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Passive and active microwave remote sensing for soil moisture
Radiative transfer modelling in microwave radiometry

Soil roughness and vegetation effects on radar signal
Vegetation water content retrieval

Microwave, multispectral and hyperspectral data analysis

Land surface modelling and climate change

Drought monitoring using SIF remote sensing

UAS for mapping and monitoring of agro and forest ecosystems
(multispectral, thermal, and LiDAR)

Remote Sensing for Hydrology

Integrated Water Resources Management
Photogrammetry and GNSS

Smart Technologies in Environmental Engineering
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Research activities in Remote Sensing

o Earth system parameter retrieval by muti-scale and
multi-sensor data integration

o Remote sensing of water in soils and vegetation 'i||“|‘li""*;‘r'-- N

o Monitoring of extreme events (forest fires, floods, heat o
waves, drought)

o Ecosystem health monitoring (photosynthetic activity —
and GPP mapping, water/carbon fluxes estimation) ‘/

o Forest biomass and structure mapping

o Permafrost and peatland monitoring

o UAV and SmallSat remote sensing

My Research Interest
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Abstract. With a changing climate, it is becoming increas-
ingly critical to understand vegetation responses to limiting
environmental factors. Here, we investigate the spatial and
temporal patterns of light and water limitation on photosyn-
thesis using an observational framework. Our study is unigue
in characerizing the nonlinear relationships betwesn photo-
synthesis and water and light. acknowladging approximately
two regime behaviours (no limitation and varying degrees of
limitation). It is also unigue in using an observational frame-
work instzad of using model-derived photosynthesis proper-
tizs. We combine data from three different satellite s2nsors,
i.e., sun-induced chlorophyll flucrescence (SIF) from the
TROPORnheric Monitorine Insfriment (TROPOMIY surfacse

the two regimes is connected to seil type and mean annual
precipitation for the SIF-soil moisture relationship and for
the SIF-PAR relationship. These thresholds therefore have
an explicit relation to properties of the landscape, although
they may also be related to finer details of the vegetation
and soil interactions not resolved by the spatial scales here,
The simple functions and thresholds are emergent behaviours
capluring the inieraction of many processes. The observa-
tional thresholds and strength of coupling can be used as
benchmark information for Earth sysiem models, especially
those that characterize gross primary production mechanisms
and vegefation dynamics.
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Observed Water- and Light-Limitation
across Global Ecosystems

Vegetation plays a large role in the Earth’s system, modulating
land-atmosphere exchanges of water, carbon, and energy.

With a changing climate, it is becoming increasingly critical to
understand vegetation responses to limiting environmental factors.

These change-induced factors that affect vegetation productivity
have impacts on global carbon budgets and food security.

Understanding how climatic factors create limitations is essential
for predicting and validating terrestrial ecosystem productivity
responses in Earth system models.




Observed Water- and Light-Limitation
across Global Ecosystems

The objective is to look at environmental factors -> water and light availability
that limit surface water and carbon exchanges over vegetated areas -> photosynthetic activity

Observations-Driven Approach to Diagnose Water- and Light limitation

o Photosynthetic activity - TROPOMI Sun-Induced chlorophyll Fluorescence (SIF)

o Soil water availability - SMAP Soil Moisture (SM)

o Light availability - MERRA-2 Photosynthetic Active Radiation (PAR)




“PHOTOSYNTHESIS”

PhOtosyntheS|S |S at the WATER + LIGHT = CHEMICAL ENERGY

| CHEMICAL ENERGY + CARBON DIOXIDE = SUGAR

intersection of water o=

co,
}jl;'o Stomatal
and carbon cycles E=
" H.O | ADP + NAPD.+ | Mesophyil
‘A 2 conductance
e Plants pump up water e
p' p p 0. A oo nums{o\. Plant
from soil to do : efficiency [T water
p h oto Sy Nt h es | S CARBOHYDRATES k\ potential
. Xylem axial
* Drought stress increases Son conductivit
leaf resistance, slowing potente —
down photosynthesis conductivty | /)
: Soll water O o
« Subsequent change in the availabilty ‘f. i
light reactions of W0

photosynthesis e



Chlorophyll fluorescence, a signal from the heart
of photosynthesis e <>

in case healthy and well-watered plant
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Chlorophyll fluorescence, a signal from the heart
of photosynthesis

