Sur les courbes canoniques de genre six,

par Lucien GODEAUX, Membre de la Société.

Une courbe canonique de genre six (non hyperelliptique) a l'ordre dix et appartient à un espace linéaire S_5 à cinq dimensions. Par cette courbe C passent α^5 hyperquadriques formant un système linéaire. MM. Enriques et Chisini (4) ont classé les courbes canoniques de genre six en deux catégories : celles qui sont intersections complètes de six hyperquadriques linéairement indépendantes et celles qui sont tracées sur une surface-base d'un système linéaire α^5 d'hyperquadriques.

Ces dernières sont caractérisées par le fait de posséder soit une série linéaire g_3^t , soit une série linéaire g_5^t ; celles qui possèdent une série g_3^t sont l'intersection d'une réglée rationnelle du quatrième ordre et d'une hypersurface cubique contenant deux génératrices de cette réglée; celles qui possèdent une série g_5^t sont l'intersection d'une surface de Véronèse et d'une hypersurface cubique contenant une conique de cette surface.

Dans ce travail, nous considérons les courbes canoniques de genre six qui sont intersections complètes de six hyperquadriques linéairement indépendantes.

1. Soit C une courbe canonique de genre six, d'ordre dix de S_5 . Trois hyperquadriques linéairement indépendantes, contenant C, ont en général en commun une surface F_8 , d'ordre huit et de genres un ($p_a = P_4 = 1$). Les hyperquadriques passant par C, mais non par F_8 , coupent encore cette surface suivant une courbe C_6 d'ordre six et de genre deux. Inversement, il existe une hyperquadrique passant par C_6 , mais non par F_8 , coupant cette surface suivant la courbe C. Sur F_8 , les courbes C_6 forment un réseau, de degré deux. Une courbe C_6 d'ordre dix et de genre deux appartient nécessairement à un espace linéaire à quatre dimensions au plus. Les hyperplans passant par les courbes C_6 de F_8 forment donc une gerbe dont le sommet est un plan coupant F_8 suivant

⁽¹⁾ Lezioni sulla teoria geometrica delle equazioni e delle funzioni algebriche (Bologne, Zanichelli, 1923), t. III, pp. 103 et suiv.

une conique C₂. Si l'on désigne par C₈ les sections hyperplanes (de genre cinq) de F₈, on a

 $C_8 \equiv C_6 + C_2$, $C + C_6 \equiv 2C_8$;

d'où

$$C \equiv C_8 + C_2$$
.

Les courbes C_6 coupent C en 14 points; la conique C_2 ne rencontre pas C.

2. Projetons la courbe C à partir d'un de ses plans trisécants α sur un plan ϖ ne rencontrant pas α ; on obtient dans ϖ une courbe C', d'ordre sept et de genre six qui possède en général neuf points doubles A_4 , A_2 ,..., A_9 . Les adjointes de la courbe C' sont les quartiques Γ_4 passant par les points A_4 , A_2 ,..., A_9 ; les courbes Γ_4 forment un système linéaire $|\Gamma_4|$, de degré sept et de dimension cinq. Les sections hyperplanes de C étant les groupes canoniques de cette courbe, il existe une projectivité entre les hyperplans de S_5 et les courbes Γ_4 . Par cette projectivité, il correspond aux points du plan ϖ ceux d'une surface normale F_7 , de S_5 , à courbes sections de genre trois.

Aux droites du plan ϖ correspondent sur F_7 des quartiques rationnelles sections de la surface par les hyperplans contenant α . Il en résulte que F_7 coupe α suivant une cubique plane dont les points correspondent à la cubique Γ_3 du plan ϖ déterminée par les points A_1, A_2, \ldots, A_9 , cubique qui est donc unique.

Les hyperquadriques de S_5 ne contenant pas F_7 découpent sur cette surface des courbes auxquelles correspondent, dans le plan ϖ , des courbes d'ordre huit, Γ_8 , ayant des points doubles en A_4 , A_2, \ldots, A_9 . La dimension du système $|\Gamma_8|$ est $r \ge 17$. Les courbes Γ_8 découpent sur la cubique elliptique Γ_3 une série g_5^5 ; donc il y a ϖ^{r-6} courbes Γ_8 contenant Γ_3 comme partie. Les courbes $\Gamma_8 - \Gamma_3$ découpent, sur Γ_3 , une série g_5^6 ; donc il y a ϖ^{r-4} courbes Γ_8 contenant deux fois la courbe Γ_3 ; les courbes $\Gamma_8 - 2\Gamma_3$ sont des coniques et sont en nombre ϖ^5 ; donc on a bien r = 17. Les hyperquadriques de S_5 étant en nombre ϖ^{20} , il y en a ϖ^2 passant par Γ_7 ; ces ϖ^2 hyperquadriques contiennent le plan ϖ , puisque Γ_7 coupe ce plan suivant une cubique.

