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Abstract
Objective: The aim was to evaluate the possible association between some endocrine disruptive chemicals and thyroid 
cancer (TC) in an Italian case–control cohort.

Methods: We enrolled 112 TC patients and 112 sex- and age-matched controls without known thyroid diseases.  
Per- and poly-fluoroalkyl substances (PFAS), poly-chlorinated biphenyls (PCBs), and dichlorodiphenyltrichloroethane 
(4,4′-DDT and 4,4′-DDE) were measured in the serum by liquid or gas chromatography–mass spectrometry. 
Unconditional logistic regression, Bayesan kernel machine regression and weighted quantile sum models were 
used to estimate the association between TC and pollutants’ levels, considered individually or as mixture. BRAFV600E 
mutation was assessed by standard methods.

Results: The detection of perfluorodecanoic acid (PFDA) was positively correlated to TC (OR = 2.03, 95% CI: 1.10–3.75, 
P = 0.02), while a negative association was found with perfluorohexanesulfonic acid (PFHxS) levels (OR = 0.63, 95%  
CI: 0.41–0.98, P = 0.04). Moreover, perfluorononanoic acid (PFNA) was positively associated with the presence of 
thyroiditis, while PFHxS and perfluorooctane sulfonic acid (PFOS) with higher levels of presurgical thyroid-stimulating 
hormone (TSH). PFHxS, PFOS, PFNA, and PFDA were correlated with less aggressive TC, while poly-chlorinated biphenyls  
(PCB-105 and PCB-118) with larger and more aggressive tumors. Statistical models showed a negative association 
between pollutants’ mixture and TC. BRAFV600E mutations were associated with PCB-153, PCB-138, and PCB-180.

Conclusion: Our study suggests, for the first time in a case–control population, that exposure to some PFAS and PCBs 
associates with TC and some clinical and molecular features. On the contrary, an inverse correlation was found with 
both PFHxS and pollutants’ mixture, likely due to a potential reverse causality.
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Introduction
Thyroid cancer (TC) is the most frequent endocrine  
tumor with age-standardized incidence rates of 
approximately 10.1 per 100,000 women and 3.1 per 
100,000 men in 2020 (F:M = 3:1 on average), and with a 
low mortality rate (0.5 per 100,000 women and 0.3 per 
100,000 men) (1). In the last decades, its worldwide 
incidence has been continuously rising, largely driven 
by microcarcinomas of the papillary histotype (2, 
3), and mostly due to an improvement in diagnostic 
procedures (4, 5). Nevertheless, an increase in the 
incidence of large and advanced-stage TC and pediatric 
TC (4, 5) has been observed too, indicating that the 
increased routine screening is not the sole cause of the 
increase in TC incidence. In recent years, the interest 
in the possible effects of persistent organic pollutants 
(POPs) on ecosystems and on human health has risen 
worldwide. Some of these compounds are known to 
alter the endocrine system at different levels and have 
been called endocrine disruptive chemicals (EDCs). 
EDCs can interfere with all endocrine axes, altering the 
production, secretion, and metabolism of hormones, as 
well as their binding to plasma proteins and receptors. 
EDCs are known to alter thyroid function, thus leading 
to increased thyroid-stimulating hormone (TSH) 
levels (6), which have been found to represent a risk 
factor for thyroid cancer onset (7). Of EDCs, per- and 
poly-fluoroalkyl substances (PFAS), poly-chlorinated 
biphenyls (PCBs), and dichlorodiphenyltrichloroethane 
(DDT) are widely used for industrial and agricultural 
purposes and present in consumer products  
components. The main route of exposure to these 
chemicals is the food chain, and measurable levels 
are commonly reported in samples from the general 
population (8, 9, 10, 11). Some of these EDCs have 
been phased out starting from the 70s, although their 
presence in the environment is still relevant due to 
their long elimination half-life. Some PFAS, PCBs and the 
pesticide DDT have been classified as carcinogenic (12), 
probably carcinogenic (13), or possibly carcinogenic 
to humans (14) by international organizations, such as 
World Health Organization or International Agency for 
Research on Cancer. Indeed, some EDCs have been linked 
to several human cancers, i.e. of the breast, kidney, and 
testis (15, 16, 17, 18). To date, the possible correlation 
between PFAS and TC has been investigated mainly on 
highly exposed populations (professionally exposed or 
living in a contaminated area) in few studies and with 
controversial results (14, 16, 19, 20, 21, 22, 23, 24, 25). 
Very recently, the link between PFAS and TC has been 
also investigated in nested case–control studies using 
plasma samples collected at/before TC diagnosis (21) or 
pre-diagnostic serum in the Finnish Maternity Cohort 
(22). Another recent study evaluated the association of 
serum PFAS levels among NHANES participants with 
a previous diagnosis of cancer (26). Controversial data 
exist concerning TC, with some studies reporting a 
positive association between this tumor and some PFAS 
(14, 20, 21, 22, 24, 25, 26), and others not reporting any 

association (16, 19, 23, 27). Moreover, it is not clear 
which congeners are possibly associated with TC (19, 
21, 22, 28). The increasing interest toward the impact 
of PFAS on thyroid diseases is underlined by the fact 
that the National Academy Institution (US) appointed 
a specific committee to assess the health effects of 
PFAS, and thyroid function has been included in the 
analysis (February 8, 2024 accessible at https://www.
nationalacademies.org/our-work/guidance-on-pfas-
testing-and-health-outcomes).

Recently, some associations between PCBs and TC have 
been found (12, 29, 30, 31), even though the involved 
congeners are not well-defined. Finally, only one case–
control study reported a positive association between 
4,4′-dichlorodiphenyldichloroethylene (4,4′-DDE), which 
is the main metabolite of 4,4′-DDT, and the risk of TC (31).

Interestingly, the genetic profile of papillary thyroid 
carcinoma (PTC) has also changed in the last decades with 
a relevant increase in the frequency of BRAFV600E mutation 
(32, 33, 34), and a high incidence of PTC harboring this 
genetic alteration has been reported in volcanic areas, 
which are characterized by nonanthropogenic pollutant 
contamination (35).

