GÉOMÉTRIE ALGÉBRIQUE

Construction d'une surface algébrique irrégulière,

par LUCIEN GODEAUX, Membre de l'Académie.

En dehors des surfaces algébriques contenant un faisceau irrationnel de courbes, des surfaces représentant les couples de points d'une courbe et des surfaces de Picard, on connaît peu d'exemples de surfaces algébriques irrégulières. Il n'est donc pas sans intérêt de faire connaître un tel exemple.

Dans leur Mémoire sur les surfaces hyperelliptiques (¹) MM. F. Enriques et F. Severi ont remarqué qu'entre une surface de Jacobi et une surface de Picard de diviseur δ , qui représente une involution d'ordre δ appartenant à la première surface, existait une correspondance $(1, \delta)$; ils déduisaient cette propriété de la représentation des surfaces en question par des fonctions quadruplement périodiques. En nous appuyant sur nos recherches sur les involutions cycliques n'ayant qu'un nombre fini de points unis (²), nous avons pu démontrer géométriquement ce théorème dans le cas $\delta = 2$ (³).

⁽¹⁾ Acta Mathematica, 1903, t. XXXII, pp. 283-392; t. XXXIII, pp. 321-403 (Voir n. 12).

⁽²⁾ Voir notre exposé sur Les involutions cycliques appartenant à une surface algébrique (Paris, Hermann, 1935) et notre Mémoire sur les surfaces algébriques doubles ayant un nombre fini de points de diramation (Annales de la Faculté des Sciences de Toulouse, 1914, pp. 289-312).

⁽³⁾ Sur les surfaces de Picard de diviseur deux (BULL. DE L'ACAD. ROY. DE BELGIQUE, 1927, pp. 394-414).

Le procédé que nous avons employé nous a permis d'établir ensuite que si une surface irrégulière contient une involution régulière d'ordre deux, n'ayant qu'un nombre fini de points unis, elle est l'image d'une involution d'ordre deux, privée de points unis, appartenant à une surface algébrique de même irrégularité (¹), propriété que nous avons pu étendre récemment au cas où l'involution est d'ordre premier quelconque (²). Nous utilisons le théorème précédent en partant de la surface qui représente les couples de points d'une courbe de genre trois. On sait que cette surface contient une involution d'ordre deux possédant 28 points unis. Cette involution est régulière (³) et d'autre part, la surface a l'irrégularité trois (4). Cela nous permet de construire une surface présentant les caractères

$$p_a = 1$$
, $p_g = 4$, $p^{(1)} = 13$, $P_2 = 14$, $P_3 = 38$,

1. Soit γ une courbe de genre trois, à modules généraux. On peut supposer sans restriction que γ est une

⁽¹⁾ Sur une propriété des surfaces algébriques irrégulières contenant une involution régulière d'ordre deux (Bull. de l'Acad. Roy. de Belgique, 1927, pp. 524-543). Voir aussi Sur les involutions régulières d'ordre deux appartenant à une surface irrégulière (Idem, 1924, pp. 434-446; 1925, pp. 37-47, 157-166); Sur les involutions régulières d'ordre deux appartenant à une surface irrégulière (Proceedings of the Intern. Mathem. Congress, Toronto, 1934, t. I, pp. 733-737).

⁽²⁾ Voir une note en cours d'impression dans le Bulletin des Sciences Mathématiques.

⁽⁸⁾ La surface image de cette involution a été étudiée par G. Humbert, Sur une surface du sixième ordre liée aux fonctions abéliennes de genre trois (Journal de Liouville, 1896, pp. 263-293; Œuvres, tome II, pp. 269-296) et M. L. Remy, Sur certaines surfaces algébriques liées aux fonctions abéliennes de genre trois (Journal de Liouville, 1908, pp. 1-37); Sur une classe de surfaces algébriques liées aux fonctions abéliennes de genre trois (Annales de l'École Normale Supérieure, 1909, pp. 193-258).