Désignons par C_7 les sections hyperplanes de F_7 ; par C_4 les quartiques rationnelles qui correspondent sur cette surface aux droites de ϖ ; par C_3 la cubique commune à F_7 et au plan α On a

$$C_7 \equiv C_3 + C_4$$
, $C + C_4 \equiv 2 C_7$, $C \equiv C_7 + C_3$.

Les ∞^2 hyperquadriques passant par C, mais non par F_7 , coupent encore cette surface suivant les ∞^2 courbes de $|C_4|$, et par conséquent, il existe, par le théorème du reste, une hyperquadrique passant par une courbe C_4 et coupant encore F_7 suivant la courbe C. La courbe C coupe une courbe C_4 en sept points et la courbe C_3 en trois points.

Une courbe canonique de genre six est tracée sur une surface du septième ordre, à sections hyperplanes de genre trois qui, avec un plan trisécant de la courbe, forme l'intersection de trois hyperquadriques linéairement indépendantes passant par la courbe.

3. Examinons maintenant si la courbe canonique C peut appartenir à une surface F, de S_5 , commune à ∞^3 hyperquadriques.

En coupant F par un espace ordinaire, on obtient un nombre fini de points appartenant à α^3 quadriques et par conséquent F est d'ordre six; nous la désignerons dans la suite par F_6 . Une section hyperplane C_6 de F_6 doit appartenir à α^3 hyperquadriques de son hyperplan et par conséquent elle est de genre deux. Une surface du sixième ordre de S_5 , à sections de genre deux est, comme on sait représentée sur un plan ϖ par le système des quartiques Γ_4 ayant comme base un point double A et six points simples A_4 , A_2 , ... A_6 . Le système $|\Gamma_4|$ de degré six est l'adjoint de la courbe C' qui correspond dans ϖ à la courbe C; cette courbe C' est donc du septième ordre, possède un point triple en A et des points doubles en A_4 , A_2 , ... A_6 .

Aux courbes découpées sur F_6 par les hyperquadriques ne contenant pas cette surface correspondent dans ϖ les courbes du huitième ordre ayant un point quadruple en A et des points doubles $A_1, A_2, \ldots A_6$. Aux droites de ϖ passant par A correspondent sur F_6 des coniques C_2 formant un faisceau $|C_2|$. Les α^4 hyperquadriques passant par C, mais non par F_0 , coupent encore cette surface suivant les coniques C_2 ; par conséquent, par chaque conique C_2 passe une hyperquadrique coupant encore F_6 suivant la courbe C.

Observons que les coniques C_2 coupent C suivant des groupes de quatre points, formant une série linéaire g_4^4 .

Désignons par Γ_3 la cubique du plan ϖ ayant un point double en A et passant par A_4 , A_2 , ... A_6 . La courbe C' coupe Γ_3 en trois points en dehors des points A et les trois points correspondant sur C déterminent un plan trisécant α de cette courbe. On obtient C' en projetant C de α sur ϖ , et l'espace $A\alpha$, à trois dimensions, coupe C en six points. La représentation de la surface F_6 sur le

plan ϖ s'obtient en projetant cette surface de α sur ce plan ϖ . Par conséquent, le plan α coupe F_6 suivant une conique γ_2 . D'un autro côté, aux points du plan ϖ infiniment voisins de A correspondent sur F_6 les points d'une conique γ_2' appartenant à l'espace $A\alpha$, mais non à α . La conique γ_2' s'appuie en deux points sur γ_2 .

Une hyperquadrique contenant F_6 coupe l'espace $A\alpha$ suivant une quadrique passant par les coniques γ_2 , γ'_2 ; on en conclut que trois hyperquadriques linéairement indépendantes, contenant F_6 ont encore en commun une des ∞^4 quadriques passant par γ_2 , γ'_2 Il existe ∞^2 hyperquadriques contenant F_6 et le plan α ; elles ont encore en commun le plan de la conique γ'_2 .

Enfin, un hyperplan passant par l'espace $A\alpha$ coupe F suivant les coniques γ_2 , γ_2' et suivant une conique C_2 . Le plan d'une conique C_2 s'appuie sur α en un point de γ_2 et sur le plan γ_2' en un point de cette conique.

