Variétés mixtes de Segre-Veronese,

par Lucien GODEAUX, Membre de la Société.

On sait que l'on appelle surface de Veronese, du nom du géomètre qui l'a considérée en premier lieu, la surface obtenue en rapportant projectivement aux hyperplans d'un espace S, les coniques d'un plan (1). Plus généralement, on appelle variété de Veronese la variété obtenue en rapportant projectivement les hypersurfaces d'un certain ordre d'un espace linéaire donné aux hyperplans d'un espace linéaire à un nombre convenable de dimensions. C. Segre a, d'autre part, considéré certaines variétés, qui portent son nom, représentant les groupes de points de plusieurs espaces linéaires (2). Ainsi les couples de points de deux plans sont représentés par une variété à quatre dimensions, d'ordre six, appartenant à un espace linéaire à huit dimensions. On peut arriver au concept de variété de Segre de la manière suivante : Considérons n espaces linéaires de dimensions $r_1, r_2, ..., r_n$ et les relations linéaires séparément par rapport aux coordonnées des points de ces espaces. Ces relations dépendent de

$$R + 1 = (r_1 + 1) (r_2 + 1) \dots (r_n + 1)$$

paramètres homogènes. Rapportons projectivement les correspondances multilinéaires représentées par ces relations aux hyperplans d'un espace linéaire à R dimensions. On obtient ainsi la variété de Segre représentant les groupes de n points pris un dans chacun des espaces considérés. Cette variété a la dimension $r_1 + r_2 + \ldots + r_n$.

Dans cette note, nous considérons certaines variétés que nous appelons variétés mixtes de Segre-Veronese, obtenues de la manière suivante: Au lieu de considérer des relations linéaires par rapport aux coordonnées ponctuelles des espaces à r_1, r_2, \ldots, r_n dimensions, nous considérons des relations séparément d'ordres m_2, \ldots, m_n par rapport aux coordonnées de ces espaces. Si R'+1 est le nombre de paramètres homogènes dont dépendent ces

⁽¹⁾ G. Veronese, La superficie omaloide... (Mem. R. Accad. Lincei, 1883-1884); C. Segre, Considerazioni intorno alla geometria delle coniche di un piano... (Atti R. Accad. Torino, 1885); E. Bertini, Introduzione alla Geometria proiettiva degli iperspazi (Pisa, Spoerri, 1907).

⁽²⁾ Sulle varietà che rappresentano le coppie di punti di due piani o spazi (Rendiconti Circolo Matematico di Palermo, 1891).

relations, nous rapportons projectivement les correspondances qu'elles représentent aux hyperplans d'un espace linéaire à R' dimensions. Nous obtenons ainsi une variété qui représente les groupes de points pris un dans chacun des espaces primitifs. Mais alors que la variété de Segre contient des familles d'espaces linéaires, la variété que nous considérons contient des familles de variétés de Veronese.

Nous nous limitons d'ailleurs au cas de deux espaces (n=2) et nous commençons par considérer les cas les plus simples.

1. Considérons deux droites (y), (z) et les correspondances (2,1) entre les points de ces droites. Une telle correspondance a une équation de la forme

$$\sum \xi_{inl} y_i y_k z_l = 0$$
 (i, k, $l = 1, 2$).

Rapportons projectivement ces correspondances aux hyperplans d'un espace linéaire S_5 en posant

$$\rho X_{ikl} = y_i y_k z_l = y_k y_i z_l$$
 (i, k, $l = 1, 2$),

les six quantités Xiki étant les coordonnées d'un point de S5.

L'élimination des y, z entre les équations précédentes donne les équations

$$X_{121}^2 = X_{111} X_{221}, (2)$$

$$X_{122}^2 = X_{112} X_{222}. (3)$$

Les équations (1) représentent une variété cubique V_3^3 à trois dimensions; l'équation (2) représente un cône quadratique dont le sommet : le plan

$$X_{112} = X_{121} = X_{221} = 0,$$

appartient à la variété V_3^3 . L'équation (3) est une conséquence des équations (1) et (2) Il en résulte que les trois équations considérées représentent une surface V_2^4 du quatrième ordre. Les points de cette surface correspondent aux couples de points y, z des droites données.