The aim of this study was to evaluate, for the first time, 
the possible association between serum levels of some 
PFAS, PCBs, 4,4′-DDT, and 4,4′-DDE and the presence, as 
well as clinicopathological and molecular features, of TC 
in an Italian case–control cohort with an expected usual 
background exposure to these compounds.

Materials and methods

Study participants and biochemical analyses
In this cross-sectional case–control study, 112 cases and 
112 controls were consecutively enrolled between July 
2022 and February 2023 at IRCCS Istituto Auxologico 
Italiano Hospital, Milan, Italy. The 5-year time-lapse 
was selected because some of the EDCs analyzed have 
a maximum half-life of about 5 years. All patients with 
TC were submitted to surgery (total thyroidectomy or 
lobectomy), radioiodine ablation, and LT4 treatment 
according to international guidelines (36).

Cases were defined as patients with a definite diagnosis 
of TC in the last 5 years. Sex- and age-matched controls 
were enrolled among subjects attending our hospital 
for unrelated reasons, and without (a) a known history 
of TC or other thyroid diseases, (b) a known history of 
other malignancies, and (c) severe hepatic or kidney 
dysfunction. Moreover, pregnant women, and patients 
with infertility or gonadal diseases, such as polycystic 
ovarian syndrome, were also excluded. All participants 
answered a questionnaire about their medical history, 
food habits, and personal care product use (translation 
available in the Supplementary Information, see section 

https://www.nationalacademies.org/our-work/guidance-on-pfas-testing-and-health-outcomes
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on supplementary materials given at the end of this 
article). Clinicopathological features, including TSH 
levels (presurgical TSH for cases and the last available 
value for both groups), were obtained from medical 
records. TNM classification followed the 8th edition 
of the American Joint Committee on Cancer/Union for 
International Cancer Control TNM staging system of 
thyroid cancer (37), and the dynamic risk stratification 
(DRS) was defined as previously reported (38, 39). 
Briefly, patients have been classified into four categories 
of response (excellent, biochemical incomplete, 
indeterminate, and structural incomplete) to initial 
treatments according to biochemical and radiological 
criteria. Subjects unable to fill out the questionnaire 
were excluded from enrollment. None of the cases or 
controls had a history of occupational or accidental 
exposure to PCBs, PFAS, nor DDT.

All participants signed an informed consent and provided 
two blood samples in clot activator tubes without gel 
(BD, Plymouth, UK). The protocol was approved by the 
Ethical Committee of Istituto Auxologico Italiano IRCCS 
(05C214_THY-ED).

Chemical analyses
Serum samples were used to determine the presence 
of nine PFAS, seven indicator PCBs, five dioxin-like 
PCBs (DL-PCBs), 4,4′-DDT, and its metabolite 4,4′-DDE. 
Among PFAS, perfluorobutanesulfonic acid (PFBS), 
perfluorohexanesulfonic acid (PFHxS), perfluorooctane 
sulfonic acid (PFOS) including linear isomer (linPFOS), 
branched isomers (branPFOS), and the sum of all 
isomers (totPFOS), perfluorohexanoic acid (PFHxA), 
perfluoroheptanoic acid (PFHpA), perfluorooctanoic 
acid (PFOA), perfluorononanoic acid (PFNA), 
perfluorodecanoic acid (PFDA), perfluoroundecanoic 
acid (PFUdA) were extracted from 1 mL of serum 
using an off-line solid phase extraction, as previously 
reported (40, 41). The indicator PCBs (PCB-28, PCB-52, 
PCB-101, PCB-118, PCB-138, PCB-153, and PCB-180), some 
DL-PCBs (PCB-105, PCB-114, PCB-156, PCB-157, PCB-
167), 4,4′-DDT, and 4,4′-DDE were extracted from 1 mL 
of serum using a previously described method initially 
dedicated to brominated flame retardants (42). Details 
of sample preparation are given in Supplementary 
Information. PFAS analyses were performed using 
a liquid chromatography coupled to tandem mass 
spectrometry (LC–MS/MS) (Acquity Ultra Performance 
UHPLC system, Quattro Premier XE, Waters), whereas 
gas chromatography coupled with tandem mass 
spectrometry (GC–MS/MS) (Agilent 7890A GC/7000A GC 
Triple Quad mass spectrometer, Agilent Technologies) 
were used to determine PCBs, 4,4′-DDT, and 4,4′-DDE. 
Analysis details and methods of quality assurance 
and quality control are available in Supplementary 
Information. The determination of total cholesterol and 
triglycerides was carried out on a Cobas 8000 modular 
analyzer system (Roche Diagnostics) by enzymatic 

colorimetric test. The total lipids value was calculated 
according to Phillips et al. as follows: total lipid content 
(g/L) = (total cholesterol (mg/dL)) × 2.27 + (triglycerides 
(mg/dL)) + 62.3 (43).

DNA extraction and BRAF molecular analysis
Genomic DNA was extracted from all available tissues 
(46 PTC tissues and 1 anaplastic thyroid cancer tissue) 
Formalin-fixed, paraffin-embedded tumor tissue samples 
were processed using the RecoverAll Total Nucleic Acid 
Isolation Kit (Thermo Fisher Scientific), while frozen 
tumor tissues were extracted using the Puregene 
Core Kit A (Qiagen), following the manufacturer’s  
protocol. The molecular analysis of the BRAF gene was 
performed as previously reported (44).

Statistical analysis
Statistical analyses were performed using RStudio 
(version 3.4.1; R Project for Statistical Computing). The 
difference between values was considered significant 
when P  <  0.05. The Shapiro–Wilk test was used to test 
the normality of the distributions for demographic 
variables and pollutant concentrations. Student's 
t-test or Wilcoxon rank-sum test was used to compare 
continuous demographic variables (i.e. BMI, alcohol 
use, number of full-term pregnancies, cumulative 
months of breastfeeding, consumption of certain food, 
use of beauty and daily personal care items) between 
cases and controls, while the Chi-square test was used 
for categorical variables (i.e. sex, radiation exposure, 
familial history of thyroid diseases, postmenopausal 
status, having carried at least one pregnancy, use of 
an estro-progestin pill, menstrual cycle regularity, 
being a blood donor, iodized salt use, education 
level, employment status, smoking, sunscreen, and  
nail polish use).