⁽⁴⁾ Au sujet des surfaces qui représentent les couples de points d'une courbe algébrique, voir M. De Franchis, Sulle varietà co² delle coppie di punti di due curve o di una curva algebrica (Rend. Circolo Matematico di Palermo, 1903, pp. 104-121); Severi, Sulle corrispondenze fra i punti di una curva algebrica e sopra certe classi di superficie (MEM. R. Accad. di Torino, 1903, pp. 1-49) et Sulle superficie che rappresentano le coppie di punti di una curva algebrica (Ath. R. Accad. di Torino, 1902, pp. 185-200).

courbe plane du quatrième ordre ; la série canonique de la courbe γ est alors découpée par les droites du plan.

Désignons par F la surface qui représente les couples de points non ordonnés de la courbe γ . On sait que la surface F présente les caractères

$$p_a = 3$$
, $p_a = 0$, $p^{(1)} = 7$, $P_2 = 7$, $P_3 = 19$, ...

Les courbes canoniques C_0 de F correspondent aux séries linéaires g_4^1 canoniques de la courbe γ , c'est-à-dire aux séries découpées sur γ par les faisceaux de droites de son plan. Aux couples de points de γ contenant un point fixe correspondent sur F les points d'une courbe K, de genre trois, variable dans un système continu $\{K\}$, ∞^1 , d'indice deux. L'enveloppe K_0 de ce système représente les couples de points confondus de la courbe γ .

Aux séries linéaires g_4^1 non spéciales de γ correspondent sur F les courbes paracanoniques, appartenant au système continu complet $\{C\}$ comprenant le système

canonique | Co |.

Soient P_1 un point de F, $P_{11}P_{12}$ le couple de points de γ qu'il représente. La droite $P_{11}P_{12}$ coupe encore γ en deux points P_{21} , P_{22} . Le point P_2 de F qui représente le couple $P_{21}P_{22}$ est complètement déterminé par P_1 . Les couples P_1P_2 forment sur F une involution I_2 , d'ordre deux. Cette involution possède 28 points unis, qui correspondent aux 28 bitangentes de la courbe γ .

Le système bicanonique | 2C₀ | de F appartient à l'involution I₂.

On peut prendre, pour modèle projectif de la surface Φ , image de l'involution I_2 , la surface du douzième ordre, de l'espace S_6 , intersection d'un cône V_3^4 projetant d'un point O une surface de Veronese et d'une hypersurface cubique V_5^3 ne passant pas par O. Aux 28 points unis de I_2 correspondent 28 points doubles coniques de Φ , de sorte que V_5^3 doit toucher le cône V_3^4 en 28 points.

La surface Φ présente les caractères

$$p_{a} = p_{a} = 3$$
, $p^{(1)} = 4$, $P_{2} = 7$, $P_{3} = 13$, ...

Les courbes Γ_0 , du sixième ordre, découpées sur Φ par les cônes projetant de O les coniques de la surface de Veronese, sont les courbes canoniques de Φ ; elles correspondent aux courbes C_0 . Les courbes bicanoniques de Φ sont les sections hyperplanes de cette surface.

2. La quartique γ est l'enveloppe de 63 systèmes ∞^1 d'indice deux de coniques. Soient $\{\epsilon\}$ un de ces systèmes et ϵ_0 une de ses coniques. Les coniques qui passent par les points de contact de ϵ_0 avec γ coupent encore γ en des groupes de quatre points qui sont les points de contact d'une conique du système $\{\epsilon\}$. Il en est ainsi en particulier lorsque la conique menée par les points de contact de ϵ_0 avec γ dégénère en deux droites.

La série non spéciale g_4^1 des points de contact des coniques de $\{\epsilon\}$ avec γ est représentée sur F par une courbe paracanonique que nous désignerons par C_1 . De la propriété qui vient d'être indiquée, on conclut que la courbe C_1 est transformée en elle-même par la transformation birationnelle T de F en elle-même, génératrice de l'involution I_2 .

Le système $\{\epsilon\}$ contient six coniques dégénérées en des couples de bitangentes, par conséquent la courbe C_1 passe par 12 points unis de I_2 .