Instantaneous stress Accumulated stress

,(;—ﬂ/

Classic methods (like NDVI) observe the
damage caused by the stress

SIF can detect early/instantaneous stress

o Early detection of plant water stress not detected using reflectance methods

o Better understanding of the links between the water and carbon cycle



Spaceborne remote sensing of SIF

o Fluorescence can be measured with remote sensing in the solar and Earth’s atmospheric absorption
lines (Fraunhofer lines)

o Atmospheric oxygen and solar absorption lines facilitate the retrieval of the weak fluorescence signal
from the surface reflectance

o Very-high spectral resolution (< 0.1nm) in the red/far-red part of the visible spectrum (680 and 760 nm)
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Spaceborne remote sensing of SIF

Fluorescence at global scale

o Average instantaneous passive chlorophyll fluorescence
observations at 740 nm for August 2018

o Up to now, global retrievals of fluorescence from space
have only been achieved from spaceborne spectrometers
designed to monitor atmospheric trace gases

o Sentinel 5P-TROPOMI:
*  Observation period: Oct. 2017 — present
* Repeat cycle: 16d (1d for global mapping)
* Spatial resolution: 7x7 km
* Overpass time: 13:30
* Spectral resolution: 0.5 nm
* SIF spectral range: 675—-775 nm

Jonard F. et al. Agric. For. Meteorol. 2020



Spaceborne remote sensing of SIF

Fluorescence at global scale
o The 8th Earth Explorer of ESA

o Planned launch date: 2025

o Direct measurements of vegetation fluorescence
at 300 x 300 meters every 10-25 days

ESA FLuorescence EXplorer (FLEX)
satellite mission




Sensing water in soils and vegetation

o Soil and vegetation water content can be retrieved from passive L-band microwave radiations

o Soil roughness, vegetation structure, and soil organic content influence microwave radiations
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Passive microwave remote sensing of
Soil Moisture

Frequent-revisit global mapping of soil moisture

SMAP Soil Moisture 8-day Composite (May 28 — June 4, 2019)

N!J;h Jet Propulsion Laboratory
California Institute of Technelogy

o Estimate global water and energy fluxes at the land surface

o Enhance weather and climate forecast skill

o Improve drought/flood prediction NASA Soil Moisture Active and Passive
(SMAP) satellite




Growing season determination
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(a,b) Pixel in the US Corn Belt region; (c,d) Pixel in southern Africa (Zimbabwe)

How to define the active growing season
(primary water and energy interactions with
the carbon cycle)?

Estimation of the peak of the NDVI
climatology and the green up and brown
down times, i.e., when NDVI reaches 50%
before and after the peak.
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Correlation maps
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SIF-SM shows large regions of water limitation
SIF-PAR shows large regions of light limitation



SIF

SIF

Regime classification

So far, we looked at rate limitation by looking at linear correlations

Are there regimes where the rate limitation stops?

Linear model
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Latitude

Latitude

Spatial distribution of the model type and model slope
(MW m2nm?srl)in the water-limited regime

Where are the water-limited regimes?
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widespread nonlinearity of the soil moisture controls on vegetation.

o Highest slope values in the Sahel region, India, the Mekong basin, eastern
Brazil, ... where a small incremental increase in soil moisture corresponds

to a large increase in vegetation productivity.