Only compounds with a detection frequency (DF)  
greater than 20% were included in the statistical 
analyses. For descriptive statistics (monovariate  
analyses and mono-pollutant models), pollutant 
concentrations measured below the limit of  
quantification (LOQ) were replaced by LOQ × DF, and 
a log-normal transformation was applied to their 
concentrations to approximate a normal distribution. 
Pollutants with DF above 75% were considered 
continuous variables, whereas compounds with DF 
between 20% and 75% were dichotomized (detected vs 
not detected).

Associations between each pollutant and TC were  
tested using unconditional logistic regression. The 
individual model was calculated for each pollutant, 
adjusted for sex, age, BMI, and family history of  
thyroid disease, as well as two lifestyle habits found 
to differ between cases and controls (use of make-up 
remover and nail polish). The association with TC was 
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estimated by the odds ratio (ORs) and 95% CIs. Concerning 
EDCs with a DF > 75%, the same model was also computed 
dividing the population into exposure quartiles. Due 
to the lipophilic properties of PCB congeners, their 
measured values were adjusted for serum total lipids 
and considered as continuous variables, while for 
those with a DF between 20% and 75%, and thus  
analyzed as dichotomic variables, total lipids content 
was added in the model.

In addition, individual models were also employed, 
considering only the case population, to explore 
the association between serum pollutant levels and  
clinical response in agreement with dynamic risk 
stratification (structural incomplete response vs  
excellent response, biochemical incomplete response, 
and indeterminate response considered all together), 
TNM stage (T1 vs T2 vs T3+T4; N0+Nx vs N1; stage I 
vs II+III+IV), and tumor size at diagnosis (both as a 
continuous and as a dichotomous variable, considering  
a cutoff of 1 cm), presence of thyroiditis (an 
inflammatory autoimmune condition of the thyroid 
gland diagnosed at histology and/or by the presence  
of circulating autoantibodies), presurgical TSH levels, 
and BRAF mutational status. This model was also 
employed to evaluate the association between pollutants 
and the most recent TSH available in controls.

The impact of pollutant mixtures on TC was 
assessed using two different methods: weighted 
quantile sum regression (WQS) and Bayesian kernel 
machine regression (BKMR). WQS has shown good  
performance in assessing associations between  
health parameters and mixtures of environmental 
pollutants. However, this method can only highlight 
monotonic, linear, and additive relationships. On 
the other hand, although they are more difficult to 
interpret, BKMR models can reveal non-monotonic 
and non-additive associations. Details are provided in 
Supplementary Information.

Results

Baseline characteristics of the 
study population
The clinicopathological features of the study group, 
including 112 cases of TC, are reported in Table 1. 
Briefly, 102 patients had follicular cell-derived cancer 
(94 PTC, five follicular thyroid carcinoma (FTC), one 
Hürthle carcinoma, one poorly differentiated TC (PDTC) 
and one anaplastic TC (ATC)), while the remaining ten 
patients had a medullary thyroid cancer (MTC). The 
majority of cases had a T1 tumor without metastatic 
lymph nodes. About 57.3% of cases had a tumor size 
>10 mm, and about 66% had a BRAFV600E mutation. The 
response to initial treatment was excellent in 52.7%, 
and structural incomplete response was observed  
in 23.2% of patients.

The baseline characteristics of the 224 participants 
(112 cases and 112 controls, sex-, and age-matched) are 
reported in Table 2. The mean age of cases and controls 
was 51.7 ± 14.6 years (range: 20–89) and 51 ± 15.2 years 
(range: 19–86), respectively. The female/male ratio was 
3.48 for both groups. Cases were recruited in a median 

Table 1 Clinicopathological features at diagnosis of patients 
with thyroid cancer.

Clinical features Values, n (%)

Histological type, n=112
 PTC 94 (83.9)
 FTC 5 (4.5)
 MTC 10 (8.9)
 ATC 1 (0.9)
 PDTC 1 (0.9)
 HCC 1 (0.9)
TNM, n=111
 T1a 46 (41.4)
 T1b 35 (31.5)
 T2 19 (17.1)
 T3a 3 (2.7)
 T3b 5 (4.5)
 T4a 3 (2.7)
 T4b 0 (0)
 Nx 1 (0.9)
 N0a 39 (35.1)
 N0b 38 (34.2)
 N1a 20 (18.0)
 N1b 13 (11.7)
 M0 110 (99.1)
 M1 1 (0.9)
Stage, n=111
 I 96 (86.5)
 II 12 (10.8)
 III 1 (0.9)
 IVa 1 (0.9)
 IVb 1 (0.9)
Thyroiditis, n=112
 Presence 42 (37.5)
 Absence 70 (62.5)
Tumor size, n=110
 Median (range), mm 12.0 (1.0–70.0)
 ≤10 mm 47 (42.7)
 >10 mm 63 (57.3)
DRS, n=112
 Excellent 59 (52.7)
 Biochemical incomplete 5 (4.5)
 Structural incomplete 26 (23.2)
 Indeterminate 22 (19.6)
BRAF, n=47
 Mutated 31 (66.0)
 Wild type 16 (34.0)

DRS, Dynamic Risk Stratification; PTC, papillary thyroid cancer; FTC, 
follicular thyroid cancer; MTC, medullary thyroid cancer; ATC, anaplastic 
thyroid cancer; PDTC, poorly differentiated thyroid cancer; HCC,  
Hürtle cell carcinoma. 



