CONSTRUCTION D'UNE VARIÉTÉ ALGÉBRIQUE A TROIS DIMENSIONS, D'ORDRE SIX, A COURBES-SECTIONS DE GENRE TROIS

par Lucien GODEAUX

Membre de la Société

Dans certaines recherches sur les surfaces algébriques, nous avons rencontré le problème suivant : Construire une variété algébrique à trois dimensions appartenant à un espace linéaire à cinq dimensions, d'ordre six, dont les sections par des espaces à trois dimensions sont des courbes de genre trois (non hyperelliptiques).

M. F. Jongmans a déterminé les variétés algébriques à trois dimensions à courbes-sections de genre trois (¹) et la variété que nous avons à construire est un cas particulier d'une des varités rencontrées par ce géomètre (cfr le 2º du théorème à la fin du nº 8 du travail cité). Cependant, nous avons repris la question par une méthode différente de celle de M. Jongmans (méthode qui n'est d'ailleurs pas applicable au problème général traité par celui-ci) pour mettre en évidence quelques propriétés qui nous seront utiles. M. Jongmans a rencontré la variété ayant pour représentation dans un espace à trois dimensions le système des surfaces cubiques passant par une cubique gauche. Cette variété est d'ordre dix et appartient à un espace linéaire à neuf dimensions. La variété que nous considérons ici est la projection de la précédente à partir de quatre de ses points sur un espace linéaire à cinq dimensions.

1. — Considérons les équations

(¹) F. Jongmans, Les variétés algébriques à trois dimensions dont les courbessections sont de genre trois (Bulletin de l'Académie roy. de Belgique, 1943, pp. 766-782, 823-835).

où nous supposons

$$a_{x} = a_{0}x_{0} + a_{1}x_{1} + a_{2}x_{2} + a_{3}x_{3},$$

$$a'_{x} = a'_{0}x_{0} + a'_{1}x_{1} + a'_{2}x_{2} + a'_{3}x_{3},$$

$$d''_{x} = d''_{0}x_{0} + d''_{1}x_{1} + d''_{2}x_{2} + d''_{3}x_{3}.$$

Il est bien connu que dans un espace à trois dimensions les équations (1) représentent une courbe gauche C, d'ordre six et de genre trois, non hyperelliptique (2).

Écrire les équations (1) revient à écrire que les équations

$$y_0 a_x + y_1 a'_x + y_2 a''_x = 0,$$

$$y_0 b_x + y_1 b'_x + y_2 b''_x = 0,$$

$$y_0 c_x + y_1 c'_x + y_2 c''_x = 0,$$

$$y_0 d_x + y_1 d'_x + y_2 d''_x = 0$$

sont compatibles. Écrivons ces équations respectivement sous la forme

L'élimination des x donne

$$\begin{vmatrix} \alpha_0 & \alpha_1 & \alpha_2 & \alpha_3 \\ \beta_0 & \beta_1 & \beta_2 & \beta_3 \\ \gamma_0 & \gamma_1 & \gamma_2 & \gamma_3 \\ \delta_0 & \delta_1 & \delta_2 & \delta_3 \end{vmatrix} = 0,$$

$$(3)$$

équation qui représente, dans le plan des y, une courbe plane γ_4 du quatrième ordre, birationnellement identique à C.

2. — Ces points rappelés, supposons que l'on ait

$$a_x = a_0 x_0 + a_1 x_1 + a_2 x_2 + a_3 x_3 + a_4 x_4, \dots$$

Les équations (2) deviennent

$$x_0 \alpha_0 + x_1 \alpha_1 + x_2 \alpha_2 + x_3 \alpha_3 + x_4 \alpha_4 = 0, \dots$$

On en déduit

$$\rho x_0 = \left| \begin{array}{c} \alpha_1 \alpha_2 \alpha_3 \alpha_4 \end{array} \right|, \ \rho x_1 = \left| \begin{array}{c} \alpha_2 \alpha_3 \alpha_4 \alpha_0 \end{array} \right|, \ \rho x_2 = \left| \begin{array}{c} \alpha_3 \alpha_4 \alpha_0 \alpha_1 \end{array} \right|,$$

$$\rho x_3 = \left| \begin{array}{c} \alpha_4 \alpha_0 \alpha_1 \alpha_2 \end{array} \right|, \ \rho x_4 = \left| \begin{array}{c} \alpha_0 \alpha_1 \alpha_2 \alpha_3 \end{array} \right|$$

(2) Voir par exemple M. STUYVAERT, Cinq Études de Géométrie analytique (Mémoires de la Société Roy. des Sciences de Liège, 1907, 3e série, t. VII).

où, pour abréger, nous n'avons écrit que la première ligne des déterminants, les autres lignes s'obtenant en remplaçant successivement α par β , γ , δ .