Les autres systèmes de coniques inscrites dans γ donnent 62 autres courbes C_2 , C_3 , ..., C_{63} de $\{C\}$ transformées en elles-mêmes par T et passant chacune par 12 points unis de I_2 .

Le système continu complet $\{C\}$ contient donc 64 systèmes linéaires appartenant à l'involution I_2 . Le système canonique $|C_0|$ et les 63 systèmes ∞^0 $|C_1|$, $|C_2|$, ..., $|C_{63}|$. On sait qu'il ne peut en contenir d'autres.

Considérons une courbe quelconque C de $\{C\}$ et soient C' la courbe que T lui fait correspondre et Γ^* la courbe qui correspond sur Φ à l'ensemble C + C'. Lorsque C décrit $\{C\}$, C' décrit un système continu. En particulier, si C vient coïncider avec une courbe C_0 , C' vient coïncider avec la même courbe et par conséquent les courbes C' appartiennent à $\{C\}$. Les courbes C, C' se rencontrent en six points formant trois couples de I_2 , par suite la courbe Γ^* possède trois points doubles. La courbe Γ^* est, comme C, de genre effectif 7, par conséquent, elle est de genre virtuel dix.

Lorsque la courbe C coı̈ncide avec une courbe C_0 , Γ^* coı̈ncide avec une courbe bicanonique $2\Gamma_0$ comptée deux fois. Comme la surface Φ est régulière, lorsque C décrit $\{C\}$, Γ^* décrit un système continu sur Φ et ce système appartient à un système linéaire qui est, ici, le système bicanonique $|2\Gamma_0|$.

Appelons Γ_1 , Γ_2 , ..., Γ_{64} les courbes qui correspondent

sur Φ aux courbes C_1 , C_2 , ..., C_{63} de F.

Lorsque la courbe C vient à coıncider avec la courbe C_1 , C' coıncide également avec C_1 et la courbe Γ^* avec la courbe Γ_1 comptée deux fois, augmentée des courbes rationnelles de degré — 2, infiniment petites, équivalentes aux domaines des 12 points de diramation de Φ appartenant à Γ_1 . La courbe Γ_1 est d'autre part d'ordre six et il en résulte qu'il existe un hyperplan de S_6 touchant la surface Φ le long de la courbe Γ_1 et passant sur 12 des 28 points doubles de Φ . On arrive à des conclusions analogues pour les courbes Γ_2 , Γ_3 , ..., Γ_{63} .

De ce qui précède, on conclut également que les courbes $2C_1$, $2C_2$, ..., $2C_{63}$ appartiennent au système

bicanonique | 2C₀ | de F.

3. Considérons le système continu complet { D} = { 2C} qui comprend le système bicanonique $|D_0| = |2C_0|$, appartenant à l'involution I_2 . Le système {D} contient

en outre 63 systèmes linéaires transformés en euxmêmes par T; nous les désignerons par $|D_1|$, $|D_2|$, ..., $|D_{63}|$.

Nous venons de voir que le système bicanonique $|D_0|$ comprend les courbes $2C_1$, $2C_2$, ..., $2C_{63}$, donc on peut écrire

$$|D_1| = |C_0 + C_1|, |D_2| = |C_0 + C_2|, ...$$

 $|D_{63}| = |C_0 + C_{63}|.$

Les ∞^3 systèmes linéaires |D| du système continu $\{D\}$ ont mêmes caractères que le système $|D_0|$, c'est-à-dire le degré 24, le genre 19 et la dimension 6.

Supposons que le système $|D_1|$ par exemple, puisse appartenir à l'involution I_2 . Au système $|D_1|$ correspond alors sur Φ un système linéaire $|\Delta_1|$, de degré 6, de genre 7 et de dimension 6, ce qui est impossible, car la surface Φ serait alors rationnelle. Il en résulte que $|D_1|$ contient deux systèmes linéaires partiels $|D_{11}|$, $|D_{12}|$, appartenant à l'involution I_2 . L'un de ces systèmes, par exemple $|D_{11}|$, a pour points-base les 12 points unis de I_2 appartenant à C_1 ; l'autre a pour points-base les 16 points unis restants de I_2 .