AUTHOR COPY ONLY
European Thyroid Journal (2024) 13 e230192

https://doi.org/10.1530/ETJ-23-0192
V Cirello, M Lugaresi et al.

of 1.2 years after diagnosis (range: 0.1–5) and had a 
significantly higher BMI (median 24.3 kg/m2 vs 23.4 kg/m2,  
P = 0.027) and a more frequent familial history for  
thyroid diseases (49% vs 30%, P = 0.005) compared 
to controls. The majority of patients (97.3%) and  
controls (91%) were living in Milan or nearby districts  
in the last 5 years.

TSH values were recorded for both cases (pre-surgery 
and at last visit) and controls (last recent available 
values) and were within the normal range. As shown 
in Table 2, TSH values did not significantly differ 
between cases’ presurgical values and controls’  
most recent available ones (median: 1.8 mU/L vs 2.0 
mU/L, P = 0.611). As expected, in patients with TC on 
thyroxine treatment, the median of last available 
post-surgical TSH levels was significantly lower  
than the presurgical one (median: 1.8 mU/L vs 0.3 
mU/L, P = 0.00001).

Among self-reported lifestyle and dietary habits, two 
main significant differences emerged between the  
two groups: controls used nail polish more frequently 
(28% vs 15%, P = 0.034), and makeup remover  
(median 2 times/week vs 0 times/week, P = 0.013).

Concentrations of PFAS, PCBs, 4,4′-DDT, and 
4,4′-DDE in serum samples
Among the analyzed EDCs, 19 had a DF greater  
than 20% in the study population and were thus  
included in the statistical analysis (Fig. 1 and 
Supplementary Table 1). PBCs and 4,4′-DDT/4,4′-DDE 
values were adjusted by total lipids content (measured 
concentration divided by total lipids).

PFOS (linPFOS, branPFOS, and totPFOS), PFOA, 
PFHxS, and PFNA had a DF above 97%, while 
detectable levels of PFDA and PFUdA were present  

Table 2 Baseline characteristics for study participants. Data are presented as median (range), mean ± s.d. or as n (%).

Baseline characteristics Cases Controls P

Total n 112 112
Age (years) 51.7 ± 14.6 (20–89) 51 ± 15.2 (19–86) 0.738
BMI (kg/m2) 24.3 (16.2–43.8) 23.4 (16.4–36.8) 0.027
Sex 1.000
 Female 87 (77.7) 87 (77.7)
 Male 25 (22.3) 25 (22.3)
Familial history for thyroid diseases 55 (49.1) 33 (29.7)a 0.005
Active smokers 12 (10.7) 17 (15.2) 0.426
Education level 0.097
 Degree 34 (30.4) 43 (38.4)
 Secondary, II level 42 (37.5) 32 (28.6)
 Secondary, I level 16 (14.3) 13 (11.6)
 Primary 4 (3.6) 0 (0)
 Unknown 16 (14.3) 24 (21.4)
Job 0.530
 Worker 82 (73.2) 80 (71.4)
 Unemployed 4 (3.6) 6 (5.4)
 Retired 25 (22.3) 22 (19.6)
 Student 1 (0.9) 4 (3.6)
Postmenopausal females, n = 87 41 (47.1) 39 (44.8) 0.879
Females who have had ≥1 pregnancy 53 (62.4)b 54 (62.1)c 1.000
Number of full-term pregnancies 1 (0–4) 1 (0–5) 0.510
Cumulative breast-feeding (months) 4.5 (0–45) 4 (0–54) 0.699
Blood donors 8 (7.1) 13 (11.6) 0.359
Iodized salt consumers 76 (68.5)d 77 (70)e 0.920
Subjects exposed to ionizing radiation 3 (2.7) 1 (0.9) 0.614
Subjects who regularly use nail polish 17 (15.3) 31 (27.7) 0.034
Make-up remover use (times/week) 0 (0–14) 2 (0–15) 0.013
TSH values (mU/L)
 Before surgery 1.8 (0.2–5.1) 0.611
 Last available valuef 3 (0.0004–19.5) 2 (1.39, 0.–4–4.3)  < 0.001g

Values in bold indicate statistical significance.
an = 111; bn = 85; cn = 87; dn = 111; en = 110; fFor cases: last TSH values available after surgery, for controls: last TSH value available; gBetween last available 
and presurgical TSH values in cases group.
BMI, body mass index.
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in 42.9% and 24.6% of samples, respectively.  
Total PFOS had the highest concentration (median:  
4.1 ng/mL, range: <LOQ-28.5 ng/mL), followed by  
PFOA (median: 1.8 ng/mL, range: <LOQ-5.6 ng/mL), 
PFHxS (median: 0.5 ng/mL, range: <LOQ-7.9 ng/mL), 
and PFNA (median: 0.4 ng/mL, range: <LOQ-1.8 ng/mL) 
(Supplementary Table 1).

PCB-153, PCB-138, and PCB-180 congeners had a 100% 
DF, whereas PCB-118 and PCB-156 were detected in 
78.1% and 79.5%, respectively. Lower DFs were observed 
for PCB-28, PCB-105, PCB-114, PCB-157, and PCB-167, 
ranging from 21.9% to 41.5%. The highest median value 
was measured for PCB-153 (median: 36.6 ng/g lipids, 
range: 5–235.8 ng/g lipids), followed by PCB-180 (median: 
34.2 ng/g lipids, range: 2.2–329.4 ng/g lipids), and  
PCB-138 (median: 21 ng/g lipids, range: 2.9–129.1 ng/g 
lipids) (Supplementary Table 1).

4,4′-DDE was detected in all samples, with a median 
concentration of 62 ng/g lipids (range: 8.1–981.2 ng/g 
lipids), while 4,4′-DDT levels were measurable only in 
12.1% of samples (Supplementary Table 1).

Finally, PFHxS, PCB-52, and PCB-101 levels were 
significantly different between cases and controls 
(Supplementary Table 1).