Aux couples formés d'un point y fixe et d'un point z variable correspondent sur la surface les points d'une droite g d'équations

$$\frac{\mathbf{X}_{111}}{y_1^2} = \frac{\mathbf{X}_{121}}{y_1 y_2} = \frac{\mathbf{X}_{221}}{y_2^2}, \ \frac{\mathbf{X}_{112}}{y_1^2} = \frac{\mathbf{X}_{122}}{y_1 y_2} = \frac{\mathbf{X}_{222}}{y_2^2}.$$

Aux groupes formés d'un point z fixe et d'un point y variable correspondent au V_2^4 les points d'une conique γ située dans le plan

$$\frac{\mathbf{X}_{111}}{\mathbf{X}_{112}} = \frac{\mathbf{X}_{121}}{\mathbf{X}_{122}} = \frac{\mathbf{X}_{221}}{\mathbf{X}_{222}} = \frac{z_1}{z_2}.$$

Ces droites et ces coniques forment des faisceaux et sont unisécantes. La surface V₂ est une réglée rationnelle normale ayant comme directrices des coniques.

2. Une correspondance (2, 1) dégénérée entre les ponctuelles (y), (z) peut être représentée par

$$(\Sigma \xi_{ik} y_i y_k) (\Sigma \xi_i' z_i) = 0.$$

Elle associe à un point z fixe un point y variable, et à deux points y fixes, un point z variable. A une telle correspondance correspond, dans S_5 , un hyperplan coupant la surface V_2^4 suivant une conique γ et deux droites g.

On peut rechercher l'ordre de la surface V₂ par deux autres

procédés.

Considérons deux correspondances dégénérées entre les ponctuelles (y), (z). La première associe deux points fixes P_4 , P_4' de (y) et un point fixe Q_4 de (r); la seconde associe deux points fixes P_2 , P_2' de (y) et un point fixe Q_2 de (z). Les hyperplans correspondants dans S_5 ont en commun un espace S_3 coupant V_2^4 suivant quatre points représentant les couples (P_4, Q_2) , (P_4', Q_2) , (P_2, Q_4) , (P_2', Q_4) .

On peut également considérer deux hyperplans quelconques

$$\Sigma \xi_{ikl} X_{ikl} = 0, \qquad \Sigma \xi'_{ikl} X_{ikl} = 0, \tag{4}$$

c'est-à-dire les correspondances

$$\Sigma \xi_{ikl} y_i y_k z_l = 0, \qquad \Sigma \xi_{ikl} y_i y_k z_l = 0.$$

En éliminant z_1 , z_2 entre ces équations, on obtient

$$\left|\begin{array}{ccc} \Sigma \, \xi_{ik1} \, y_i \, y_k & \quad \Sigma \, \xi_{ik2} \, y_i \, y_k \\ \Sigma \, \xi'_{ik1} \, y_i \, y_k & \quad \Sigma \, \xi'_{ik2} \, y_i \, y_k \end{array}\right| = 0,$$

équations qui représentent quatre points de la droite y, auxquels correspondent les quatre points d'intersection de la surface V_2^4 avec l'espace S_3 commun aux hyperplans (4).

3. Une hyperquadrique V_4^2 de S_5 coupe la surface V_2^4 suivant une courbe C_8 d'ordre huit. Les coniques γ de la surface découpent

sur C_8 une série linéaire g_4^4 et les droites de la surface une série linéaire g_2^4 . Les droites et les coniques étant unisécantes, les séries g_4^4 et g_2^4 ne peuvent avoir de couple commun. On sait que sur une courbe de genre π , deux séries linéaires g_m^4 , g_n^4 ont en commun $(m-1)(n-1)-\pi$ couples de points. Actuellement on a m=4, n=2, d'où $\pi=3$. Une hyperquadrique découpe donc sur V_2^4 une courbe d'ordre huit, hyperelliptique, de genre trois.

Plus généralement, une hypersurface V_4^n , d'ordre n, coupe la surface V_2^4 suivant une courbe d'ordre 4n, de genre

$$\pi = (2n-1)(n-1).$$

4. Considérons maintenant une droite (y) et un plan (z); une correspondance (2, 1) entre ces formes est représentée par l'équation

 $\Sigma \xi_{ikl} y_i y_k z_l = 0$ (i, k = 1, 2; l = 1, 2, 3).

