CONSTRUCTION D'UNE SURFACE PROJECTIVEMENT CANONIQUE (*)

par Lucien GODEAUX, Membre de la Société

Nous appelons surface projectivement canonique une surface algébrique dont le système canonique coïncide avec celui des sections hyperplanes. F. Enriques a appelé à diverses reprises l'attention sur l'intérêt qu'il y a à construire de telles surfaces. Il nous a paru intéressant de signaler un exemple, rencontré incidemment. C'est l'objet de cette note.

Nous suivons d'ailleurs une méthode exposée par Enriques dans ses Lezioni sulla teoria delle superficie algebriche, rédigées par M. L. Campedelli (**). Si une variété algébrique normale à trois dimensions d'un espace linéaire S_r a comme sections hyperplanes des surfaces dont tous les genres sont égaux à l'unité, l'intersection de cette variété et d'une hyperquadrique est une surface projectivement canonique. Nous appliquons ce théorème dans le cas où la variété est, dans un espace S₆, l'intersection d'un cône projetant d'un point une variété de Segre représentant les couples de points d'une droite et d'un plan, située dans un hyperplan de $S_{\scriptscriptstyle 6},$ avec une hypersurface cubique contenant un des espaces à trois dimensions appartenant au cône précédent.

I. Considérons, dans un espace linéaire S_4 à quatre dimensions, la surface V_2^3 obtenue en rapportant projectivement aux hyperplans de S_4 les coniques γ_2 d'un plan σ passant par un point 0. Une hypersurface cubique V_3^3 de S_4 coupe V_2^3 suivant une courbe représentée, dans σ , par une courbe γ_6 d'ordre six passant trois fois par le point 0 et dépendant par suite de 21 paramètres. Par conséquent, il y a ∞^{21} hypersurfaces cubiques V_3^3 de S_4 qui ne contiennent pas la surface V_2^3 .

Soit C une courbe d'ordre huit et de genre cinq de S_4 . On sait que

^(*) Reçu le 12-II-1959.

^(**) Padova, Cedam, 1932, pp. 331 et suivantes.

cette courbe appartient aux hyperquadriques d'un réseau. Supposons, si c'est possible, que C soit tracée sur la surface V_2^3 commune, comme on sait, aux hyperquadriques d'un réseau. Les hypersurfaces cubiques découpent, sur C, une série linéaire d'ordre 24, non spéciale, et par conséquent de dimension 19. On en conclut qu'il y a une de ces hypersurfaces qui contient C. Cette hypersurface coupe encore V_2^3 suivant une droite. Comme les droites de V_2^3 sont représentées dans le plan σ par les droites passant par 0, la courbe C est représentée dans σ par une quintique γ_5 ayant en 0 un point double.

La quintique γ_5 est de genre cinq et ses adjointes sont les coniques passant par 0. On en conclut l'existence de la courbe C d'ordre huit et de genre cinq, tracée sur V_2^3 et dont les sections hyperplanes constituent la série canonique.

2. Soit, dans un espace linéaire S_5 à cinq dimensions, W_3^3 une variété de Segre représentant les couples de points d'une droite et d'un plan. On sait que les sections hyperplanes de cette variété sont des surfaces V_2^3 . La variété W_3^3 contient ∞^1 plans.

Soit V_4^3 une variété cubique de S_5 contenant un plan α_0 de W_3^3 . Le restant de l'intersection de ces deux variétés est une surface F d'ordre huit. Une section hyperplane de F est l'intersection de la section V_2^3 de W_3^3 , de la section V_3^3 de V_4^3 , complétée par l'intersection du plan α_0 avec l'hyperplan sécant. Cette section est donc une courbe C d'ordre huit et de genre cinq.

La surface F, d'ordre huit, a donc comme sections hyperplanes des courbes de genre cinq et sur chacune de ces courbes, les autres sections hyperplanes découpent la série canonique. Cette surface a donc tous les genres égaux à l'unité et est caractérisée par $p_{\alpha}=P_2=1$.

On sait que l'on peut représenter point par point sur un espace S_3 la variété de Segre W_3^3 de telle sorte qu'aux sections hyperplanes correspondent les quadriques passant par un point P et une droite g. Aux plans de W_3^3 correspondent les plans passant par la droite g. A la surface F correspond dans S_3 une surface F_0 du cinquième ordre passant trois fois par P et deux fois par g. L'unique adjointe d'ordre 5-4=1 à F_0 est le plan Pg. Ce plan coupe F_0 suivant trois droites passant par 0 qui sont des droites exceptionnelles. La courbe canonique de F_0 est donc d'ordre zéro et on a bien $p_a=P_2=1$.

3. Plaçons-nous maintenant dans un espace linéaire S_6 à six dimensions. Soit, dans cet espace, W_4^3 le cône projetant d'un point A une variété de Segre W_3^3 située dans un hyperplan. Le cône W_4^3 contient ∞^1 espaces linéaires à trois dimensions projetant de A les ∞^1 plans de W_3^3 .