Where are the light-limited regimes?

o - »= | | Nolight limitation
s, N _ i3 A w . . 150
2 e, Two-regime light limited 60 [
'E:I' Y Al e ]
4 N { o %o 100
Y N Light-limited % |
: ; 4 50
180 90 0 90 180 30}
Longitude
-60 0
T >0.015 -180
N T Longitude
5 ik | 0.01 Spatial distribution of the model threshold (W m2)
e (]
g SN o Many regions of the Northern Hemisphere with a light limitation regime
LN 0,005 (e.g., southern Canada, the western US, western and central Russia).
! Several regions identified as having a break point between two regimes
] - ' 0 of light limitation (e.g., western Europe)
-180 -90 0 90 180
Longitude . . . . .
o Highest slope values in the midlatitudes (Great Lakes regions of North
Spatial distribution of the model type and model slope America, most of Europe, southern Russia, ...). A large proportion of

(103 nm™ sr) in the light-limited regime

these regions is used for annual crops.



SIF sensitivity vs Mean annual precipitation
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SIF sensitivity to soil moisture/PAR
increases with mean annual precipitation

o The increasing sensitivities may be an
adaptation of the vegetation to utilize
light or water availability, given that
moisture is typically less limited in these
regions.

o It also indicates that wetter regions may
have a stronger plant—water stress
response when the land surface becomes
drier below the soil moisture/PAR
threshold.



Water- and Light-Limitation — Summary

To detect where nonlinear controls of water and light on photosynthesis occur, three
distinct models were tested.

Observations-driven approach only (different satellites data streams) instead of using
model-derived parameters.

Large regional variations in ecosystem productivity strongly influenced by water and light
related controls.

Nonlinear relationships between plant function and water and light widely observed
across the globe.

Many locations with saturation for water. Two-regime light influence on photosynthesis
observed at large scales for the first time.
FLEX (+Sentinel 2-3), the first mission dedicated to fluorescence, should significantly

improve the monitoring of ecosystem functioning and health.

The observational thresholds and strength of coupling can be used as benchmark
information for Earth system models.

SIF can also be assimilated in mechanistic vegetation models to improve estimates of
carbon and water fluxes (- > De Canniére and Jonard, RSE 2021)
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UAV-based LiDAR, thermal and multispectral
remote sensing for ecosystem monitoring




UAS Research Activities

1. Estimating crop canopy density parameters time-series using UAV-mounted LiDAR

o LiDAR method based on gap fraction analysis and light extinction theory
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UAS Research Activities

2. Vegetation biomass estimation with UAV-based LiDAR data

Artificial Neural Network (ANN) g

o Crop height (vertical information), gap fraction (lateral density), intensity

77 DM (t/ha)

(chlorophyll content) are being used as predictors in the model.

5609910
L

o A combination of hidden layers and nodes were tested until the best g
results were found.

5609900
I

o Neuralnet package in Rstudio used.
RMSE: 1.94 t/ha

R2:0.87
Date
04.19.2021
05.19.2021 357610 357620 357630 357640
® 05.31.2021
® 06.14.2021
® (07.05.2021

5609890
1
[

0 5 10 15
Ground Measurement (DM)

Bates and Jonard, AGILE-GISS, 2022




UAS Research Activities

3. Evapotranspiration estimation with UAV-based thermal data

o Thermal IR used to estimate evapotranspiration using the two-source energy balance (TSEB) model
o Estimates were compared against traditional eddy covariance estimations

ICOS Field
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Latent Heat Flux % 3 - 500
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! 220
0 : ¢ i L y h
Flux Footprint Prediction (FFP)

(Kljun et al. 2015)

Bates and Jonard, Remote Sens. Env., prep.



