Sur les surfaces de genres un de l'espace à six dimensions,

par LUCIEN GODEAUX, Professeur à l'Université de Liége.

Une surface de genres un $(p_a = P_4 = 1)$ peut se ramener, par une transformation birationnelle, à une surface d'ordre $2\pi - 2$, normale, appartenant à un espace linéaire à π dimensions, dont les sections hyperplanes sont des courbes canoniques de genre π. MM. Enriques et Chisini ont démontré (1) qu'une courbe canonique de genre π est l'intersection complète de $\frac{1}{2}(\pi-2)$ $(\pi-3)$ hyperquadriques, ou bien est située sur une surface réglée rationnelle d'ordre $\pi - 2$, ou enfin, si $\pi = 6$, est située sur une surface de Véronèse. En s'appuyant sur ce théorème, M. P. Du Val a établi (2) qu'une surface normale de genres un, de Sπ, est l'intersection complète de $\frac{1}{9}(\pi-2)(\pi-3)$ hyperquadriques, ou bien est l'intersection d'une variété rationnelle normale d'ordre $\pi - 2$, engendrée par x¹ plans, avec une variété cubique contenant π — 4 de ces plans, ou enfin, si $\pi = 6$, est l'intersection du cône de S_e projetant une surface de Véronèse d'un point et d'une hypersurface cubique contenant un des cônes quadratiques du cône précédent.

Dans cette note, nous considérons la surface F de genres un, de S₆, intersection complète de six hyperquadriques et nous démontrons que l'on peut la construire de la manière suivante :

Si l'on considère la variété algébrique V_3^8 intersection de trois hyperquadriques de S_6 , deux de ces hyperquadriques contenant un espace linéaire à trois dimensions σ , et si l'on considère en outre la section de V_3^8 , en dehors de σ , par un hyperplan contenant σ , une hyperquadrique passunt par la surface ainsi obtenue coupe encore V_3^8 suivant une surface normale de genres un, d'ordre dix, à sections hyperplanes de genres six, intersection complète de six hyperquadriques linéairement indépendantes.

⁽¹⁾ ENRIQUES-CHISINI, Lezioni sulla teoria geometrica delle equazioni e delle funzioni algebriche, vol. III (Bologne, Zamichelli, 1924), p. 106.

⁽²⁾ P. DU VAL, Superficie di genere uno che non sono base per un sistema di quadriche. (Rend. R. Accad. Naz. dei Lincei, 1° sem. 1932, pp. 276-279.)

1. Soit F une surface algébrique normale de genres un $(p_a = P_4 = 1)$ de l'espace S_6 à six dimensions. La surface F est donc d'ordre dix, à sections hyperplanes C de genre six. Les hyperquadriques découpent, sur F, le système complet |2C|, de dimension 21; d'autre part, les hyperquadriques de S_6 sont en nombre α^{27} ; par conséquent, il y a α^5 de ces hyperquadriques contenant F. Nous supposerons que F est l'intersection complète de six hyperquadriques $Q_4, Q_2, \ldots Q_6$ linéairement indépendantes.

Trois hyperquadriques linéairement indépendantes, passant par F, par exemple Q_4 , Q_2 , Q_3 , ne peuvent avoir en commun une variété ayant plus de trois dimensions, car alors F ne pourrait être intersection complète des six hyperquadriques Q_4 , Q_2 , . . Q_6 Les hyperquadriques Q_4 , Q_2 , Q_3 ont donc en commun une variété V_3^8 , ∞^3 , d'ordre huit.

Un hyperplan ϖ coupe F suivant une courbe C et V_3^s suivant une surface Φ de genres un $(p=P_4=1)$. La courbe C appartient, sur la surface Φ , à un système linéaire |C|, α^6 , de courbes d'ordre dix. Ces courbes découpent, sur une section hyperplane Γ de Φ , de genre cinq, une série linéaire d'ordre dix, non spéciale et par suite de dimension cinq; il existe donc une courbe de |C| contenant la courbe Γ , complétée par une conique γ La surface Φ contient donc une conique γ , nécessairement isolée.

Considérons un second hyperplan ϖ_4 de S_6 , contenant la courbe Γ . Il coupe V_3^s suivant une surface Φ_4 contenant une conique γ_4 . Soient G le groupe de dix points suivant lequel l'espace ϖ_4 coupe F; G_4 le groupe de huit points suivant lequel ϖ_4 coupe la section de V_3^s par un troisième hyperplan; G_2 , G_2' les couples de points déterminés sur Γ respectivement par γ , γ_4 . Si l'on se reporte aux systèmes de courbes tracés sur Φ , puis sur Φ_4 , on a successivement, sur la courbe Γ ,

$$g \equiv g_1 + g_2, \qquad g \equiv g_1 + g_2'$$

et par suite les groupes G_2 , G_2 sont équivalents. Si ces groupes sont distincts, la courbe Γ est hyperelliptique, ce qui est impossible, puisque Φ est de genres un. Par conséquent, G_2 , G_2 coïncident et les coniques γ , γ_4 se rencontrent en deux points.