Dans un espace S_4 à quatre dimensions, les équations (3) sont les équations paramétriques d'une surface F. Aux sections de celle-ci par des hyperplans correspondent dans le plan des y les courbes γ_4 du quatrième ordre passant par les points

$$\begin{vmatrix} \alpha_0 & \alpha_1 & \alpha_2 & \alpha_3 & \alpha_4 \\ \beta_0 & \beta_1 & \beta_2 & \beta_3 & \beta_4 \\ \gamma_0 & \gamma_1 & \gamma_2 & \gamma_3 & \gamma_4 \\ \delta_0 & \delta_1 & \delta_2 & \delta_3 & \delta_4 \end{vmatrix} = 0,$$

c'est-à-dire par dix points.

La surface F est d'ordre six et ses sections hyperplanes sont des courbes C de genre trois.

L'adjoint $|\gamma'_4|$ au système $|\gamma_4|$ est constitué par le système des droites du plan. A ces droites correspondent sur F des courbes C' du quatrième ordre. Comme les dix points-base de $|\gamma_4|$ n'appartiennent pas en général à une cubique, une droite ne peut appartenir à une courbe γ_4 et une courbe C' ne peut donc appartenir à un hyperplan. Les courbes C' sont des courbes rationnelles normales du quatrième ordre.

3. — Considérons maintenant une variété à trois dimensions V_3^6 d'ordre six, dans une espace linéaire S_5 à cinq dimensions, dont les sections par les espaces à trois dimensions sont des courbes C de genre trois. Nous désignerons plus simplement la variété V_3^6 par V.

Les sections hyperplanes de la variété V étant rationnelles, cette variété est rationnelle (3) et à ses sections hyperplanes F doivent correspondre dans un espace S_3 à trois dimensions des surfaces rationnelles.

Désignons par $O_1, O_2, ..., O_6, A_1, A_2, A_3, A_4$ les dix points-base du système $|\gamma_4|$ et rapportons projectivement les cubiques planes passant par $O_1, O_2, ..., O_6$ aux plans de S_3 . Au plan des y correspond une surface cubique F'. Aux points A_1, A_2, A_3, A_4 correspondent quatre points sur cette surface ; nous continuerons à les désigner par les mêmes lettres.

(3) G. Fano, Sulle varietà algebriche a tre dimensioni a superficie sezioni razionali (Annali di Matematica, 1915, série 3, tome XXIV, pp. 49-89). Le théorème s'applique aux variétés à sections rationnelles d'ordre supérieur à 3).

Aux courbes γ_4 adjoignons une courbe γ_5 d'ordre cinq passant doublement par les points $O_1, O_2, ..., O_6$. A cette courbe γ_5 correspond sur F' une cubique gauche K. A une courbe $\gamma_4 + \gamma_5$ correspond la section de F' par une surface cubique passant par K. On en conclut qu'à la courbe γ_4 correspond sur F' une courbe C d'ordre six et de genre trois, s'appuyant en huit points sur K et passant par les points A_1, A_2, A_3, A_4 . Cette courbe engendre sur F' un système linéaire de dimension quatre et de degré six.

Cela étant, considérons le système $\mid F' \mid$ des surfaces cubiques passant par K et par les points A_1 , A_2 , A_3 , A_4 . Ce système a la dimension cinq, le degré six et les courbes sections C sont de genre trois. De plus, ce système est simple.

Rapportons projectivement les surfaces F' aux hyperplans d'un espace linéaire S_5 à cinq dimensions. Il correspond point par point à l'espace S_3 de $\mid F' \mid$ une variété à trois dimensions V, d'ordre six, répondant aux conditions fixées.

4. — A une bisécante g' de K correspond sur V une droite g. On obtient ainsi sur V une congruence G de droites. Par un point de V passe une seule droite de G. Une surface F' contenant six bisécantes de K, un hyperplan contient six droites de la congruence G.

Il y a exception pour les bisécantes de K passant par un des points A_1 , A_2 , A_3 , A_4 , ces droites étant fondamentales pour |F'|.

Soit g' la corde de K passant par A_1 . Les surfaces F' passant par un point de g' contiennent cette droite et il leur correspond dans S_5 les hyperplans passant par un point A_1' de V. Deux surfaces F' passant par g' ont encore en commun une courbe du cinquième ordre, de genre deux, s'appuyant en six points sur K et en deux points sur g'. Une troisième surface F' passant par g' et n'appartenant pas au faisceau déterminé par les deux premières, rencontre la courbe du cinquième ordre en quatre points variables avec la surface. Il en résulte qu'un plan passant par A_1' ne rencontre plus V qu'en quatre points. Le point A_1' est donc double pour V. Aux points de g' correspondent les points de V infiniment voisins de A_1' , donc ce point est double conique pour V.

Nous voyons donc que la variété V possède quatre points doubles coniques $A_1',\,A_2',\,A_3',\,A_4'.$

Aux domaines des points A_1 , A_2 , A_3 , A_4 correspondent sur V des

plans α_1 , α_2 , α_3 , α_4 . La variété V contient donc quatre plans qui ne se rencontrent pas deux à deux. Le plan α_i passe évidemment par le point A_i' .