Au système $|D_{11}|$ correspond sur Φ un système linéaire complet $|\Delta_{11}|$ de degré 6, de genre 7, dont la dimension, d'après le théorème de Riemann-Roch, est au moins égale à 3. Au système $|D_{12}|$ correspond sur Φ un système $|\Delta_{12}|$ de degré 4, de genre 6, dont la dimension est au moins égale à 2. D'autre part, T opérant sur les courbes de $|D_1|$ comme une homographie, la somme des dimensions de $|\Delta_{11}|$, $|\Delta_{12}|$ doit être égale à cinq. Par suite, $|\Delta_{11}|$ est de dimension 3 et $|\Delta_{12}|$ de dimension 2.

Remarquons en passant que si l'on rapporte projectivement les courbes Δ_{11} aux plans de l'espace, on obtient comme modèle projectif de Φ la surface du sixième ordre considérée par Humbert.

A une courbe D correspond sur Φ une courbe Δ^* variable dans un système continu appartenant à un système linéaire. En faisant coïncider D avec une courbe D_0 , on voit que ce système linéaire est le double du système bicanonique $|2\Delta_0| = |4\Gamma_0|$ de Φ . En faisant ensuite coïncider D avec une courbe D_{11} ou avec une courbe D_{12} , on obtient les relations fonctionnelles

$$2\Delta_0 = 2\Delta_{11} + A_1 = 2\Delta_{12} + A_1', \tag{1}$$

où A_1 est la somme des courbes rationnelles de degré — 2 équivalentes aux 12 points doubles de diramation de Φ appartenant aux courbes Δ_{11} et A'_1 la somme des courbes équivalentes aux points doubles de diramaticn de Φ appartenant aux courbes Δ_{12} .

On arrive à des conclusions analogues pour les systèmes $|D_2|$, $|D_3|$, ..., $|D_{63}|$. Le système $|D_i|$ contient deux systèmes linéaires partiels $|D_{i1}|$, $|D_{i2}|$ appartenant à I_2 ; le premier a pour points-base les 12 points unis appartenant à C_i , l'autre, les autres points unis de I_2 . Les systèmes complets $|\mathcal{L}_{i1}|$, $|\mathcal{L}_{i2}|$ qui leur correspondent sur Φ donnent

$$2\Delta_0 \equiv 2\Delta_{i1} + A_i \equiv 2\Delta_{i2} + A'_i, \quad (i = 1, 2, ..., 63).$$

 A_i et A'_i ont des significations analogues à A_1 , A'_1 . On a de même

$$\Delta_0 \equiv 2\Gamma_0 \equiv 2\Gamma_1 + A_1 \equiv 2\Gamma_2 + A_2 \equiv \dots \equiv 2\Gamma_{63} + A_{63}.$$
 (2)

Le système complet $|2\mathcal{L}_0|$ est découpé sur Φ par les hyperquadriques de S_6 . L'interprétation projective des relations fonctionnelles (1) montre qu'il existe une hyperquadrique touchant Φ le long d'une courbe \mathcal{L}_{11} (ou \mathcal{L}_{i1}) et une hyperquadrique touchant Φ le long d'une courbe \mathcal{L}_{12} (ou \mathcal{L}_{i2}).

4. Ainsi que nous l'avons démontré dans notre Mémoire sur les surfaces algébriques doubles... (loc. cit.) l'existence de 12 points doubles coniques de la surface Φ et de la courbe Δ_{11} passant par ces points et satisfaisant à la relation (1), suffit pour affirmer qu'il existe une surface Ψ_1 irréductible contenant une involution d'ordre deux I_2 dont Φ est l'image, involution possédant 12 points unis correspondant aux 12 points doubles en question.

Aux sections hyperplanes Δ_0 de Φ correspondent sur Ψ_1 des courbes H_{01} de genre 19, formant un système linéaire de degré 24 et de dimension 6, appartenant à I.

Aux courbes Δ_{11} de Φ correspondent sur Ψ_1 des courbes H_{02} de genre 19, formant un système linéaire de degré 24, de dimension 3, appartenant à I_2 , et ayant pour point-base les 12 points unis de cette involution.

