where ρvac is the vacuum state of the cavity. The first
order gives

L1[ρ] = Latoms[ρ] + Trphotons Lint[ρ ⊗ ρvac]

= Latoms[ρ], (C7)

Lphotons[K1[ρ]]

= −Lint[ρ ⊗ ρvac]

= −i
∑

k=a1,a2,b1,b2

(X †
k ρ ⊗ k†ρvac − ρXk ⊗ ρvack). (C8)

Equation (C8) can be solved towards K1 using an ansatz
K1[ρ] = ∑

k=a1,a2,b1,b2
(σkX †

k ρ ⊗ k†ρvac + τkρXk ⊗ ρvack),
yielding coefficients σk = τ ∗

k = (iκk + δk )/(κ2
k + δ2

k ). Using
that Trphotons K1[L1[ρ]] = Trphotons Latoms[K1[ρ]] = 0, the
second order becomes

L2[ρ] = Trphotons Lint[K1[ρ]]

= i
∑

k=a1,a2,b1,b2

δk

κ2
k + δ2

k

[XkX †
k , ρ]

+
∑

k=a1,a2,b1,b2

κk

κ2
k + δ2

k

(2X †
k ρXk − {XkX †

k , ρ}),

(C9)

which together with the first order gives Eq. (22) (after undo-
ing the rescaling of time, t �→ εt).
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