4. Supposons maintenant que la courbe C puisse appartenir à une surface commune à ∞^4 hyperquadriques de S_5 , formant un système linéaire. Il est aisé de voir que cette surface, F_5 , est d'ordre cinq et que ses sections hyperplanes sont elliptiques. La surface F_5 peut donc être représentée sur un plan ϖ par le système des cubiques planes Γ_3 passant par quatre points A_4 , A_2 , A_3 , A_4 A la courbe C correspond dans ϖ une courbe C' d'ordre six, ayant des points doubles en A_4 , A_2 , A_3 , A_4 et dont les courbes Γ_3 sont les adjointes.

La courbe C est l'intersection complète de la surface F et d'une

hyperquadrique.

A une conique de ϖ passant par A_1 , A_2 , A_3 , A_4 correspond sur F_5 une conique C_2 engendrant un faisceau $|C_2|$. A une droite de ϖ correspond sur F_5 une cubique gauche C_3 engendrant un réseau $|C_3|$. Une conique C_2 et une cubique C_3 appartiennent à un hyperplan. La représentation de F_5 sur ϖ s'obtient en projetant cette surface du plan d'une conique C_2 . Ces coniques s'appuient d'ailleurs en quatre points sur C.

5. L'existence d'une surrace F_5 contenant C dépend de l'existence d'une série linéaire g_4^4 sur cette courbe. On sait que de telles séries existent et nous allons en donner une démonstration élémentaire.

Projetons la courbe C de deux de ses points sur un espace ordinaire S_3 ; nous obtenons une courbe C_8 d'ordre huit Les surfaces cubiques de S_3 découpent sur C_8 une série g_{23}^{18} ; donc

il existe une surface cubique Φ_3 contenant C_8' . Les surfaces du quatrième ordre de S_3 découpent sur C_8' une série g_{32}^{62} ; donc il existe ∞^7 surfaces du quatrième ordre Φ_4 passant par C_8' . Une surface Φ_4 irréductible coupe Φ_3 , en dehors de C_8' , suivant une courbe C_4 , d'ordre quatre, rationnelle, coupant C_8' en 14 points. Les surfaces cubiques passant par C_4 découpent sur C_8' la série canonique de cette courbe.

La courbe C_4 admet ∞^4 trisécantes formant une quadrique; deux de ces trisécantes appartiennent à Φ_3 . Représentons la surface Φ_3 sur un plan $\overline{\omega}$, de telle sorte qu'aux deux trisécantes de C_4 appartenant à Φ_3 correspondent deux points P_5 , P_6 , et soient P_4 , ..., P_4 les autres points fondamentaux de la représentation plane. A la courbe C_4 correspond, dans $\overline{\omega}$, une sextique Γ_6 ayant des points triples en P_5 , P_6 , des points doubles en P_4 , ..., P_4 .

A la section de Φ_3 par une surface du quatrième ordre correspond dans $\overline{\omega}$ une courbe d'ordre douze ayant des points quadruples en P_4 , P_2 , ..., P_6 . Par suite, à la section de Φ_3 par une surface Φ_4 irréductible correspond dans $\overline{\omega}$ une courbe formée de Γ_6 et d'une courbe C_6' , d'ordre six, passant doublement par P_4 , P_2 , P_3 . P_4 , simplement par P_5 , P_6 . Cette courbe C_6' est birationnellement identique à C_8' et par suite à C_8 .

Les coniques par P_4 , P_2 , P_3 , P_4 , les droites par un de ces points déterminent sur C'_6 cinq séries linéaires g_4^4 .

On en conclut qu'une courbe canonique de genre six appartient à une surface du cinquième ordre à sections hyperplanes elliptiques, sur laquelle elle est découpée par une hyperquadrique.

En même temps, on voit que la courbe C_8' possède cinq quadrisécantes, représentées sur ϖ par la droite P_5 , P_6 et par les coniques passant par P_5 , P_6 et par trois des points P_4 , P_2 , P_3 , P_4 .

6. Reprenons la surface F_5 . Les hyperplans passant par une conique C_2 découpent sur C une série linéaire g_6^2 . Les hyperplans passant par un groupe G de cette série doivent déterminer sur C une série g_4^4 Par suite, le groupe G appartient à un espace linéaire à trois dimensions.

En projetant la courbe C de trois points du groupe G sur un plan \overline{w} , il correspond à C une courbe du septième ordre ayant un point triple et six points doubles. Par suite, une courbe canonique de genre six appartient à une surface du sixième ordre, à sections hyperplanes de genre deux, commune à quatre hyperquadriques linéairement indépendantes.

Liége, le 24 avril 1935.