GÉOMÉTRIQUE ALGÉBRIQUE

Sur les points de diramation isolés des surfaces multiples,

par Lucien GODEAUX, Membre de l'Académie. (Quatrième note).

Dans la troisième note (1), nous avons étudié une involution présentant un point uni tel que le point de diramation correspondant sur une surface image de l'involution est équivalent à l'ensemble de deux droites σ_1 , τ et d'une courbe σ_a d'ordre 4, les points communs aux droites σ_1 , τ et aux courbes τ , σ_a étant doubles coniques. Nous allons généraliser ce résultat et établir le théorème suivant :

Si une surface Φ , image d'une involution cyclique d'ordre premier p appartenant à une surface algébrique, possède un point de diramation dont le cône tangent se compose de deux plans $\overline{\sigma}_1$, τ et d'un cône d'ordre $\mu_1 > 1$, $\overline{\sigma}_a$, si τ rencontre $\overline{\sigma}_1$ et $\overline{\sigma}_a$ chacun suivant une droite, tandis que $\overline{\sigma}_1$ et $\overline{\sigma}_a$ ne se rencontrent pas, si enfin la surface possède un point double conique infiniment voisin du point de diramation sur la droite commune à $\overline{\tau}$, $\overline{\sigma}_a$, alors:

il existe un point double conique infiniment voisin du point de diramation sur la droite commune aux plans $\bar{\sigma}_1$, $\bar{\tau}_1$.

ou bien on a

$$p = (3\xi + 2)(3\eta \pm 1) + 3, \mu_1 = 3\eta + 1, \alpha = 3\xi + 2, \beta = (2\xi + 1)(3\eta \pm 1) + 2,$$

ξ et η étant des entiers positifs.

Erratum : p. 277, ligne 14, lire $\lambda_2=2\lambda_1-\alpha$ au lieu de $\lambda_2=2\lambda_1-\sigma$.

⁽¹⁾ Les trois premières notes ont été publiées dans le Bulletin de l'Académie, 1949, pp. 15-30, 270-284, 285-292.

28. Conservons nos notations antérieures et supposons que les courbes C'_0 aient en commun, dans le domaine du point A, une suite de $\alpha-1$ points infiniment voisins successifs, multiples d'ordre μ_1 , le premier étant sur la droite a_a , une suite de $\beta-1$ points infiniment voisins successifs dont le premier est sur a_1 et dont le dernier est simple, enfin une suite de points infiniment voisins successifs d'un point de la suite précédente, terminée par un point simple.

Dans ces conditions, le point de diramation A' de la surface Φ , homologue du point A, est multiple d'ordre $\mu_1 + 2$ pour la surface, le cône tangent se composant d'un cône $\overline{\sigma}_a$ d'ordre μ_1 et de deux plans $\overline{\sigma}_1$, $\overline{\tau}$. D'après ce que nous avons établi antérieurement, le plan rencontre le plan σ_1 et le cône $\overline{\sigma}_a$ chacun suivant une droite, mais le plan $\overline{\sigma}_1$ et le cône $\overline{\sigma}_a$ ne se rencontrent pas.

Les courbes C'_0 ont en A la multiplicité $\lambda_1 + \mu_1$, λ_1 tangentes étant confondues avec a_1 et μ_1 avec a_a . Nous désignerons comme précédemment par $A_{a,1}$, $A_{a,2}$, ..., $A_{a,a-1}$ les points unis communs à toutes les branches des courbes C'_0 d'origine A, tangentes en ce point à la droite a_a . Nous désignerons de même par $A_{1,1}$, $A_{1,2}$, ..., $A_{1,\beta-1}$ les points unis communs à toutes les courbes C'_0 et C_1 , dont le premier se trouve sur a_1 .

D'après nos hypothèses, les x premiers des points $A_1, A_1, A_1, \ldots, A_1, \beta_{-1}$ sont multiples d'ordre λ_1 pour les courbes C_0' , le suivant est multiple d'ordre $y < \lambda_1$ et les $\beta - x - 2$ suivants sont simples pour les courbes C_0' . On a en effet, d'après les hypothèses faites,

$$\mu_1 + \beta \lambda_1 = kp, \qquad k > 1$$

et on doit avoir

$$\lambda_1 + \mu_1 + x\lambda_1 + y + \beta - x - 2 = p,$$
 (1)

relation qui exprime que les courbes C'_1 rencontrent les courbes C'_0 en p points confondus en A.