Association between pollutants and the risk 
of thyroid cancer by mono-pollutant analyses
Among all the EDCs included in the analysis, we 
observed an increased OR of TC only with the presence 
of PFDA (detected vs non-detected, OR = 2.03, 95% CI: 
1.10–3.75, P = 0.023), while a negative association was 
found with PFHxS levels (OR = 0.63, 95% CI: 0.41–0.98, 
P = 0.040). The positive association between PFDA 
detection and the risk of TC was also confirmed when 
considering only PTC patients, who are the majority 
of cases (OR = 2.11, 95% CI: 1.10–4.06, P = 0.024). On the 
other hand, the negative association between PFHxS 
levels and TC lost its significance considering only 
PTC patients, likely due to the reduction of the sample 
size (OR = 0.66, 95% CI: 0.42–1.03, P = 0.068) (Table 3). 
These associations remained substantially the same  
when only female participants were considered,  
except for PFOA, which became significantly and 
negatively associated with TC (Supplementary Table 
2). We then performed the same analysis, subdividing 
detected pollutant levels into quartiles to highlight 
a potential non-monotonic association. A trend  
toward a reduced risk of TC was observed for 
values in the fourth quartile versus those in the first  
one for PFHxS (OR = 0.41, 95% CI: 0.17–0.98, P = 0.046) 
and PFOA (OR = 0.38, 95% CI: 0.16–0.91, P = 0.029).  
On the contrary, an increased risk of TC was found  
for linear PFOS values in both the second (OR = 2.93, 95% 
CI: 1.26–6.80, P = 0.012) and the third quartile (OR = 2.42, 
95% CI: 1.05–5.57, P = 0.038), while the association  
with the fourth quartile, although in the same direction, 
did not reach statistical significance (OR = 1.68, 95%  
CI: 0.68–4.11, P = 0.259).

No association between TC and PCBs or 4,4′-DDT  
and its metabolites was highlighted in our  
mono-pollutant analyses.

Associations between pollutants and 
clinicopathological parameters
We then employed logistic regression analysis to 
determine the possible association of detected  
pollutants with some clinicopathological features of 
interest (Tables 4, 5 and Supplementary Table 3).

PFNA levels were found to be associated with the 
presence of thyroiditis diagnosed by clinical and/or 
histological parameters (OR = 2.57, 95% CI: 1.04–6.36, 
P = 0.042).

PFHxS (β = 0.56, P = 0.011), total PFOS (β = 0.63, P = 0.007), 
linear PFOS (β = 0.51, P = 0.013), and branched PFOS 
(β = 0.40, P = 0.045) levels were positively associated  
with higher levels of presurgical TSH in the cases  
group. Interestingly, no association was observed 
between PFAS levels and the most recent available 
TSH value in the control group. The same significant 
associations were also observed adjusting the model  

0
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Figure 1

Comparison of PFAS, PCBs, and 4,4′-DDE levels between cases and 
controls. Serum concentrations of perfluoroalkyl substances (PFAS)  
and of total lipids-adjusted polychlorobiphenyls (PCBs) and 
4,4′-dichlorodiphenyldichloroethylene (4,4′-DDE), which reached a 
detection frequency greater than 20% in both cases and controls, are 
represented as boxplots. PFDA, perfluorodecanoic acid; PFHxS, 
perfluorohexanesulfonic acid; PFNA, perfluorononanoic acid; PFUdA, 
perfluoroundecanoic acid; PFOA, perfluorooctanoic acid; totPFOS,  
total perfluorooctane sulfonic acid; branPFOS, branched PFOS; linPFOS, 
linear PFOS.
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for the presence of thyroiditis, except for branched  
PFOS (β = 0.39, P = 0.054) (Supplementary Table 3).

Regarding the TNM classification of thyroid cancers, a 
decreased OR of T2 vs T1 tumors was observed for PFHxS 
(OR = 0.34, 95% CI: 0.12–0.96, P = 0.042), PFNA (OR = 0.26, 
95% CI: 0.09–0.77, P = 0.015), total PFOS (OR = 0.34, 95% 
CI: 0.12–0.98, P = 0.047), and linear PFOS (OR = 0.33, 95% 
CI: 0.12–0.89, P = 0.028). On the other hand, PCB-105 was 
associated with an increased OR of T3/T4 vs T1 (OR = 7.49, 
95% CI: 1.14–49.4, P = 0.036) or T2 tumors (OR 15.8, 95% 
CI: 1.79–140, P = 0.013), while PCB-118 was associated 
with an increased OR of T3/T4 tumors when compared 
to T2 (OR = 4.59, 95% CI: 1.07–19.60, P = 0.040).

Only PFDA levels were negatively correlated with N1 
status (OR = 0.30, 95% CI: 0.11–0.81, P = 0.018), meaning 
a higher probability of the absence of lymph nodes 
metastasis.

No significant association was observed between 
analyzed EDCs, considered as either continuous or 
dichotomous variables, and stage, tumor size, and DRS 
(Supplementary Table 3).

Association between pollutants and BRAF 
mutational status
The possible association of detected EDCs with the 
presence of BRAFV600E mutation was also tested by 
logistic regression analysis. An increased OR of 
BRAFV600E mutation was found to be associated with 
PCB-153 (OR = 5.70, 95% CI: 1.23–26.44, P = 0.026), PCB-
138 (OR = 5.31, 95% CI: 1.04–27.29, P = 0.045), and PCB-180 
(OR = 11.41, 95% CI: 1.81–71.93, P = 0.010) levels (Table 5). 
Neither PFAS nor the 4,4′-DDE was associated with the 
BRAFV600E mutation.

Association between the pollutants’  
mixture and the risk of thyroid cancer  
by multi-pollutant analyses
Finally, we explored the possible effect of the pollutants’ 
mixture and the risk of TC using WQS and BKMR 
statistical approaches. WQS analysis showed a negative 
association between the mixture of pollutants and 
the TC (OR = 0.53, 95% CI: 0.33–0.86, P = 0.011), whereas 

Table 5 Odds ratios (OR) and β estimates for the association between PFAS, PCBs, and 4,4′-DDE in serum samples and 
thyroiditis, BRAF mutational status, and TSH levels. The analysis was performed using a logistic regression model adjusted for 
sex, age, BMI, familial history of thyroid diseases, and the use of nail polish/makeup remover. Pollutants with DF above 75% were 
considered as continuous variables, whereas compounds with DF between 20% and 75% were dichotomized (detected vs not 
detected). PFDA, PFUdA, PCB-28, PCB-105, PCB-114, PCB-157, and PCB-167 were considered as dichotomous variables, for other 
pollutants serum concentration were ln-transformed.