UAS Research Activities

4. Assessment of forest structure from UAV-mounted LiDAR point cloud and machine learning

0

Neuville and Jonard, Remote Sensing, 2021
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UAS Research Activities

5. Monitoring of intra-plot variability of vine water status

o Correlation between spectral indices or
thermal data and in situ leaf water potential
measurements

PhD of Louis Delval (2020-2024)

‘Chateau de Bousval’ vineyard



UAS Research Activities

5. Monitoring of intra-plot variability of vine water status
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UAS Research Activities

With the degradation of permafrost due to the increase in air temperature in high latitudes,

soil organic carbon is becoming more and more vulnerable to mineralization resulting in the
reinforcement of the global warming

o UAV-borne remote sensing to characterize a peatland landscape of the Belgian High Fens
PhD of Yanfei Li (2021-2025)

o Tracking the impact of permafrost thaw on soil hydrology using UAV remote sensing (Alaska)
PhD of Eléonore du Bois d’Aische (2022-2026)

Eight Mile Lake - Alaska (US)

1. What is the fate of C trapped in a
significant but vulnerable C-storage such :
as an Arctic peatland with global warming? ,f’f

!

/
2. How will hydrological changes influence/
carbon and nutrient fluxes ? /

Frozen peatland with a permafrost Peatland with a topographic and
degradation gradient hydrological gradient



Multi-scale observations to predict carbon,
energy and water fluxes

Evapotranspiration

Data fusion
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Thank you



PhD in Geomatics (2009-

e Satellite Photogrammetry and Radargrammetry for DSM generation
ZA ) e SAR data processing (i.e. INSAR, orbit correction)
University of Rome “La e FOSS (Free and Open Source Software) programming
Sapienza” e Geomatics fundamentals (GNSS; Surveying)
Post-Doc Fellowship (2013- e Close range remote sensing (UAV; ToF camera)
2017) e Computer Vision (i.e. SLAM, SfM, DIC)
Geodesy and Geomatics e Earth Observation big data processing (Google Earth Engine)
Division at University of e Several geomatics application projects
Rome “La Sapienza” e Project proposal writing and management
Faculty Researcher (2017-2021) e  Multi-spectral satellite image. analysis
Geoinformatics division at ° Urban- & Forest-Remote Sensing . :
KTH Royal Institute of Technology e Machine Learr?lng and [?eep Learnlng tec-hnlques
e Cloud computing and big data handling (i.e. GCP and AWS)

Andrea Nascetti




Earth Observation Big Data

Model

Where do we stand on Earth Observation? oo | in ShuOmer
Thanks to the fast growth of satellite technology, we
are moving forward into a new era of Earth Observation

Both National and International space agencies and
innovative companies are supporting various EO =
programs acquiring huge amounts of data every day

etabytes (1,000 TB)

Year

Jomathan T. Overpeck ot al, Science 2011
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Earth Observation Big Data: Opportunities & Challenges

Opportunities

- Near-real time monitoring of phenomena affecting built and natural
environment

- Dense time series for analysis of global environmental changes
- New possibility to deploy operational and reliable services

Challenges

- Deploy innovative computing infrastructure to handle, store and process the
data

- Develop new methods and algorithms to extract valuable information

- Integrate the analysis of the EO imagery with other geospatial big data (i.e.
social media, ground sensors, crowdsourced data)



Earth Observation Big Data research activities:

Develop new methods to exploit both optical and
radar dense time series to monitoring global and
large-scale phenomena

3D information reconstruction using several
techniques (photogrammetry, radargrammetry,
interferometry)

Image segmentation and classification using
Machine learning and Deep Learning techniques

Applications:

Land cover mapping
Urban analysis
Glacier monitoring
Emergency Mapping
Biomass Mapping

My Research Interest

Above Ground Biomass San Quintin glacier
Estimation surface velocity map

Urban footprint Urban Land Cover Classification
extraction and Change Detection




Why Urban Mapping?
-Today, 54% of the world's population lives in urban
areas. By 2050, the world is expected to add an

additional 2.5 billion urban dwellers.