Au point $A_{1,x+1}$, est infiniment voisine une suite de points appartenant aux courbes C'_0 et se terminant par un point simple pour ces courbes. Le premier de ces points a au plus la multiplicité y-1 pour les courbes C'_0 .

Posons

$$\lambda_{1} - y = \theta(y - 1) + m_{1},$$

$$y - 1 = \theta_{1}m_{1} + m_{2},$$

$$m_{1} = \theta_{2}m_{2} + m_{3},$$

$$\dots$$

$$m_{t-2} = \theta_{t-1}m_{t-1} + m_{t},$$

$$m_{t-1} = \theta_{t}m_{t} + 1.$$
(2)

Les courbes C_0' ont dans ces conditions θ points multiples d'ordre y-1, infiniment voisins successifs de $A_{1,x+1}$, suivis de θ_1 points multiples d'ordre m_1 , suivis de θ_2 points multiples d'ordre m_2 , ..., suivis de θ_{t-1} points multiples d'ordre m_{t-1} , suivis de θ_t points multiples d'ordre m_t , suivis enfin de m_t points simples.

Les nombres x, y sont liés par la relation (1). On peut retrouver cette relation en exprimant que le degré effectif du système $|C_0'|$ est égal à $p(n-\mu_1-2)$, n étant l'ordre de la surface Φ . Multiplions les deux membres des relations (2) respectivement par y-1, m_1 , m_2 , ..., m_t et ajoutons-les membre à membre ; nous obtenons

$$(\lambda_1 - y)(y - 1) = \theta(y - 1)^2 + \theta_1 m_1^2 + ... + \theta_t m_t^2 + m_t.$$

On en conclut que les points infiniment voisins de $A_{1,x+1}$ absorbent $(\lambda_1 - y)$ (y - 1) points, dans l'intersection de deux courbes C'_0 . On a, par conséquent,

$$(\lambda_1 + \mu_1)^2 + (a - 1)\mu_1^2 + x\lambda_1^2 + y^2 + (\lambda_1 - y)(y - 1) + \beta - x - 2 = p(\mu_1 + 2).$$
 (3)

On vérifie aisément que les relations (1) et (3), où x, y sont considérés comme inconnues, ne sont pas indépendantes, en utilisant la relation $\lambda_1 + a\mu_1 = p$.

On pourrait encore obtenir une autre relation entre x, y en appliquant la formule de Zeuthen à la correspondance entre une courbe C_0' et la courbe Γ_0' homologue sur la surface Φ .

29. En rapportant projectivement les courbes C'_0 aux hyperplans d'un espace de dimension convenable, on obtient une sur-

face Φ_1 , représentant l'involution, projectivement identique à la projection de Φ à partir de A' sur un hyperplan de l'espace ambiant. Au domaine du point $A_{a,a-1}$ correspond sur Φ_1 une courbe rationnelle σ_a , d'ordre μ_1 , que l'on peut d'ailleurs supposer normale. Au domaine du point $A_{1,\beta-1}$ correspond sur Φ_1 une droite σ_1 qui ne rencontre pas σ_a . Enfin, au domaine du point qui termine la suite des points infiniment voisins successifs de $A_{1,x+1}$, point que nous désignerons par P_1 , correspond une droite τ rencontrant σ_1 et σ_a .

Aux courbes C_0'' correspondent sur Φ_1 des courbes Γ_0'' découpées par les hyperplans passant par le point A_1' , commun à σ_α et à τ . Il en résulte que les courbes C_0'' passent simplement par $A_{1,\beta-1}$, μ_1-1 fois par $A_{\alpha,\alpha-1}$, mais ne passent plus par P_1 .

Nous ferons l'hypothèse que le point A'_1 est double conique pour la surface Φ_1 . Il est alors équivalent à une courbe rationnelle ρ_0 , de degré -2.