Les courbes H_{01} , H_{02} appartiennent totalement à un même système linéaire $\mid H_0 \mid$, de dimension 10, transformé lui-même par la transformation birationnelle T_1 de Ψ_1 en soi, génératrice de l'involution I_2 . Nous prendrons comme modèle projectif de la surface Ψ_1 celui que l'on obtient en rapportant projectivement les courbes H_0 aux hyperplans d'un espace S_{10} .

Les courbes H_{01} sont les tranformées des courbes bicanoniques de Φ , donc $|H_0|$ est le système bicanonique de Ψ_1 . A une courbe Γ_0 de Φ correspond sur Ψ_1 une courbe G_{01} de genre 7 et à la courbe Γ_1 , une courbe G_{02} de genre 7 également, passant par les 12 points unis de I_2 . Les courbes $2G_{01}$ et G_{01} + G_{02} appartiennent au système $|H_0|$, donc les courbes G_{01} , G_{02} sont équivalentes et appartiennent à un même système linéaire $|G_0|$. Les courbes Γ_0 étant les courbes canoniques de Φ , $|G_0|$ est le système canonique de Ψ_1 . Ce système a le genre 7, le degré 6 et la dimension 3.

Entre le genre p_a de Ψ_1 , le genre $p'_a = 3$ de Φ et le nombre des points unis de I'_2 , on a la relation

$$4(p_a+1)=8(p'_a+1)-12,$$

d'où $p_a = 4$. On en conclut que la surface Ψ_1 est régulière et a les caractères

$$p_a = p_g = 4$$
, $p^{(1)} = 7$, $P_g = 11$, $P_3 = 23$, ...

Aux 16 points doubles de Φ appartenant aux courbes Δ_{12} correspondent sur Ψ_1 32 points doubles coniques dont chacun est équivalent, au point de vue des transformations birationnelles, à une courbe rationnelle de degré — 2. Nous désignerons par A la somme de ces courbes.

Aux courbes Δ_{12} correspondent sur Ψ_1 des courbes H_1 de genre 11, formant un système linéaire de degré 8; ces courbes passent par les 32 points doubles de Ψ_1 . Le système $|H_1|$ est un réseau et de la relation (1), on déduit

$$2H_0 \equiv 2H_1 + A. \tag{2}$$

On observera que si la dimension de $|H_1|$ était supérieure à 2, comme ce système est transformé en lui-même par T_1 , il contiendrait, outre les transformées des courbes Δ_{12} , un système linéaire partiel de courbes appartenant à I_2' et ayant pour points-base les points unis de cette involution. $|H_1|$ étant de degré 8, ce système devrait se réduire à une courbe unique, à laquelle devrait correspondre, sur Φ , une courbe X de genre trois, satisfaisant à la relation fonctionnelle.

$$2\Delta_{12} \equiv 2X + A_1.$$

Cette courbe passant par les 28 points doubles de Φ , on aurait

$$2\Delta_0 \equiv 2X + A_1 + A_1'$$

et à la courbe X correspondrait, sur F, une courbe bicanonique D_0 passant par les 28 points unis de I_2 , ce qui est impossible.

5. Nous pouvons faire un raisonnement analogue au précédent en partant non plus de la courbe Δ_{11} , mais de la courbe Δ_{12} . On obtient alors une surface Ψ_2 , contenant une involution I_2' d'ordre deux, dont l'image

est la surface Φ , les points de diramation étant les 16 points doubles coniques appartenant aux courbes Δ_{12} .

Aux courbes Δ_0 de Φ correspondent sur Ψ_1 des courbes K_{01} de genre 19, formant un système linéaire de degré 24 et de dimension 6, appartenant à I_2'' . Aux courbes Δ_{12} correspondent des courbes K_{02} également de genre 19, formant un système linéaire $|K_{02}|$ de degré 24, de dimension 2, appartenant à l'involution I_2'' et ayant pour points-base les 16 points unis de cette involution.

Les systèmes $|K_{01}|$, $|K_{02}|$ appartenant à un même système linéaire complet $|K_{0}|$ de genre 19, de degré 24 et de dimension 9, qui est le système bicanonique

de Ψ_2 .