Rapportons projectivement ces correspondances aux hyperplans d'un espace S_8 à huit dimensions en posant

$$\rho X_{ikl} = y_i y_k z_l = y_k y_i z_l \qquad (i, k = 1, 2; l = 1, 2, 3), \qquad (1)$$

les X étant les coordonnées d'un point de S_8 . Les équations (1) sont les équations paramétriques d'une variété V_3 à trois dimensions, représentant les couples de points y, z.

Une correspondance dégénérée entre (y) et (z) est représentée par l'équation

$$(\Sigma \xi_{ikl} y_i y_k) (\Sigma \xi_l z_l) = 0.$$

Elle associe à deux points fixes de la droite (y) un point quelconque z et aux points d'une droite fixe du plan (z) un point quelconque y.

Considérons trois correspondances dégénérées associant : la première deux points fixes P_1 , P_1' de (y) et une droite fixe r_1 du plan (z); la seconde deux points fixes P_2 , P_2' de (y) et une droite fixe r_2 de (z); la troisième deux points fixes P_3 , P_3' de (y) et une droite fixe r_3 de (z). L'espace S_5 commun aux hyperplans homologues des trois correspondances considérées coupe la variété V_3 aux points représentant les couples $(P_4, r_2 r_3), (P_4', r_2 r_3), ..., (P_3', r_1 r_2),$ c'est-à-dire en six points. La variété est donc une variété V_3^6 du sixième ordre.

D'ailleurs, si l'on considère trois hyperplans quelconques

$$\Sigma \xi_{ikl} X_{ikl} = 0, \qquad \Sigma \xi_{ikl} X_{ikl} = 0, \qquad \Sigma \xi_{ikl}^{"} X_{ikl} = 0$$

et les correspondances homologues

$$\Sigma \xi_{ikl} y_i y_k z_l = 0$$
, $\Sigma \xi'_{ikl} y_i y_k z_l = x$, $\Sigma \xi''_{ikl} y_i y_k z_l = 0$,

l'élimination de z₁, z₂, z₃ entre ces équations donne

$$|\Sigma \xi_{ikl} y_i y_k \quad \Sigma \xi'_{ikl} y_i y_k \quad \Sigma \xi'_{ikl} y_i y_k| = 0 \quad (l = 1, 2, 3),$$

c'est-à dire une équation qui représente six points de la droite (y). A ces six points correspondent les six points de rencontre de V_3^6 avec l'espace S_5 commun aux trois hyperplans considérés.

Aux groupes formés d'un point y fixe et d'un point z variable correspondent sur V_3^6 les points d'un plan α , variable dans une série ∞^1 d'indice un. Deux plans de cette série ne se rencontrent pas.

Aux groupes formés d'un point z fixe et d'un point y variable correspondent sur V_3^6 les points d'une conique γ , variable dans une congruence linéaire.

Un plan α et une conique γ se rencontrent en un seul point.

Aux groupes formés par les points de (y) et les points d'une droite du plan (z) correspondent sur V_3^6 les points d'une surface V_2^4 de l'espèce rencontrée plus haut (n° 1), variable dans un réseau. Deux de ces surfaces ont en commun une conique γ ; le réseau $|V_2^4|$ est composé au moyen de la congruence des γ .

A une correspondance dégénérée correspond un hyperplan rencontrant la variété V₃ suivant une surface V₂ et deux plans α.

5. La section de la variété V_3^6 par un espace S_6 est une courbe du sixième ordre, donc rationnelle. On peut le vérifier de la manière suivante :

Considérons deux hyperplans passant par S6 et soient

$$y_1^2 \varphi_0 (r_1, r_2, r_3) + y_4 y_2 \varphi_1 + y_2^2 \varphi_2 = 0,$$

$$y_1^2 \psi_0 (r_4, r_2, r_3) + y_4 y_2 \psi_1 + y_2^2 \psi_2 = 0$$

les correspondances homologues, les φ et les ψ étant des formes linéaires en z_1 , z, z_3 .