Dans ces conditions, on a nécessairement $\lambda_2 = 1$, $\mu_2 = p - \beta$. Les courbes C_0'' passent simplement par les points $A_1, A_1, A_1, A_2, ..., A_1, \beta_{-1}$; elles passent $p - \beta$ fois par les x_1 premiers points de la suite $A_{\alpha,1}, A_{\alpha,2}, ..., A_{\alpha,\alpha-1}, y_1$ fois par le suivant et $\mu_1 - 1$ fois par les points restants.

Les courbes C''_0 ont en outre en commun une suite de points infiniment voisins successifs de A_{α, x_1}^{+} , suite qui se termine par un point P_{α} , uni parfait pour l'involution, double pour les courbes C''_{α} .

Projetons la surface Φ_1 de A_1' sur un hyperplan de l'espace ambiant. Nous obtenons une surface Φ_2 dont les sections hyperplanes sont les courbes Γ_0'' . A la droite σ_1 correspond sur Φ_2 une droite σ_1 ; à la courbe σ_a correspond une courbe que nous désignerons encore par σ_a , mais qui est d'ordre $\mu_1 - 1$; au domaine du point P_a correspond une conique ρ_0 . A la droite τ correspond un point commun à la droite σ_1 et à la conique ρ_0 , point qui est singulier pour la surface Φ_2 et dont nous continuerons à désigner le domaine par τ .

30. Envisageons maintenant les courbes C''. On a

$$\lambda_3 = 2\lambda_1, \ \mu_3 = 2\mu_1.$$

A ces courbes, correspondent sur Φ_2 les courbes Γ_0''' , découpées par les hyperplans passant par un point A_2' .

Le point A est multiple d'ordre

$$2(\lambda_1 + \mu_1) > p - \beta + 1$$

pour les courbes C_0''' , par conséquent, ces courbes ne passent plus par A_1,β_{-1} , car autrement elles seraient rencontrées en plus de p points confondus en A par les courbes C_1 . Le point A_2' appartient donc à la droite σ_1 .

La droite σ_1 et la courbe σ_a n'ayant aucun point commun, le point A'_2 ne peut appartenir à σ_a . On en conclut que les courbes C'''_0 passent $\mu_1 - 1$ fois par le point $A_{a,a-1}$.

Si le point A_2' n'appartenait pas à la conique ρ_0 , le point P_α serait double pour les courbes C_0''' et celles-ci auraient donc, aux points de la suite $A_{\alpha,1}, A_{\alpha,2}, \ldots, A_{\alpha,\alpha-1}$, des multiplicités au moins égales à celles des courbes C_0'' . Mais cela est impossible, car la multiplicité du point A pour les courbes C_0''' étant supérieure à celle du même point pour les courbes C_0''' , les courbes C_α rencontreraient les courbes C_0''' en plus de p points confondus en A. Le point A_2' appartient donc à la conique ρ_0 et à σ_1 ; il coı̈ncide donc avec le point singulier τ . En d'autres termes, les courbes Γ_0''' rencontrent la courbe τ et les courbes C_0''' passent par le point P_1 .

Supposons que les courbes C_0''' passent z fois par le point P_1 . Alors, les m_t points qui sont simples pour les courbes C_0' sont multiples d'ordre z pour les courbes C_0''' , les θ_t points qui sont multiples d'ordre m_t pour les courbes C_0'' sont multiples d'ordre $m_t z$ pour les courbes C_0'' , et ainsi de suite. Les points qui font suite au point A_1, x_{t+1} et qui appartiennent aux courbes C_0' , appartiennent auxsi aux courbes C_0'' , mais avec une multiplicité égale à z fois leur multiplicité pour les courbes C_0' .

Supposons que les courbes C_0''' ne passent pas par le point $A_{1,x+2}$. Le point $A_{1,x+1}$ est alors multiple d'ordre z(y-1) pour les courbes C_0''' et la multiplicité des mêmes courbes au point $A_{1,x}$ est égale à $z(\lambda_1-1)$. D'autre part, le point $A_{1,1}$ et par suite le point $A_{1,x}$ ont pour les courbes C_0''' une multiplicité au plus égale à $2\lambda_1$, donc on doit avoir

$$z(\lambda_1-1)\leqslant 2\lambda_1.$$

Observons que l'on a $y \ge 2$ et $\theta \ge 1$, par suite $\lambda_1 \ge 3$. On peut donc avoir $\lambda_1 = 3$, $z \le 3$ et $\lambda_1 > 3$, $z \le 2$.