5. — Soit Q une quadrique passant par la cubique gauche K. Les surfaces F' découpent sur Q, en dehors de K, un système de cubiques gauches de dimension cinq et de degré quatre. Il en résulte qu'à la quadrique Q correspond sur V une surface H du quatrième ordre appartenant d'ailleurs à la congruence G.

Observons que la série canonique d'une courbe C est découpée par les quadriques passant par K. Les surfaces H, qui forment un réseau | H |, découpent donc sur les sections de V par les espaces à trois dimensions, la série canonique de ces courbes. Nous désignerons encore ces sections par C.

Une quadrique Q ne peut en général faire partie d'une surface F', donc une surface H n'est pas en général située dans un hyperplan. Ces surfaces H sont donc des réglées normales du quatrième ordre de S_5 .

Considérons un plan ξ ne passant par aucun des points A_1, A_2, A_3, A_4 . Les surfaces F' découpent sur ce plan un système linéaire (incomplet) de dimension cinq, de cubiques planes passant par les points de rencontre de K et du plan ξ . Ce système a le degré six et il correspond donc sur V, au plan ξ , une surface du sixième ordre n'appartenant pas à un hyperplan.

- 6. Parmi les surfaces cubiques du système \mid F' \mid , il en est qui sont dégénérées en une quadrique et un plan. Ce sont :
- 1) Les surfaces F' décomposées en une quadrique Q passant par K et par un des points A_1 , A_2 , A_3 , A_4 et en un plan passant par les trois autres de ces points.
- 2) Les surfaces F' décomposées en une quadrique Q passant par K et par deux des points A_1 , A_2 , A_3 , A_4 et en un plan passant par les deux autres de ces points.

Dans chaque cas, ces surfaces forment un faisceau.

Examinons le premier cas. Soient Q_1 une quadrique passant par K et par les point A_1 , ξ_1 le plan déterminé par les points A_2 , A_3 , A_4 .

Sur Q_1 , les surfaces F' découpent cette fois un système de cubiques gauches de dimension quatre et de degré trois. Donc, à la

quadrique Q_1 correspond sur V une surface cubique H_1' (appartenant à la congruence G) passant par le point A_1' .

Sur ξ_1 , les surfaces F' déterminent un système linéaire de cubiques ayant six points-base, donc à ce plan correspond sur V une surface cubique H_1'' appartenant à un espace linéaire à trois dimensions σ_1 . La surface H_1'' rencontre chacun des plans α_2 , α_3 , α_4 suivant une droite.

La quadrique Q_1 et le plan ξ_1 se rencontrent suivant une conique ayant trois points sur K.A cette conique correspond sur V une cubique gauche commune aux surfaces H'_1 et H''_1 , passant par le point A'_1 .

Les quadriques Q_1 forment un faisceau. Les hyperplans passant par σ_1 découpent sur V, en dehors de H_1'' , les ∞^1 surfaces H_1' correspondantes. Celles-ci sont des réglées cubiques normales.

Il y a quatre faisceaux d'hyperplans analogues.

Passons au second cas. Soient Q_{12} une quadrique passant par K et par les points A_1 , A_2 et ξ_{12} un plan passant par A_3 , A_4 .

A la quadrique Q_{12} correspond sur V une quadrique H'_{12} appartenant à la congruence G et passant par les points A'_1 , A'_2 .

Au plan ξ_{12} correspond sur V une surface du quatrième ordre \mathbf{H}''_{12} à sections ellitiques, normale dans un \mathbf{S}_4 .

Les surfaces H'_{12} , H''_{12} se coupent suivante une cubique gauche passant par les points A'_1 , A'_2 .

La quadrique H'_{12} appartient à un espace à trois dimensions σ_{12} . Les hyperplans passant par σ_{12} découpent sur V les surfaces H''_{12} qui correspondent aux plans du faisceau d'axe A_3A_4 .

Il existe six faisceaux d'hyperplans analogues.

7. — Une courbe gauche C d'ordre six et de genre trois ne peut appartenir à une quadrique, par conséquent la variété V ne peut appartenir à une hyperquadrique. On peut l'établir directement.

A la section de V par une hyperquadrique correspond une surface du sixième ordre passant doublement par K et par A_1 , A_2 , A_3 , A_4 . A la section d'une surface cubique F' par une de ces surfaces du sixième ordre correspond dans le plan des y une courbe du huitiième ordre passant deux fois par les dix points-base du système $|\gamma_4|$. Ces courbes du huitième ordre forment un système de dimension au moins égale à 14. Il y a donc au moins ∞^{14} surfaces du sixième

ordre ne contenant pas la surface F' considérée. D'autre part, il y a ∞^5 surfaces du sixième ordre formées de cette surface F' et d'une autre surface F'. Par conséquent, il y a au moins 21 hyperquadriques linéairement indépendantes de S_5 ne contenant pas la variété V. Comme le nombre des hyperquadriques linéairement indépendantes de S_5 est précisément égal à 21, il n'y a aucune hyperquadrique passant par V.

Si nous désignons par F les sections hyperplanes de V, le système $\mid 2F \mid$ a la dimension 20.

Liège, le 23 octobre 1962.