L'élimination de y_1 , y_2 entre ces équations donne

$$\left| \begin{array}{cc} \phi_2 & \phi_0 \\ \psi_2 & \psi_0 \end{array} \right|^2 - \left| \begin{array}{cc} \phi_1 & \phi_2 \\ \psi_1 & \psi_2 \end{array} \right| \cdot \left| \begin{array}{cc} \phi_0 & \phi_1 \\ \psi_0 & \psi_1 \end{array} \right| = 0.$$

A la section de V₃ par S₆ correspond donc dans le plan (z) une courbe du quatrième ordre. Celle-ci possède trois points doubles, représentés par les équations

$$\left\| \begin{array}{ccc} \phi_0 & \phi_1 & \phi_2 \\ \psi_0 & \psi_1 & \psi_2 \end{array} \right\| = 0.$$

La courbe du quatrième ordre est donc rationnelle.

La section de V₃ par un hyperplan S₇ est une surface réglée normale.

6. Envisageons maintenant les correspondances (2, 1)

$$\Sigma \xi_{ikl} y_i y_k z_l = 0$$
 $(i, k = 1, 2, 3; l = 1, 2)$

entre un plan (y) et une droite (z).

Rapportons projectivement ces correspondances aux hyperplans d'un espace S_{ii} en posant

$$\rho X_{ikl} = y_i y_k z_l$$
 (i, $k = 1, 2, 3, l = 1, 2$).

Nous obtenons ainsi les équations paramétriques d'une variété V_3 représentant les couples de points y, z du plan (y) et de la droite (z).

Une correspondance dégénérée est représentée par une équation

$$(\Sigma \xi_{ik} y_i y_k) (\Sigma \xi_i' z_i) = 0;$$

elle associe à une conique fixe du plan (y) un point quelconque de la droite (z) et à un point fixe de cette droite un point quelconque du plan (y).

Considérons trois correspondances dégénérées associant : la première une conique ρ_1 du plan (y) et un point P_1 de la droite (z); la seconde une conique ρ_2 et un point P_2 ; la troisième une conique ρ_3 et un point P_3 . L'espace S_8 commun aux trois hyperplans homologues des correspondances envisagées coupe la variété V_3 en douze points représentant le point P_4 et chacun des quatre points communs aux coniques ρ_2 , ρ_3 ; le point P_2 et chacun des quatre points communs aux coniques ρ_3 , ρ_4 ; enfin le point P_3 et chacun des quatre points communs aux coniques ρ_4 , ρ_2 . La variété est donc une variété V_3^{*2} d'ordre douze.

On peut également rechercher l'ordre de V_3^{42} en considérant ses intersections avec un espace S_8 quelconque, commun à trois hyperplans homologues de trois correspondances

$$\Sigma \xi_{ikl} y_i y_k z_l = 0$$
, $\Sigma \xi'_{ikl} y_i y_k z_l = 0$, $\Sigma \xi''_{ikl} y_i y_k z_l = 0$. L'élimination de z_i , z_i entre ces équations donne

$$\left\| \begin{array}{ccc} \Sigma \xi_{ik1} y_i y_k & \Sigma \xi'_{ik1} y_i y_k & \Sigma \xi'_{ik1} y_i y_k \\ \Sigma \xi_{ik2} y_i y_k & \Sigma \xi'_{ik2} y_i y_k & \Sigma \xi'_{ik2} y_i y_k \end{array} \right\| = 0.$$

Cette matrice s'annule pour douze points, qui correspondent aux points communs à V_3^{42} et à l'espace S_8 considéré.

Aux groupes formés d'un point fixe y et d'un point z variable

correspondent sur V_3^{12} les points d'une droite g, variable dans une congruence linéaire. Aux groupes formés d'un point fixe z et d'un point y variable correspondent les points d'une surface de Veronese Φ , variable dans un faisceau dépourvu de points-base. Les droites g et les surfaces Φ sont unisécantes.

Aux groupes formés d'un point y variable sur une droite du plan (y) et d'un point z quelconque correspondent les points d'une surface V_2^4 du type rencontré au début de ce travail (n° 1). La surface V_2^4 coupe chacune des surfaces Φ suivant une conique et contient ∞^4 droites g. Les surfaces V_2^4 tracées sur V_3^4 forment un réseau composé au moyen de la congruence formée par les droites g. Deux surfaces V_2^4 ont en commun une droite g.