Nous laisserons provisoirement de côté le cas $\lambda_1=3$, z=3. Supposons en premier lieu que l'on ait z=2, $\lambda_1\geqslant 3$. Le point $A_{1,x}$ est multiple d'ordre $2(\lambda_1-1)$ pour les courbes C_0''' et cellesci ont $2\lambda_1$ tangentes en A confondues avec a_1 . Il doit donc y avoir un certain nombre de points $A_{1,1}, A_{1,2}, \ldots, A_{1,x}$ multiples d'ordre $2\lambda_1$ pour les courbes C_0''' , suivis d'un point multiple d'ordre $2\lambda_1-1$, suivi lui-même de points multiples d'ordre $2\lambda_1-1$. Au point multiple d'ordre $2\lambda_1-1$ est infiniment voisin un point simple, uni parfait pour l'involution, commun à toutes les courbes C_0''' . Nous le désignerons par P_2 .

Supposons en second lieu z=1. Le point $A_{1,x}$ est multiple d'ordre λ_1-1 pour les courbes C_0''' et dans la suite des points $A_{1,1}, A_{1,2}, \ldots, A_{1,x}$, il y en aura au moins un dont la multiplicité sera inférieure à $2\lambda_1$ et supérieure à λ_1-1 . A un tel point sont infiniment voisins successifs des points unis communs à toutes les courbes C_0''' , dont le dernier est uni parfait. On le désignera encore par P_2 . Notons qu'il peut actuellement (z=1) exister plusieurs points P_2 .

31. Supposons maintenant que le point $A_{1,x+2}$ appartienne aux courbes C_0''' et soit z' sa multiplicité pour ces courbes. Puisque les courbes C_0''' ne passent pas par $A_{1,\beta-1}$, on a $z'\geqslant 2$. En reprenant le raisonnement fait plus haut, on trouve que le point $A_{1,x+1}$ a la multiplicité z(y-1)+z' et le point $A_{1,x}$, la multiplicité $z(\lambda_1-1)+z'$ pour les courbes C_0''' . Cette multiplicité est au plus égale à $2\lambda_1$, donc deux cas peuvent se présenter :

a)
$$z = 2$$
, $z' = 2$;

b)
$$z = 1$$
, $z' \le \lambda_1 + 1$.

Dans le premier cas, les points $A_{1,1}$, $A_{1,2}$, ..., $A_{1,x}$ sont multiples d'ordre $2\lambda_1$ pour les courbes C_0''' , le point $A_{1,x+1}$ est multiple d'ordre 2y et un certain nombre de points $A_{1,x+2}$, ... sont doubles ; ils sont suivis d'un point simple auquel est infiniment voisin un point uni parfait, simple pour les courbes C_0''' , que nous désignerons par P_2 .

Dans le second cas, il y aura au moins un point compris entre

 $A_{1,1}$ et $A_{1,x}$ et un point ultérieur à $A_{1,x+1}$, auxquels seront infiniment voisins successifs des suites de points unis se terminant par des points unis parfaits appartenant aux courbes C_0''' . Nous désignerons encore ces points par P_2 .

32. Projetons la surface Φ_2 du point A_2' sur un hyperplan de l'espace ambiant; nous obtenons une surface Φ_3 dont les sections hyperplanes sont les courbes Γ_0''' . Sur cette surface, la courbe σ_a est d'ordre $\mu_1 - 1$, la conique ρ_0 donne naissance à une droite que nous désignerons encore pour ρ_0 . A τ correspond une conique si z=2 ou une droite si z=1. Aux domaines des différents points P_2 correspondront sur Φ_3 une courbe τ_1 qui sera une droite si z=2 et une courbe éventuellement réductible si z=1. La courbe σ_1 se réduit à un point singulier appartenant à τ_1 .

Pour la surface Φ_2 , le point A_2' est un point singulier dont le cône tangent se décompose en deux parties : l'une projetant la courbe τ de Φ_3 , l'autre projetant la courbe τ_1 .