-SDG Target 11: By 2030, Make cities and human
settlements inclusive, safe, resilient and sustainable
in all countries:

-11.3.1 Ratio of land consumption rate to population
growth rate

-11.2.1 Proportion of population that has convenient
access to public transport

-11.3.1 Ratio of land consumption rate to population
growth rate

-11.6.2 Annual mean levels of fine particulate matter
(e.g. PM2.5 and PM10) in cities

-11.7.1 Average share of the built-up area of cities
that is open space for public use for all

Urban population (billions)

Oceania

mNorthern America

m Africa

Latin America and

the Caribbean

w Europe

mAsia

1950 1960 1970 1980 1990 2000 2010 2020 2030 2040 2050

United Nations, Department of Economic and Social Affairs, Population Division (2019).
World Urbanization Prospects 2018: Highlights (ST/ESA/SER.A/421).
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Urban footprint: products vs global method?

DLR Global Urban Footprints (GUF):

- global coverage derived from TerraSAR-X data (90%
of the data acquired in 2011-2012)

DLR World Settlement Footprint (WSF)

- Evolution is a 30m resolution dataset outlining the
global settlement extent on a yearly basis from 1985
to 2015

JRC Global Human Settlement Layer (GHSL):

- Global coverage derived from Landsat data
(1975,1990,2000,2015)

JRC GHS Built-Up:
- Global coverage derived from Sentinel-1 data (2019) (e Eo GROUP ON
. \ EARTH OBSERVATIONS
Urban Layer in GlobeLand30:
- Global coverage derived from Landsat data
Atlas of Urban Expansion (NYU):
- 200 cities global, derived from Landsat data




Research Gaps

Current deep learning frameworks in urban mapping are predominately
based on supervised learning

Lack of investigation on across-region generalization ability of CNNs

Novel CNN architectures for effective SAR-optical data fusion are
required




Research Objective

Develop novel and globally applicable methods for urban mapping and
urban change detection using Sentinel-1 and Sentinel-2 data fusion.

. Every 6 days 1 [ Every 5 days
« SAR * Multispectral
20 m resolution e 10-60 m
ESA ESA
Asentinell Sentinel-1 Sentinel-2




Reference Dataset

Locations of the SpaceNet 7 training and test sites

- Time series of monthly Planet
images

75°N
1

35°N
1

- Covering ~ 100 unique sites

- Approximately 24 images per site

S?S

« Over 10 million individual annotated | oot
building footprints e N ey ‘ , . ‘

Van Etten, A., Hogan, D., Manso, J.M., Shermeyer, J., Weir, N. and Lewis, R., 2021.
The multi-temporal urban development spacenet dataset. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 6398-6407).




Satellite Data Preprocessing

Sentinel-2 MSI
TOA scenes

Sentinel-1 C-band
SAR scenes

Sentinel-2 cloud
probability

Spatial & temporal filter Spatial & temporal filter
Mask pixels with high cloud Subset to orbit with better
probability (80 % +) data availability
=] Dataset A 4 ¢
Least cloudy scene Monthly averaging
(] Process
[ output v ‘}
- a ~
Normalization from range Normalization from range
[0, 10,000] to range [0, 1] [-25, 0] to range [0, 1]
. w
Y Y
Optical image SAR image
Gorelick, N., Hancher, M., Dixon, M., llyushchenko, S., Thau, D. and Moore, R., 2017. LRy B g, : . T ; : R
Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote o T =5 —
sensing of Environment, 202, pp.18-27. Optical Optlcal

(True color) (True color)



Dual Stream Architectures
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Urban mapping Urban change detection Urban mapping + urban change detection
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Global Urban Extraction - Dataset

Prepare satellite data and labels

Geographical label availability is limited

-> Domain gap

Training & validation

Testing

35|°N 75|°N

5‘I’S

75°N

35°N

Dataset

T T T T T
120°W 80°wW 80°E 120°E 160°E

o | O Test(60)
7 Domain
_ @ Train. labeled (26) [ source (14)
" @ . Val labeled (4) “[[] Target EU (5)
A Train. unlabeled (66) Target LA (7)
Domain ) [ Target SSA (4)
| [ source (30) 07 [ Target IW (13) !
[ Target (66) > oy [ Target Asia (17) .
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Semi-Supervised Learning