Aux groupes formés d'un point y variable sur une conique du plan (y) et d'un point z variable correspondent sur V_3^{42} les points d'une surface Ψ qui est équivalente aux surfaces $2V_2^4$. Ces surface Ψ sont donc d'ordre huit et forment un système linéaire de dimension cinq, composé au moyen de la congruence des droites g. Deux surfaces Ψ se rencontrent suivant quatre droites g.

Un hyperplan homologue d'une correspondance dégénérée coupe V_3^{12} suivant une surface Ψ et une surface de Veronese Φ .

Les droites g établissent, entre deux surfaces Φ , une correspondance sans exception. Sous cette forme, la variété V_3^{12} a été considérée récemment par M^{11e} Pissard (4).

7. Soient maintenant deux plans (y), (z). Considérons les correspondances (2, 1), d'équations du type

$$\Sigma \xi_{ikl} y_i y_k z_l = 0$$
 (i, k, $l = 1, 2, 3$),

entre ces plans. Rapportons projectivement ces correspondances aux hyperplans d'un espace S₁₇ en posant

$$\rho X_{ikl} = y_i y_k z_l$$
 (i, k, l = 1, 2, 3);

nous obtenons ainsi les équations paramétriques d'une variété V_4 , représentant les couples de points y,z des deux plans donnés. Dans une correspondance dégénérée

$$(\Sigma \xi_{ikl} y_i y_k) (\Sigma \xi_l' z_l) = 0,$$

à une conique fixe ρ du plan (y) sont associés les points du plan (z) et à une droite fixe r du plan (z) sont associés les points du plan (y).

⁽³⁾ Sur une variété algébrique à trois dimensions (Bull. Soc. roy. des Sciences de Liége, 1941, pp. 643-647).

Fixons l'attention sur quatre correspondances dégénérées, linéairement indépendantes, et soient ρ_1 , ρ_2 , ρ_3 , ρ_4 les coniques correspondantes du plan (y), r_1 , r_2 , r_3 , r_4 les droites associées du plan (z). On peut associer de 24 manières différentes un point commun à deux coniques ρ_i , ρ_k et un point commun à deux droites r_j , r_h , les indices i, k, j, h étant, dans un certain ordre, les nombres 1, 2, 3, 4 Il en résulte que l'espace S_{13} commun aux quatre hyperplans de S_{47} , homologues des correspondances dégénérées considérées, rencontre V_4 en 24 points. Celle-ci est donc une variété V_4^{24} , d'ordre 24.

Ou encore, considérons quatre hyperplans indépendants passant par un espace S₁₃ et soient

$$z_1 \varphi_{i1} (y_1, y_2, y_3) + z_2 \varphi_{i2} + z_3 \varphi_{i3} = 0$$
 (*i* = 1, 2, 3, 4)

les correspondances homologues, les φ étant des formes quadratiques en y_1 , y_2 , y_3 .

L'élimination de z₁, z₂, z₃ entre les équations précédentes donne

Ces équations représentent 24 points, qui correspondent aux 24 points de rencontre de V²⁴ avec l'espace S₄₃ considéré.

Aux groupes de points formés d'un point fixe y et d'un point z variable correspondent sur V_4^{24} les points d'un plan α , variable dans une congruence linéaire. Deux plans de cette congruence ne peuvent se rencontrer. Aux groupes de points formés d'un point variable y et d'un point fixe z correspondent sur V_4^{24} les points d'une surface de Veronese Φ , variable dans une congruence linéaire. Deux surfaces Φ ne se rencontrent pas, mais une surface Φ et un plan α se rencontrent en un point.

Lorsque y varie dans le plan (y) et z sur une droite du plan (z), on obtient sur V_4^{24} une variété V_3^{42} de l'espèce rencontrée plus haut (n° 6). Ces variétés forment un réseau; chacune d'elles contient ∞^4 surfaces Φ et deux variétés du réseau ont en commun une surface Φ .

Lorsque y décrit une droite du plan (y), z étant quelconque, on obtient sur V_4^{24} une variété V_3^6 (n° 4) variable dans un réseau. La variété V_3^6 contient ∞^1 plans α et deux variétés du réseau se rencontrent suivant un plan α . Lorsque y décrit une conique du plan (y) et z le plan (z), on obtient sur V_4^{24} une variété Ω_3^{12} équivalente à $2V_3^6$.