Supposons en premier lieu que la courbe τ_1 soit exceptionnelle. Alors, nous avons, sur la surface Φ , les relations fonctionnelles

$$egin{aligned} arGamma_0 &\equiv arGamma_0' + \sigma_1 + au +
ho_0 + \sigma_a, \ arGamma_0 &\equiv arGamma_0''' + \sigma_1 + au + 2
ho_0 + \sigma_a, \ arGamma_0 &\equiv arGamma_0''' + \sigma_1 + 2 au + 2
ho_0 + \sigma_a. \end{aligned}$$

Les courbes rationnelles σ_1 , τ , ρ_0 , σ_α ont respectivement les degrés virtuels — 2, — 3, — 2, — $(\mu_1 + 1)$

En comptant les intersections des courbes Γ_0^m avec τ , on trouve trois, c'est-à-dire z=3 Or, actuellement, nous avons $z\leqslant 2$; la courbe τ_1 ne peut donc être exceptionnelle Cela étant, on a

$$\begin{split} &\Gamma_0 \equiv \Gamma_0' + \sigma_1 + \tau_1 + \tau + \rho_0 + \sigma_a, \\ &\Gamma_0 \equiv \Gamma_0'' + \sigma_1 + r_1 + \tau + 2\rho_0 + \sigma_a, \\ &\Gamma_0 \equiv \Gamma_0''' + \sigma_1 + 2\tau_1 + 2\tau + 2\rho_0 + \sigma_a. \end{split}$$

Les courbes σ_1 , τ , ρ_3 , σ_a ont les mêmes degrés virtuels que précédemment. En tenant compte du fait que τ_1 n'est pas rencontrée par les courbes Γ'_0 , mais rencontre en un point σ_1 et τ , on trouve que τ_1 a le degré virtuel égal à — 2.

La dernière relation montre que les courbes Γ_0^m rencontrent

au en deux points et au_1 en un point. On a donc dans ce qui précède z=2 (sauf le cas qui a été réservé). Sur $alpha_3$, au est une conique et au_1 une droite.

Sur la surface Φ_2 , le point A_2' est équivalent à l'ensemble d'une conique infiniment petite τ et d'une droite infiniment petite τ_1 , se rencontrant en un point. Lorsque l'on passe de Φ_1 à Φ_2 , la droite est la projection d'une conique infiniment petite, située à l'intersection A_1'' des droites σ_1 , τ_1 . On en conclut que le point A_1'' est double conique pour la surface Φ_1 .

Le cône tangent en A à la surface Φ se compose donc de trois parties : un plan $\bar{\sigma}_1$, un plan $\bar{\tau}$ coupant $\bar{\sigma}_1$ suivant une droite et un cône $\bar{\sigma}_a$ d'ordre μ_1 , rencontrant le plan $\bar{\tau}$ suivant une droite, mais ne rencontrant pas le plan $\bar{\sigma}_1$. Au point A sont infiniment voisins deux points doubles coniques situés un sur la droite commune aux plans $\bar{\sigma}_1$, $\bar{\tau}$, l'autre sur la droite commune à $\bar{\tau}$ et à $\bar{\sigma}_a$.

33. Il nous reste à examiner le cas laissé de côté tantôt, où les courbes C_0^m passent z=3 fois par le point P_1 et où l'on a $\lambda_1=3$. On a alors nécessairement y=2 et le point P_1 , simple pour les courbes C_0' , est infiniment voisin de $A_{1,x+1}$.

Dans ce cas, le point $A_{1,x}$ est multiple d'ordre six pour les courbes C_0''' (de même que $A_{1,1}$, $A_{1,2}$, ..., $A_{1,x-1}$) et ces courbes passent trois fois par $A_{1,x+1}$ et trois fois par P_1 .

Actuellement, il n'existe pas de point analogue à P_2 , ni par conséquent de courbe τ_1 . Sur la surface Φ_2 , le point A_2' est triple et sur sa projection Φ_3 à partir de A_2' , la courbe τ est une cubique.