Thyroiditis yes vs no BRAF mutated vs WT PS-TSH (cases) TSH (controls)

OR (95% CI) P OR (95% CI) P Estimate P Estimate P

Continuous
 PFHxS 1.77 (0.77– 4.07) 0.181 1.12 (0.24– 5.25) 0.890 0.56 0.011 0.04 0.849
 totPFOS 2.02 (0.85– 4.81) 0.122 0.91 (0.18– 4.72) 0.915 0.63 0.007 −0.06 0.769
 linPFOS 2.17 (0.99– 4.74) 0.053 1.44 (0.37– 5.63) 0.598 0.51 0.013 −0.05 0.801
 branPFOS 1.41 (0.69– 2.89) 0.346 0.59 (0.16– 2.26) 0.443 0.40 0.045 −0.04 0.824
 PFOA 2.31 (0.77–6.95) 0.135 0.46 (0.05– 4.43) 0.499 0.23 0.423 −0.15 0.635
 PFNA 2.57 (1.04–6.36) 0.042 0.84 (0.16– 4.33) 0.838 0.28 0.230 −0.22 0.334
 PCB-118 0.83 (0.38– 1.80) 0.635 2.70 (0.81– 8.94) 0.105 0.10 0.651 −0.20 0.427
 PCB-138 1.17 (0.52– 2.61) 0.704 5.31 (1.04– 27.3) 0.045 0.13 0.584 −0.17 0.560
 PCB-153 1.06 (0.49– 2.29) 0.891 5.70 (1.23– 26.4) 0.026 0.03 0.873 −0.15 0.618
 PCB-156 1.34 (0.60– 3.00) 0.473 3.74 (0.72– 19.3) 0.115 0.00 0.990 −0.19 0.542
 PCB-180 0.97 (0.50– 1.89) 0.923 11.4 (1.81– 71.9) 0.010 -0.09 0.661 −0.12 0.715
 4,4′-DDE 1.0 (0.59–1.69) 0.988 1.51 (0.68– 3.37) 0.315 0.03 0.844 −0.04 0.770
Binary
 PFDA 1.66 (0.69– 3.97) 0.257 1.29 (0.30– 5.46) 0.729 0.07 0.785 0.18 0.550
 PFUdA 1.90 (0.64– 5.70) 0.250 5.33 (0.48– 58.6) 0.171 0.37 0.239 0.31 0.295
 PCB-28 0.42 (0.14– 1.25) 0.119 1.78 (0.36– 8.66) 0.477 0.06 0.839 −0.22 0.582
 PCB-105 1.23 (0.47– 3.21) 0.669 0.73 (0.14– 3.87) 0.707 0.25 0.434 −0.83 0.036
 PCB-114 2.23 (0.69– 7.26) 0.182 0.21 (0.03– 1.74) 0.149 0.22 0.534 −0.23 0.608
 PCB-157 1.83 (0.46– 7.30) 0.391 1.37 (0.15– 12.7) 0.783 0.21 0.606 −0.25 0.520
 PCB-167 2.39 (0.70– 8.13) 0.164 0.94 (0.12– 7.69) 0.958 0.28 0.451 −0.45 0.207

Values in bold indicate statistical significance.
branPFOS, branched perfluorooctane sulfonic acid; 4,4′-DDE, 4,4′-dichlorodiphenyldichloroethylene; linPFOS, linear perfluorooctane sulfonic acid; PFHxS, 
perfluorohexanesulfonic acid; PFOA, perfluorooctanoic acid; PFNA, perfluorononanoic acid; PFDA, perfluorodecanoic acid; PFUdA, perfluoroundecanoic 
acid; PCB, polychlorobiphenyl; PS-TSH, presurgical TSH; totPFOS, total perfluorooctane sulfonic acid; WT, wild type.
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no significant positive association was observed 
(P = 0.298). EDCs that mainly contributed to the negative 
association between the outcome and the WQS index 
were PFHxS (weight = 0.23), PFOA (weight = 0.28), 
PCB-118 (weight = 0.3), and PCB-180 (weight = 0.08) 
(Supplementary Fig. 1).

Considering a posterior inclusion probabilities (PIPs) 
threshold of 0.5, in the first level of selection (the group 
level), BKMR analysis showed that both PFAS and 
organochlorine groups were important in determining 
the outcome (group PIP = 0.724, and group PIP = 0.568, 
respectively). In the second level of selection (individual 
pollutants into each group), we were unable to identify 
compounds with the highest impact within each group 
because of low PIP values. Chemicals with the greatest PIP 
were PFHxS, PFDA, and PCB-118 (PIP = 0.380, PIP = 0.217, 
PIP = 0.289, respectively) (Supplementary Table 4).

Concerning the single exposure effect, we observed 
a negative trend for the association between the risk 
of TC and PFHxS, PFOA, and PCB-118, while a positive 
correlation was found for linear PFOS and PFDA (Fig. 2). 
These results are roughly consistent with those obtained 
with mono-pollutant analysis.

In the overall effect of the mixture, we observed a 
negative association between the mixture and the risk 
of TC, even though CIs were wide, indicating the low 
confidence level of this model (Supplementary Fig. 4).

Finally, by applying the BKMR model, no interaction 
between pollutants into the mixture was observed, 
and indeed, the individual effect of each pollutant did 
not change by modifying the quartile of the remaining 
compounds (Fig. 3).