PoOptical
Optical
er@ > ESup ESup = L"pJacc(pSARa y) + ['p.]acc (pOpticahy) + L";nJacc(pFusiom y)
// o
£C'o*n — ﬁpJacc(pOpticalapSAR)
PFusion r _ ) Lisup, if y exists
= —> Lcon SamPle =) & Loon, otherwise
SAR
encoder decoder 0.8
ol —— Fusion-DA Fusion loss
 pesees | e —— | ey Fusion-DA Consistency loss

=== nlabeled (target) PSAR

==== Unlabeled (inference)

Remote Sensing of Environment
Volume 280, October 2022, 113192

ELSEVIER

0.0L . . . .
0

Unsupervised domain adaptation for global urban Epoch
extraction using Sentinel-1 SAR and Sentinel-2
MSI data
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Global Urban Extraction - Results

Improved urban mapping compared to
fully supervised approaches

Better results than two state-of-the-art
global urban products, while using a
much simpler methodology

(e) WSF2019
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o
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0.8
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o
[=)]

o
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1.0 1.0
EU(7)
0.8
i Q 0.6
0.4
0.2 0.2
= : 0.0 : 0.0 :
Ours GHS WSF Ours GHS WSF Ours GHS WSF
1.0 1.0
SSA (7) Asia (7)
% 0.8 0.81
.61 E ? ﬂ é 0.6 0.61
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0.2 0.21
M SAR B Fus. 4
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Urban Mapping Results

F1 score Precision Recall
SAR 0.570 = 0.041 0.576 = 0.048 0.571 = 0.064
()pl ical 0.587 £ 0.077 0.697 = 0.044 0.520 £ 0.115
Fusion 0.654 = 0.052 0.707 + 0.036 0.613 = 0.082
Fusion-DA 0.692 + 0.039 0.661 £+ 0.043 0.728 = 0.043
GHS-S2 0.591 = 0.068 0.485 = 0.083 0.767 =0.033

WFS52019 0.680 = 0.042 0.652 £+ 0.063 0.718 = 0.059

- Semi-supervised learning
(domain adaptation) performs
better than supervised
learning

» Our method achieves results
with comparable or even
better quality than the state-
of-the-art



Rotterdam S2 Summer image (B4,B3,B2) Rotterdam S2 Winter image (B4,B3,B2)

¥

How can we measure building height?




Rotterdam S1 Ascending image (VV,VH,VV) Rotterdam S1 Descending image (VV,VH,VV)
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How can we measure building height?




refBH_NLD_00031
Il 1.8687
Bl 3.0048
Il 4.1409
Bl 52771
B 64132

i ' ; g B 75493

8.6854
9.7342
10.6081

Google_Satellite

« AHN Lidar reference data available in
Netherland
« 5000 buildings heights reference patches

Reference Data




Attention

Temporal Aﬁenﬁon
masks

¥ Down-convolution

4 Up-convolution

® Blockwise temporal
Temporal Attention
Masks

weighted sum i
Attention

* Feature map sequence M
= Feature map

%

Temporal
Attention

AttenLion
masks

Temporal

Attention >

The first model...
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Results




GT-Height Prediction
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Histogram of DZ

15,000
> 10,000
v
(0]
J
]
C 5,000 9.75
DZ Count: 849.635
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Mean (m):
-1.1801954914714592

Std (m):
4.105660205200064

Median (m):
-0.6248469635226531

LE 68 range (m):
-4.8727666020740985
2.1236163447576804

Fl:
0.9259512091595514

Precision:
0.9217748597712357

Recall:
0.9301655749439619




Change Detection Results

Pre-change

ferent label fraction conditions. Values were obtained on the test set. The best

in red and blue, respectively

Fraction of the labeled training set used

O
. 10 % 20 10 100

< Input Network
2 Fl1 Tot F1 IoU F1 IoU Fl1 loU
o
- U-Net EF ).291 0.170 0.339 0.204 3