Soit V_5^3 une hypersurface cubique contenant un des espaces à trois dimensions de W_4^3 . Elle coupe encore ce cône suivant une variété Ω à trois dimensions, d'ordre huit, dont les sections hyperplanes sont des surfaces F.

Sur Ω , l'adjoint à $\mid F \mid$ est le système des surfaces d'ordre zéro. Désignons par Φ les surfaces sections de Ω par les hyperquadriques de S_6 . L'adjoint à $\mid \Phi \mid$ est donné par

$$\mid \Phi' \mid = \mid (2\mathrm{F})' \mid = \mid \mathrm{F}' \mid + \mid \mathrm{F} \mid = \mid \mathrm{F} \mid.$$

Donc les courbes canoniques d'une surface Φ sont découpées par les hyperplans de S_6 et Φ est une surface projectivement canonique.

La surface Φ est normale dans S_6 et a par suite les genres $p_a=p_g=7,\ p\ (^1)=17.$ C'est une surface d'ordre seize.

Si l'on considère dans un espace linéaire S_6 à six dimensions le cône W_4^3 projetant d'un point une variété de Segre V_3^3 située dans un hyperplan, une hypersurface cubique V_5^3 contenant un espace à trois dimensions de W_4^3 et une hyperquadrique, l'intersection de ces variétés est une surface projectivement canonique d'ordre seize et de genres $p_a = p_g = 7$, p(1) = 17.

4. La construction de la surface Φ peut être présentée autrement.

Considérons dans S_5 l'intersection de la variété de Segre W_3^3 avec une hyperquadrique. Nous obtenons une surface Ψ à laquelle correspond, dans la représentation de W_3^3 sur un espace S_3 , une surface du quatrième ordre ayant un point double en P et une droite double g. Cette surface est donc rationnelle et Ψ est rationnelle.

Dans S_6 , l'intersection du cône W_4^3 et d'une hyperquadrique V_5^2 est une variété à trois dimensions Ω' à sections hyperplanes rationnelles. Les espaces à trois dimensions de W_4^3 coupent V_5^2 suivant des quadriques appartenant à Ω' . Soit Q_0 une de ces quadriques. La surface Φ est l'intersection de W_4^3 , de V_5^2 et d'une hypersurface cubique contenant Q_0 .

5. Reprenons la surface F. La variété de Segre W_3^3 contient une infinité de plans α ne se rencontrant pas deux à deux, donc ces plans

découpent sur F des cubiques elliptiques G formant un faisceau sans points-base $\mid G \mid$.

La variété W_3^3 contient une double infinité de quadriques Q formant un réseau |Q|. Chacune de ces quadriques coupe chacun des plans α et en particulier α_0 suivant une droite. L'hypersurface V_4^3 coupe donc une quadrique Q suivant une courbe du cinquième ordre H.

Désignons par r, r' les génératrices rectilignes des deux modes des quadriques Q. Deux quadriques Q se rencontrent suivant une génératrice r et les droites découpées par les plans α sont des génératrices r'. En particulier, sur chaque quadrique Q, une génératrice r' se trouve dans le plan α_0 . Il en résulte que la quintique H tracée sur une quadrique Q rencontre les génératrices r en deux points et les génératrices r' en trois points. Par conséquent, les quintiques H sont de genre deux et forment un réseau |H| de degré deux.

Un plan α et une quadrique Q appartiennent à un hyperplan, donc le système des sections hyperplanes de F est \mid G + H \mid .

Les courbes G et H sont indépendantes et leur déterminant est égal à — 9. Le nombre-base de F est en général égal à 2 et les courbes G, H constituent une base-minima, car le déterminant de la base est (en valeur absolue) un carré parfait, la surface contenant un faisceau de courbes elliptiques et d'autre part, il n'est pas divisible par quatre.

6. Retournons maintenant à la surface F.

Une courbe G de F est projetée du point A suivant un cône coupant l'hyperquadrique contenant Φ suivant une courbe G_1 du sixième ordre. La courbe G_1 appartient à l'espace à trois dimensions passant par A et par le plan de la cubique G. La courbe G_1 est donc de genre quatre et engendre un faisceau $|G_1|$ dépourvu, comme |G|, de points-base.

Une quintique H de F est projetée du point A suivant un cône appartenant à un espace linéaire à quatre dimensions déterminé par le point A et l'espace de la quadrique Q contenant H. Ce cône coupe Φ suivant une courbe H_1 d'ordre dix.

Les courbes H_1 forment un réseau $|H_1|$ de degré quatre et ren-

contrent les courbes G_1 en six points. D'autre part, le système des sections hyperplanes de Φ est $\mid G_1 + H_1 \mid$. On a donc

$$H_{1}^{'}-H_{1}\equiv G_{1}+H_{1},$$

d'où l'on déduit que les courbes \mathbf{H}_1 ont le genre huit.

Les courbes G_1 , H_1 forment en général une base, de daterminant 48, pour la surface F.

Liège, le 30 janvier 1959.