Discussion

The worldwide incidence of TC has been continuously 
rising in the last decades, and it has been recently 
hypothesized that environmental pollutants could be 
involved. The endocrine disruptors (EDCs) PFAS, PCBs, 
and DDT are man-made persistent organic pollutants 
widely detected in the environment and living species. 
It is well-recognized that they play a role in disturbing 
the homeostasis of endocrine systems, including the 
hypothalamus–pituitary–thyroid axis, and more recently, 
a role as carcinogens in several human cancers, included 
TC, has been suggested but with limited and inconsistent 
findings (12, 14, 16, 19, 20, 23, 24, 29, 30, 31,45).

Although most of these organic pollutants have been 
banned and are now globally regulated, populations  
are continuously exposed to them due to their 
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Figure 2

Univariate exposure–response relationships (95% CI) between pollutants’ 
concentrations and thyroid cancer risk. The Bayesian kernel machine 
regression (BKMR) model was computed between ln-transformed serum 
concentrations of perfluoroalkyl substances (PFAS) and of total 
lipids-adjusted polychlorobiphenyls (PCBs) and 4,4′-DDE, and thyroid 
cancer fixing all other compounds at the median concentration. The 
model was adjusted for sex, age, BMI, familial history of thyroid diseases, 
and the use of nail polish/make up remover. PFHxS, 
perfluorohexanesulfonic acid; PFOA, perfluorooctanoic acid; PFNA, 
perfluorononanoic acid; linPFOS, linear perfluorooctane sulfonic acid; 
branPFOS, branched perfluorooctane sulfonic acid; PFDA, 
perfluorodecanoic acid; 4,4′-DDE, 4,4′-dichlorodiphenyldichloroethylene; 
PCB, polychlorobiphenyl.
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Figure 3

Interactions among pollutants determining thyroid cancer risk in the 
BKMR model. Individual effect of pollutants on thyroid cancer when the 
concentration of all other compounds are fixed at their 25th percentile, 
their median or their 75th percentile. The Bayesian kernel machine 
regression (BKMR) model was computed with ln-transformed serum 
concentrations of perfluoroalkyl substances (PFAS), and of total 
lipids-adjusted polychlorobiphenyls (PCBs) and 4,4′-DDE. The model was 
adjusted for sex, age, BMI, familial history of thyroid diseases, and the 
use of nail polish/make up remover. Est, estimate; Q. fixed, quartile fixed; 
PCB, polychlorobiphenyl; 4,4′-DDE, 4,4′-dichlorodiphenyldichloroethylene; 
PFDA, perfluorodecanoic acid; branPFOS, branched perfluorooctane 
sulfonic acid; linear perfluorooctane sulfonic acid; PFNA, 
perfluorononanoic acid; PFOA, perfluorooctanoic acid; PFHxS, 
perfluorohexanesulfonic acid.
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persistence and bioaccumulation/biomagnification in  
the environment, resulting in continuous human 
exposure mainly through diet. PFOA, PFOS, and their 
salts remain the dominant PFAS detected in many 
environmental and human samples (46), as also 
demonstrated by our data showing that total PFOS has 
the highest concentration followed by PFOA, PFHxS,  
and PFNA. These pollutants have been found at  
extremely variable levels in TC patients (21, 22, 26),  
being in our series usually lower (PFOS and 
PFOA) or similar/lower (PFHxS and PFNA) than  
previously reported.
The pesticide metabolite 4,4′-DDE was detected in all our 
samples, in agreement with data reported in the Spanish 
general population (9), even if its median concentration 
is lower in our cohort. Concerning polychlorobiphenyls, 
we found high levels of PCB-153, followed by  
PCB-180 and PCB-138, consistently with previous data 
within the Italian general population coming from the 
same area (47).
Our case–control study shows a positive association 
between TC and detectable PFDA levels, while an 
inverse association has been observed with PFHxS. 
Since TC is more prevalent in women, we looked also for 
associations considering only females and found similar 
results, except for PFOA which became significantly 
and negatively associated with TC. This association  
with PFOA is consistent with the results of the WQS 
analysis which highlighted PFOA as a main driver  
for the negative relationship between TC and pollutant 
mixtures. A significant positive association with 
PFDA has been already reported in breast cancer and 
melanoma (48, 49), whereas only a trend to a positive 
association was observed in the NHANES study by 
Cathey and colleagues when considering only female 
patients with a previous diagnosis of TC (26). On the 
other hand, a significant negative association between 
PFHxS and TC has been recently reported in two Chinese 
series of patients with TC (19, 20), and in a study on 
pre-diagnostic serum from Finland (22). Consistently, a 
negative association between PFHxS and TC, though not 
significant, was also found in the study of Cathey (26).

Interestingly, PFDA is known to have a direct toxicity 
on thyroid cells, inducing an increase of intracellular 
levels of reactive oxygen species (ROS), leading to 
oxidative stress and DNA damage in mouse hepatocytes, 
primary nephrocytes, and oocytes (50, 51, 52). Since 
ROS production is increased in TC with respect to 
normal thyroid tissue (53), we are tempted to speculate  
that PFDA might be involved in TC development by 
increasing ROS. Another possible hormone-independent 
mechanism might be the PFDA-induced suppression 
of senescence in proliferating thyroid cancer cells, 
as recently reported in an in vitro study on gastric 
adenocarcinoma cell lines (54).

The negative association between PFHxS, but likely 
all PFAS, and TC should be treated with caution due to 

possible reverse causality, as highlighted in two very 
recent studies on Chinese case–control populations (19, 
20). The presence of thyroid cancer, as well as treatments 
for TC (surgery, L-T4, lifestyle modifications, and others), 
could potentially increase the PFAS urine excretion 
leading to a decrease of their serum concentration. 
Indeed, after thyroidectomy, TC patients are  
often treated with supraphysiological doses of 
L-T4 which leads not only to the desired TSH mild 
suppression but also to the increase in body metabolism 
and renal clearance. We can thus hypothesize that 
the latter effect could be involved in the decreasing 
of EDC concentrations, leading to a misinterpretation 
of results and suggesting an apparent protective 
role. Consistent with this observation, a negative 
association between pollutants mixture and the OR of  
TC was also found, mainly due to the contribution of 
PFHxS, PFOA, PCB-118, and PCB-180. We also considered 
the possible involvement of a hormetic response, which 
consists of having different effects with low compared 
to high doses of EDC exposure. However, our current 
data do not indicate non-monotonic associations 
by either quartiles’ analyses or the BKMR model. 
Anyway, the recent finding of a negative association  
between pre-diagnostic serum levels of PFHxS and 
TC (22) seems to point toward a real effect, but  
underlying mechanisms are still unknown and warrant 
to be further explored.