S1 Siam-Diff 182 0.100 03568 0226

7 0134 0.341 0.206

U-Net EF
s2 Siam-Diff

0429 0.273
0447 0.288

C
C
Siam-Diff DT 0.267
(
(
(
(
L
(

).
2 ).210
Siam-Diff DT 35 ).212 ).459 0.208
DS U-Net 309 0.183 0.397 0.248
S152 MM Siam-Diff 383 0237 0458 0.297

Proposed

Hiquels NN

- Good urban change detection
results, even when labeled
training data is scarce

pasodoud

10 % 20 % 40 % 100 %



Future Work

Multi-temporal urban mapping with temporal consistency:
- Transfomer-based model

- Temporal consistency loss

Satellite image Buildings Model output
(Ground Truth)



Change Detection

« ldentify and quantify differences between two or more images
collected at different timepoints or under different conditions
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Change Detection

Bi-temporal Change Detection

* Pre and post images (2)

* Detect (abrupt) changes between two dates over
matter of days to months to years

* Image differencing, thresholding, segmentation
algorithms

* Disaster damage assessment, landcover changes,
deforestation

Multi-temporal Change Detection

Multiple images (> 2)

Identify long-term trends and (gradual) patterns
over several years to decades

Time-series analysis, probabilistic modeling, PCA
algorithms

Disaster response, urban expansion, vegetation
changes, climate change

Image: 2018-04 Predictions: 2018-04_

— —

#SpaceNet




Irrelevant and Relevant Changes

* Irrelevant Changes
- Any natural/recurring/anticipated changes that we are not interested in
- Seasonal changes, cloud obstruction, viewpoint shift, ...

« Relevant Changes
- Any known or unknown events that we are potentially interested in detecting
- Disaster response, urban expansion, ...




Wildfires... g,

. . . Prince Geo JeF ire Centre
° Cost millions or billions of dollars to fight ®
° Can cause damage to infrastructure and environment \\‘ b e
° Lack of information to predict and monitor fire progression M ?ﬂ

-

#GeoForGood19



Remote Sensing for wildfire monitoring

Active wildfire monitoring

e Moderate Resolution Imaging Spectroradiometer
(MODIS) Active Fire maps are often used for contextual
awareness

Fire scar & burn severity mapping

e Landsat data are often deployed for post-wildfire
boundary determination and burn severity mapping

#GeoForGood19



Research Objective

The overall objective of this research is to investigate Sentinel-1 SAR dense time

series for fire perimeter and fire progression mapping:
e using a fully automatic procedure based on CNN
e considering the operational requirements of producing reliable and
frequently updated progression maps

#GeoForGood19



Available Dates
Current Date

Pre-fire Time Series— ——On-going Time Series—

Unseen Dates

Orbit-1
Orbit-2

Binary 1
Tteratd over the Select prefire master ” y

available dates For each orbit

ogRt Map

Burn
Confidence

Yifang Ban, Puzhao Zhang, Andrea Nascetti, Alexandre R. Bevington, and Michael A. Wulder
“Near Real-Time Wildfire Progression Monitoring with Sentinel-1 SAR Time Series and Deep Learning”,
submitted to Nature Scientific Reports #GeoForGood19



Processing steps

GEE processing:
e S1 dense time series statistical analysis to
characterize the backscatter in the area
e |logRT maps generation
e raw binary mask generation for automatic
training sample generation
e Export analysis ready image stacks

Local Machine processing:
e CNN train & prediction
e Burn confidence maps generation
e Final burned area maps generation

Google Earth Engine

/ W

Search places and datasets...

y
TR

|
|
(I

9
\

Lone Butte

KNSl onm ©

Sheridan L'ake

Bridge

" ASC64_2017-09-30
" ASC64_2017-09-18
" ASC64_2017-09-06
+ DSC13.2017-09-01
\) DSC13_2017-08-20
+ DSC13_2017-08-08
" ASC64_2017-08-01
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#GeoForGood19