Tout hyperplan de S_6 contient donc une conique γ de V_3^8 et les différentes coniques ainsi obtenues se coupent deux à deux en deux points. Il en résulte que ces coniques appartiennent à une quadrique Q. La variété V_3^8 contient donc une quadrique.

2. Reprenons la surface Φ considérée plus haut et désignons par Γ_1 les sections de Φ par les hyperplans passant par le plan de la conique γ , en dehors de cette conique. Sur la surface Φ , on a donc

$$C \equiv \Gamma + \gamma$$
, $\Gamma \equiv \Gamma_i + \gamma$

et par suite

d'où

 $2\Gamma\!\equiv\!C+\Gamma_{\scriptscriptstyle 1}.$

En d'autres termes, dans l'hyperplan $\overline{\omega}$, les hyperquadriques contenant la courbe C, commune à F et à Φ , rencontrent encore Φ suivant les courbes Γ_i , du sixième ordre. Ces courbes Γ_i sont de genre deux et forment, sur Φ , un réseau de degré deux.

Désignons par σ l'espace S_3 contenant la quadrique Q. Les hyperplans passant par σ coupent V_3^s , en dehors de Q, suivant des surfaces Ψ du sixième ordre. Toute section hyperplane d'une surface Ψ est évidemment une courbe Γ_4 .

Les hyperquadriques du réseau déterminé par Q_1 , Q_2 , Q_3 coupent σ suivant la quadrique Q; par suite il y a α^4 de ces hyperquadriques qui contiennent l'espace σ . Nous pouvons donc supposer sans restriction que Q_4 coupe σ suivant Q et que Q_2 , Q_3 contiennent σ .

Cela étant, considérons deux hyperplans ϖ_1 , ϖ_2 de S_6 passant par σ et soient Ψ_4 , Ψ_2 les surfaces Ψ qu'ils déterminent sur V_3^8 . L'espace $\varpi_1\varpi_2$ coupe Q_4 suivant une hyperquadrique et Q_2 , Q_3 , chacune suivant deux espaces à trois dimensions, dont l'un est σ . Par conséquent, l'espace $\varpi_4\varpi_2$ coupe V_3^8 , en dehors de Q, suivant une conique ψ . La variété V_3 contient donc une congruence (linéaire) de coniques ψ , au moyen de laquelle est composé le réseau $|\Psi|$. Chaque surface Ψ contient un faisceau de coniques ψ découpant, sur chaque section hyperplane de cette surface, la série g_2^4 canonique.

On a, d'après ce qui précède, les relations fonctionnelles

$$F \equiv \Phi + Q, \quad \Phi \equiv \Psi + Q;$$

 $2\Phi \equiv F + \Psi.$

Par conséquent, on obtient la construction suivante de la surface F: considérons dans S_6 trois hyperquadriques linéairement indépendantes Q_4 , Q_2 , Q_3 , se rencontrant suivant une variété V_3^8 , et supposons que les deux dernières contiennent un espace à trois dimensions σ , n'appartenant pas à Q_4 . Soit Ψ la surface suivant laquelle un hyperplan passant par σ coupe V_3^8 en dehors de cet

espace. Une hyperquadrique passant par Ψ coupe encore V_3^s suivant une surface F de genres un.

3. Il nous reste à vérifier que la surface F est bien l'intersection complète des six hyperquadriques Q_4 , Q_2 , ..., Q_6 . Chacune des hyperquadriques Q_4 , Q_5 , Q_6 coupe V_3^8 , en dehors de F, suivant une surface Ψ . Or, les surfaces Ψ forment un réseau composé au moyen d'une congruence de coniques ψ ; trois de ces surfaces, n'appartenant pas à un même faisceau, ne peuvent avoir en commun que les points-base du réseau. Soit F un tel point; considérons un hyperplau F0 passant par F2 mais ne contenant pas F3 et soit F4 la section de F3 par F6. Sur F7, les surfaces F7 découpent un réseau de courbes F7, de genre deux, ayant un point-base, ce qui est impossible puisque F8 est de genres un. Le réseau |F|9 est donc dépourvu de points-base et F8 est l'intersection complète de six hyperquadriques.

Liége, le 4 octobre 1934.

M. HAYEZ, Impr. de l'Académie royale, 112, rue de Louvain, Bruxelles.