Le calcul du genre arithmétique de Ψ_2 donne $p_a=3$. A la courbe Γ_0 de Φ correspond sur Ψ_2 une courbe G_0'' de genre 7. Le système complet $|G_0''|$ est le système canonique de Ψ_2 . Le système $|\Gamma_0|$ de Φ étant un réseau, la dimension de $|G_0'|$ est au moins égale à deux. Si elle est supérieure à 2, $|G_0'|$ étant transformé en luimême par la transformation T_2 de Ψ_2 en soi génératrice de I_2'' , il existé des courbes de $|G_0'|$ transformées en elles-mêmes par T_2 et passant par les 16 points unis de I_2'' . $|G_0''|$ étant de degré 6, il ne peut d'ailleurs exister qu'une telle courbe. A cette courbe correspondrait sur Φ une courbe rationnelle du sixième ordre passant par les 16 points doubles communs aux courbes Δ_{12} . Si nous désignons cette courbe par X, on aurait

$$2\Gamma_0 \equiv 2X + A_1'$$

et $2X + A'_1$ serait une section hyperplane bicanonique de Φ , ce qui est impossible, car les 16 points doubles de Φ appartenant aux courbes Δ_{12} ne peuvent se trouver dans un hyperplan. $|G'_0|$ est donc un réseau.

En rapportant projectivement les courbes K_0 aux hyperplans d'un espace S_9 , on obtient pour Ψ_2 une surface d'ordre 24. Aux 12 points doubles coniques

de Φ appartenant aux courbes Δ_{11} , correspondent sur ce modèle projectif de Ψ_2 , 24 points doubles coniques. Nous désignerons par A' la somme des courbes rationnelles de degré — 2 équivalentes à ces 24 points doubles.

Aux courbes Δ_{11} correspondent sur Ψ_2 des courbes K_1 de genre 13, passant par les 24 points doubles de Ψ_2 . Les courbes K, forment un système linéaire de degré 12 et de dimension 3. La relation (1) donne, sur Ψ_2 ,

$$2K_0 \equiv 2K_1 + A'. \tag{3}$$

La surface Ψ_2 est régulière et présente les caractères $\phi_a = \phi_a = 3$, $\phi^{(1)} = 7$, $P_2 = 10$, $P_3 = 22$,

6. Les surfaces Ψ_1 , Ψ_2 sont liées par une correspondance algébrique (2, 2), deux points homologues appartenant à un groupe de I'2 sur \mathbb{Y}_1 et à un groupe de I'2 sur Ψ_2 correspondant à un même point de Φ . Nous désignerons par Fo une surface dont les points représentent les couples de points homologues de Ψ_1 , Ψ_2 dans la correspondance envisagée.

A un point de Ψ_1 correspondent deux points de F_0 et les couples de points ainsi obtenus forment une involution J'2. De même, il existe sur Fo une involution

 J_2'' dont Ψ_2 est une image.

Dans la correspondance (1, 2) entre Ψ_1 et F_0 , les points de diramation sont les 32 points doubles coniques de Ψ_1 . De même, dans la correspondance (1, 2) entre Ψ_2 et F_0 , les points de diramation sont les 24 points doubles coniques de Ψ_2 .

A un point de Φ correspondent quatre points de F_0 se répartissant en deux groupes de J' et deux groupes de I_2^r . Si nous désignons par θ_1 , θ_2 les transformations birationnelles de Fo en soi génératrices de J'2, J'2, la transformation $\theta = \theta_1 \theta_2$ est involutive et engendre une involution J₂.

Deux courbes H_0 de Ψ_1 correspondent sur F_0 aux courbes L'₀₁ de genre 37, formant un système | L'₀₁ |

de degré 48 et de dimension 10, appartenant à J_2 . Aux courbes H_1 correspondent des courbes L_{02} , de genre 37, formant un réseau $|L_{02}|$, de degré 48, appartenant à J_2 . En vertu de la relation (2), les systèmes $|L_{01}'|$, $|L_{02}'|$ appartiennent à un même système $|L_0|$, de genre 37, de degré 48 et de dimension 13, transformé en lui-même par θ_1 . Les courbes L_{02}' passent par les 32 points unis de J_2' . Le système $|H_0|$ étant le système bicanonique de Ψ_1 , $|L_0|$ est le système bicanonique de F_0 .