Regarding organochlorine pollutants, we did not 
observe any associations with TC, in agreement with the 
findings of Deziel et al., who performed a case–control 
study using post-diagnostic serum (55). Nevertheless, 
the results reported in the literature are discrepant and 
non-conclusive, mostly due to the differences in the 
study design (post-diagnostic or pre-diagnostic sera) and 
ethnicities (12, 29, 31), indicating the need for further 
investigations on this topic.

In the present cohort of TC cases, the association  
between individual EDCs and clinicopathological 
characteristics (thyroiditis and TSH levels) has been 
investigated for the first time, and a positive association 
between PFNA levels and the presence of thyroiditis was 
found. It is worth noting that, because of the differences 
in the design of the studies and the populations included, 
our data are not comparable to previous ones, which 
studied the possible association between EDCs and 
thyroiditis in a series of patients with the autoimmune 
disease with respect to a control population (56), and in 
a large cohort of pregnant women (57).

Moreover, our data indicate a positive association 
between PFHxS and PFOS and higher levels of presurgical 
TSH in patients, but not in controls. This association  
has been previously reported in healthy pregnant 
women (58, 59) and the exposed general population 
(60). To be noted, in our study, TSH values are not  
influenced by pharmacological treatments since the 
analysis was performed only in patients not treated  
with LT4 nor methimazole.
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Thus, these findings suggest that PFHxS and PFOS 
could be involved in the increase of TSH in patients, 
even if their values are within the normal range. One 
possible hormone-dependent mechanism involved 
in this increase might be the reduction of TPO 
activity, as previously observed in in vitro studies 
on follicular cells treated with PFOS (61), but further 
experiments are required to confirm this hypothesis. 
Although we did not observe any association between 
PFOS and TC, an increased risk of TC was found for 
linear PFOS values in both the second and the third 
quartile. Interestingly, two recent studies reported 
increased TC risk associated with PFOS for women 
diagnosed at age <40 years (22) and a 56% increased 
rate of TC diagnosis per doubling of linear PFOS 
intensity in the plasma of patients collected at/before  
cancer diagnosis (21).

Moreover, since TSH has a mitogenic effect on  
follicular thyroid cells (7), the association between  
PFDA and TC development can also be the result of 
the observed TSH increase. Indeed, higher levels 
of TSH, even within normal range, are associated  
with an increased risk of TC, possibly due to TSH’s 
proliferative effect on thyroid cells via the MAPK 
pathway in which BRAF plays an important role (7).

In this context, we studied for the first time the possible 
association between some EDCs, the TC stage, and the 
BRAF molecular status. PFHxS, PFNA, PFOS, and PFDA 

correlated with less aggressive TC, while PCB-105 and 
PCB-118 with more aggressive and larger tumors. 
Moreover, while no significant association was found 
between PFAS and BRAFV600E mutation, PCB-153, PCB-
138, and PCB-180 congeners were significantly associated 
with the presence of BRAFV600E mutation. Interestingly, 
a high incidence of PTC harboring BRAFV600E has been 
reported in volcanic areas, which are characterized by 
non-anthropometric contamination of heavy metals 
known to be EDCs (35).

Hospital-based recruitment of cases and controls 
is a possible limitation of this study because it 
could introduce a selection bias. Nevertheless, 
each recruitment strategy, when voluntary-based, 
unavoidably suffers from the introduction of a bias in 
the representativeness of the control population. On 
the other hand, the hospital is a comfortable and quiet 
site where subjects could be informed about the study 
and the questionnaire administered to them. Further,  
it more easily allows an accurate evaluation of possible 
causes of exclusion. Thus, our recruitment methodology 
likely decreased the risk of misclassification between 
cases and controls and allowed us to achieve a rapid 
and matched enrollment. To note, the selection of 
controls and cases within a hospital has been already 
previously used in several recent studies (19, 20, 62). 
Another possible limitation of our study is that patients 
included in our cross-sectional case–control study were 
recruited after a relatively low median time-lapse after 
surgery (1.2 years) since we were aimed to evaluate 
the effects of some of the EDCs analyzed which have 
a maximum half-life of about 5 years. Nevertheless, 
it must be highlighted that the evaluation of the 
response to initial treatment at 1-year follow-up is 
highly predictive of the final outcome of the patients 
(38). Finally, a larger sample size would increase 
the accuracy and power of the statistical analyses. 
Nevertheless, our case–control study based on a 
population with general background exposure levels of 
pollutants show a significant association of PFAS with 
TC through either a possible direct effect on thyroid 
cells or an indirect effect exerted by TSH increase or 
thyroiditis as summarized in Fig. 4. Differently, PCBs 
may play a role in thyroid cancer by predisposing to 
BRAFV600E mutation. Thus, our and previous findings 
draw attention to the alarming adverse health effects 
of persistent organic pollutants through both hormone-
dependent and hormone-independent pathways.

Supplementary materials
This is linked to the online version of the paper at https://doi.org/10.1530/
ETJ-23-0192.

Declaration of interest
LF is on the Editorial Board of the European Thyroid Journal. LF was not 
involved in the review or editorial process for this paper, on which she is 
listed as an author.

Figure 4

Schematic representation of possible roles of PFAS on thyroid cell and 
carcinogenesis. PFAS might affect hormone-dependent pathways 
increasing TSH levels. On the other hand, PFAS might affect hormone-
independent pathways (A) increasing intracellular levels of reactive 
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