On a

$$\Gamma_0 \equiv \Gamma_0' + \sigma_1 + \tau + \rho_0 + \sigma_a,$$

$$\Gamma_0 \equiv \Gamma_0'' + \sigma_1 + \tau + 2\rho_0 + \sigma_a,$$

$$\Gamma_0 \equiv \Gamma_0''' + \sigma_1 + 2\tau + 2\rho_0 + \sigma_a.$$

Les courbes σ_1 , τ , ρ_0 , σ_α ont les degrés virtuels respectifs — 2, — 3, — 2, — $(\mu_1 + 1)$ et les courbes Γ_0''' rencontrent bien τ en trois points. Sur la surface Φ_1 , où τ est une droite, les courbes Γ_0''' sont découpées par les hyperplans contenant cette droite.

La formule (1) devient

$$\mu_1 + 2x + \beta + 3 = p$$

et en exprimant que les courbes C_0''' sont rencontrées par les courbes C_1 en p points confondus en A, on a

$$2\mu_1 + 6x + 9 = p. (4)$$

On parvient à la même relation en appliquant la formule de Zeuthen à la correspondance entre deux courbes C_0' , Γ_0' homologues.

Observons que des relations précédentes, on tire

$$\mu_1 + 3\beta = 2p,\tag{5}$$

donc k=2.

D'autre part, p étant premier, μ_1 ne peut être multiple de 3. Si $\mu_1 = 3\eta + 1$, on a, par (4), $p = 6\zeta + 5$, $x = \zeta - \eta - 1$. La relation (1) donne alors $\beta = 4\zeta - \eta + 3$.

On doit avoir

$$\lambda_1 + \alpha \mu_1 = \alpha(3\eta + 1) + 3 = p = 6\zeta + 3,$$

donc α est de la forme $3\xi + 2$ et on a

$$p = (3\xi + 2)(3\eta + 1) + 3, \quad \beta = (2\xi + 1)(3\eta + 1) + 2.$$

On vérifie que l'on a

$$\alpha\beta-1=(2\xi+1)p.$$

Si $\mu_1 = 3\eta - 1$, on a, par (4), $p = 6\zeta + 1$, $x = \zeta - \eta - 1$. Par (5), on trouve $\beta = 4\zeta - \eta + 1$. En procédant comme plus haut, on trouve encore que α doit être de la forme $3\xi + 2$ et on a

$$p = (3\xi + 2)(3\eta - 1) + 3, \quad \beta = (2\xi + 1)(3\eta - 1) + 2,$$

 $\alpha\beta - 1 = (2\xi + 1)p.$

34. Il importe de montrer, par un exemple, que le cas qui vient d'être envisagé peut effectivement exister.

Supposons p = 19, $\alpha = 8$, d'où $\beta = 12$. Nous avons $\lambda_1 = 3$, $\mu_1 = 2$.

Les courbes C'₀ ont en A la multiplicité 5 ; elles ont en commun

une suite de 7 points doubles $A_{\alpha,1}$, $A_{\alpha,2}$, ..., $A_{\alpha,7}$ et une seconde suite formée d'un point triple $A_{1,1}$, d'un point double $A_{1,2}$ et de 9 points simples $A_{1,3}$, ..., $A_{1,11}$. Elles ont en outre en commun un point simple P_1 infiniment voisin de $A_{1,2}$.

Les courbes C_0'' passent 8 fois par A, une fois par les points $A_{1,1}, A_{1,2}, ..., A_{1,11}$, 5 fois par $A_{\alpha,1}$, une fois par $A_{\alpha,2}, ..., A_{\alpha,7}$. Elles ont en outre en commun deux points doubles $A_{\alpha,1,1}$, P_{α} infiniment voisins successifs de $A_{\alpha,1}$

Les courbes C_0''' passent 10 fois par A, 6 fois par $A_{1,1}$, 3 fois par $A_{1,2}$, P_1 , 3 fois par $A_{\alpha,1}$, une fois par $A_{\alpha,2}$, ..., $A_{\alpha,7}$, $A_{\alpha,1,1}$ et P_2

La surface Φ a un point quadruple en A', le cône tangent en ce point étant formé de deux plans $\bar{\sigma}_1$, $\bar{\tau}$ et d'un cône du second ordre $\bar{\sigma}_a$

Rome, le 11 mai 1949.