Aux courbes K_0 de Ψ_2 correspondent sur F_0 des courbes L'_{01} de genre 37, formant un système $|L'_{01}|$ de degré 48 et de dimension 9, appartenant à J'_2 . Aux courbes K_1 correspondent des courbes L'_{02} de genre 37, formant un système $|L'_{02}|$ de degré 48, de dimension 3, appartenant à J'_2 et ayant pour points-base les 24 points unis de cette involution. En vertu de la relation fonctionnelle (3), les systèmes $|L'_{01}|$, $|L'_{02}|$ appartiennent à un même système qui doit être le système bicanonique $|L_0|$ de F_0 , puisque $|K_0|$ est le système bicanonique de Ψ_2 .

Aux courbes canoniques G_0' de Ψ_1 correspondent sur F_0 des courbes G_0 de genre 13, formant un système $|G_0|$, de degré 12, et de dimension au moins égale à trois. $|G_0|$ est le système canonique de F_0 .

Aux courbes canoniques G_0' de Ψ_2 correspondent sur F_0 des courbes appartenant à $|G_0|$ et formant un réseau appartenant à J_2' . A la courbe Γ_1 , de Φ correspond sur Ψ_2 une courbe G_1'' de genre 1, passant par les 34 points unis de I_2' . On a

$$2G_0' \equiv 2G_1' + A'.$$

La courbe G_1' est isolée et il lui correspond sur F_0 une courbe de genre 13 qui, en vertu de la relation fonctionnelle précédente, appartient au système $\mid G_0 \mid$. Celui-ci a par conséquent la dimension trois et appartient à l'involution J_2' .

Entre les genres arithmétiques p'_a , p_a de deux surfaces liées par une correspondance (1, 2) présentant σ points unis, on a la relation

$$4(p_a + 1) = 8(p'_a + 1) - \sigma.$$

Appliquons cette relation à la correspondance entre Ψ_1 et F_0 , puis à la correspondance entre Ψ_2 et F_0 . Dans le premier cas, on a $p'_a=4$, $\sigma=32$, d'où $p_a=1$. Dans le second cas, on a $p'_a=3$, $\sigma=24$, d'où $p_a=1$. La surface F_0 présente donc les caractères

$$p_a = 1$$
, $p_a = 4$, $p^{(1)} = 13$, $P_2 = 14$, $P_3 = 38$, ...

7. La transformation θ engendre sur F_0 une involution J_2 d'ordre deux qui, d'après la construction de F_0 , a pour image la surface F.

Nous avons vu que toute courbe canonique G_0 de F_0 est transformée en elle-même par θ_1 . Par contre, il existe un réseau de courbes canoniques appartenant à J_2'' et en dehors de ce réseau, une courbe canonique isolée transformée en elle-même par θ_2 . Il en résulte que ce réseau appartient à l'involution J_2 ; il a pour homologue sur F le système canonique $|C_0|$ de cette surface. La courbe canonique isolée, est transformée en elle-même par θ ; il lui correspond sur F la courbe C_1 .

Le système bicanonique $|L_0|$ de F_0 contient deux systèmes linéaires partiels composés au moyen de J_2 . L'un, de dimension six, est le transformé du système bicanonique $|D_0|$ de F; l'autre, de dimension six également, est le transformé de $|D_1|$. Ces deux systèmes sont dépourvus de points-base, par conséquent l'involution J_2 est dépourvue de points unis.

Nous avons rappelé qu'il existe, sur la surface F, un système continu ∞^1 , $\{K\}$, de courbes de genre trois. A ce système correspond sur F_0 un système continu ∞^1 de courbes $\{M_1\}$ de genre cinq, ayant également, comme $\{K\}$, l'indice deux.