Un hyperplan homologue d'une correspondance dégénérée coupe V_4^{24} suivant une variété V_3^{12} et une variété Ω_3^{12} .

Une variété V_3^{12} et une variété V_3^6 ont en commun une surface V_2^4 (n° 1); donc une variété V_3^{12} et une variété Ω_3^{12} ont en commun une surface du huitième ordre.

8. La section de la variété V_4^{24} par un espace S_{44} est une courbe C de genre dix. En effet, si l'on considère trois hyperplans indépendants passant par S_{44} et si les correspondances homologues ont pour équations

$$z_1 \varphi_{i1}(y_1, y_2, y_3) + z_2 \varphi_{i2} + z_3 \varphi_{i3} = 0$$
 (i = 1, 2, 3),

à la courbe C correspond point par point la courbe plane

$$| \varphi_{ii} \qquad \varphi_{i2} \qquad \varphi_{i3} | = 0 \qquad (i = 1, 2, 3),$$

du sixième ordre, en général dépourvue de points doubles, donc de genre dix.

La section de la variété V_4^{24} par un espace S_{45} est une surface rationnelle F. En effet, les courbes sections de la variété V_3^6 sont rationnelles; ces variétés forment un réseau sur V_4^{24} et découpent donc un réseau de courbes rationnelles du sixième ordre sur la surface F. Deux variétés V_3^6 ont en commun un plan α et par conséquent le réseau que ces variétés découpent sur F est homaloïdal.

D'ailleurs, l'ordre 24 de F est supérieur au double 18 du genre de ses sections hyperplanes diminué de deux unités et, d'autre part, F est une surface régulière.

9. Plus généralement, considérons un espace linéaire (y) à r dimensions et un espace linéaire (z) à s dimensions. Une correspondance (m, n) entre ces espaces sera représentée par une forme algébrique d'ordre m par rapport aux coordonnées $y_0, y_1, ..., y_r$ d'un point de (y), dont les coefficients sont des formes d'ordre n par rapport aux coordonnées $z_0, z_1, ..., z_s$ des points z. Une telle correspondance dépend de

$$\mathbf{R} = \binom{m+r}{r} \cdot \binom{n+s}{s} - 1$$

coefficients indépendants.

Rapportons projectivement les correspondances envisagées aux hyperplans d'un espace S_R à R dimensions. Aux couples de points y, z correspondent les points d'une variété V_{r+s}^N , à r+s dimensions, d'un certain ordre N.

Une correspondance dégénérée associe à une hypersurface d'ordre m de l'espace (y) un point quelconque de (z), et à une hypersurface d'ordre n de (r) un point quelconque de (y). Considérons r+s correspondances dégénérées, c'est-à-dire r+s hypersurfaces d'ordre m de (y) et r + s hypersurfaces d'ordre n de (z). ces deux groupes d'hypersurfaces étant référés l'un à l'autre. Prenons r hypersurfaces de l'espace (y) et les s hypersurfaces de l'espace z qui ne leur correspondent pas. Au groupe formé d'un point y commun aux r premières hypersurfaces et d'un point z commun aux s dernières correspond un point de la variété V_{r+s} appartenant à l'espace S_{R-r-s} commun aux r+s hyperplans de S_R homologue des r + s correspondances considérées. Il y a $m^r n^s$ couples de points y, z satisfaisant aux conditions précédentes. D'autre part, les groupes d'hypersurfaces envisagés peuvent être formés de $\binom{r+s}{r}$ manières. On en conclut que l'espace S_{R-r-s} coupe Vr+s en

$$N = \binom{r+s}{r} m^r n^s$$

points.

Aux groupes formés d'un point fixe y et d'un point z variable correspondent sur V_{r+s}^N les points d'une variété (de Veronese) V_s d'ordre n^s , variable dans un système ∞^r , d'indice un; deux variétés de ce système ne se rencontrent pas. De même, aux groupes formés d'un point y variable et d'un point z fixe correspondent les points d'une variété (de Veronese) V_r d'ordre m^r , variable dans un système ∞^s , d'indice un; deux variétés de ce système ne se rencontrent pas. Une variété V_r et une variété V_s se rencontrent en un seul point.

Liége, le 2 février 1942.