Test Sites

Elephant Hill Fire

12170 Al 121.10°W 120.80°W

S1.40°N

S110°N

121.70°W 121.40°W 121.10°W 120.80°W

Elephant Hill wildfire (Canada, 2017) was British
Columbia's largest wildfire in 2017:

Started on July 6 along the Thompson River near
Ashcroft Ended mid-September, 2017

destroyed over 300 buildings

prompted mass evacuations

burnt an estimated 192,000 hectares of forest

Camp Fire

121.55°W 121.35°W

39.65°N

121.75°W 121.55°W 121.35°W

Camp Fire was the deadliest and most destructive
wildfire in California history:

Started on November 8 near Camp Creek Road
contained on November 25, 2018,

the fire caused at least 85 civilian fatalities
evacuation of 52000 people
destroyed 18804 structures

burnt about 62000 hectares #GeoForGood19



Elephant Hill: fire progression results

0906-ASC64 0918-ASC64 0930-ASCo64

Fis

2017

logRt

#GeoForGood19



Elephant Hill: CNN performance analysis

CNN Confidence maps: 0.0 - /\ — b
e pixel values are ranging from 0 to 1
e probability that each pixel 0.06

represents a burnt area iy

(0: unburn, 1: burnt) % 0.04 -
e clear bi-modal distribution respect s

to unimodal distribution of the log- 0.02 1

ratio based results

0.00 - T T T s

OiO 0j2 0j4 0f6 0j8 le
Burn Confidence

#GeoForGood19



Elephant Hill: Accuracy Assessment

To quantitatively assess SAR-based burnt area results:
e Sentinel-2 dNBR is segmented into a binary map of burnt and unburnt areas and used as the

reference maps together field data and WorldView-3 imagery

e 10000 validation points are randomly selected from burnt and unburnt areas respectively

Sat. Bands Method Seg. Precision Recall OA Kappa F,
VH 06334 09712 0.8073 0.6146 0.7667

vV logRt 05942 09386 0.7778 0.5553 0.7277

VH Osu 06092 09853 07970 0.5939 0.7480

- \'AY% kmap 0.5798 09723 0.7817 0.5633 0.7264
VH, VV kmap 52 08366 09471 0.8950 0.7899 0.8884
CNN_mrg 0.9041 09336 09492 0.8983 0.9467

VELVV CNN tsc_ mrg OB" 08580 09952 09274 0.8548 0.9221

#GeoForGood19



Camp fire: progression results

2018 1111-ASC137  1116-DSC42  1117-ASC137 1121-DSC115  1128-DSC42

1129-ASC137 1203-DSC115  1205-ASC137

logRt_abs

CNN_tsc_
mrg

CNN_mrg ~
_overlay

#GeoForGood19



Camp fire: Accuracy Assessment

To quantitatively assess SAR-based burnt area results:
e Sentinel-2 dNBR is segmented into a binary map of burnt and unburnt areas and used as the

reference maps together field data

e 10000 validation points are randomly selected from burnt and unburnt areas respectively

Sat. Bands Method Seg. Precision Recall OA Kappa F,
VH 02182  0.6513 0.5507 0.1014 0.3269

vV kmap >2 04521 08019 0.6702 03404 0.5782

g VHVV kmap >2 05117 08211 07001 04002 0.6305
CNN _mrg 0.7182 09391 0.8358 0.6716 0.8139

VH.VV NN _tse_ mrg O 07060 09507 0.8347 0.6694 0.8103

#GeoForGood19
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Conclusions & Future Prospects

e We developed and tested a CNN based framework to extract near-real-time fire
progression maps using SAR data:
o Sentinel-1 SAR dense time-series data are promising for wildfire progression
monitoring

o fire perimeter and progression maps can be produced automatically with high

accuracy (F1 score > 0.8)

e Test the same framework with different satellite SAR data (i.e. ICEYE, COSMO-SkyMed) to
produce daily progression maps
® Create an online processing platform based on GEE and GCP to provide the solution as a

service

#GeoForGood19