Sur la surface F, les courbes C_0 —K forment également un système continu ∞^1 d'indice deux, de courbes de genre trois. Les courbes C_0 —K et K se coupent en deux points. Aux courbes C_0 —K correspondent, sur F_0 , des courbes M_2 , de genre cinq, formant un système continu ∞^1 , $\{M_2\}$, d'indice deux. Les courbes M_1 , M_2 se coupent en quatre points et on a évidemment

$$G_0 \equiv M_1 + M_2.$$

8. Nous allons maintenant construire un modèle projectif de la surface F, sous forme d'une surface double, en partant du modèle projectif canonique de la surface Ψ_1 .

Nous avons vu que le système canonique $|G'_0|$ de Ψ_1 était ∞^3 et contenait un réseau $|G'_{01}|$ appartenant à l'involution I'_2 et une courbe G'_{02} , isolée, lieu de ∞^1 couples de I'_1 . Rapportons projectivement les courbes G'_0 aux plans de l'espace. La surface Ψ_1 se transforme birationnellement en une surface du sixième ordre, à sections planes de genre 7, que nous désignerons par Ψ_1^* .

Soit P_1P_2 un couple de I_2' appartenant à G_{02}' . Les courbes de $|G_0'|$ passant par P_1 forment un réseau déterminé par la courbe G_{02}' et par les courbes d'un faisceau de $|G_{01}'|$. Ces courbes passent par P_2 , donc les courbes G_9' passant par P_1 passent par P_2 et au couple P_1P_2 correspond un point double de la surface Ψ_1^* . Il en résulte que la surface Ψ_1^* possède une cubique plane double γ , dont le domaine correspond à la courbe G_{02}' .

Aux courbes G_{01}' correspondent les sections de Ψ_1^* par les plans d'une gerbe de sommet O, n'appartenant pas à la surface. L'involution I_2' est engendrée sur Ψ_1^* par une homologie harmonique de sommet O, dont le plan est celui de la cubique γ . Les points unis de cette involution sont les 12 points-pinces de la surface appartenant à la courbe γ . Aux 32 points doubles

coniques de Ψ_1 correspondent 32 points doubles coniques de Ψ_1^* , situés par couples sur des droites passant par O.

Comme vérification, remarquons que les courbes canoniques de Ψ_1^* sont découpées par les quadriques passant par γ , c'est-à-dire par les quadriques formées du plan de γ et des plans de l'espace. La surface Ψ_1^* a donc bien ses sections planes comme courbes canoniques. On a bien $\phi_q = 4$, $\phi^{(1)} = 7$.

Les courbes bicanoniques de Ψ_1^* sont découpées par les surfaces du quatrième ordre passant doublement par γ , c'est-à-dire par des surfaces formées du plan de γ et des surfaces cubiques passant par γ . Les courbes bicanoniques correspondent aux courbes H_0 et on a bien $P_2 = 11$.

Interprétons maintenant la relation fonctionnelle

$$|2H_0| = |2H_1 + A|$$

sur la surface Ψ_1^* . Le système $|2H_0|$ est découpé sur Ψ_1^* par les surfaces du sixième ordre passant doublement par la courbe γ . Parmi celles de ces surfaces (distinctes de Ψ_1^*) qui passent par les 32 points doubles, il y en a ∞^2 qui touchent la surface Ψ_1^* le long d'une des ∞^2 courbes H_1 .

Cela étant, soient

$$\Psi(x_0, x_1, x_2, x_3) = 0, \quad \phi(x_0, x_1, x_2, x_3) = 0$$

l'équation de Ψ_1^* et celle d'une surface du 6e ordre, passant doublement par γ , touchant Ψ_1^* le long d'une courbe H_1 . Les équations

$$\Psi(x_0, x_1, x_2, x_3) = 0, \quad x_4^2 = \phi(x_0, x_1, x_2, x_3)$$

représentent, dans un espace S_4 , une surface birationnellement identique à F_0 . Entre Ψ_1^* et la surface qui vient d'être construite, existe en effet une correspondance (1, 2) dont les points de diramation sont les 32 points doubles coniques.

Liège, le 8 mai 1943.