
MSTG: A Flexible and Scalable Microservices
Infrastructure Generator

Emilien Wansart
Montefiore Institute
Université de Liège

Belgium
emilien.wansart@uliege.be

Maxime Goffart
Montefiore Institute
Université de Liège

Belgium
maxime.goffart@uliege.be

Justin Iurman
Montefiore Institute
Université de Liège

Belgium
justin.iurman@uliege.be

Benoit Donnet
Montefiore Institute
Université de Liège

Belgium
benoit.donnet@uliege.be

Abstract—The last few years in the software engineering field
have seen a paradigm shift from monolithic applications towards
architectures in which the application is split in various smaller
entities (i.e., microservices) fueled by the improved availability
and ease of use of containers technologies such as Docker
and Kubernetes. Those microservices communicate with each
other using networking technologies in place of function calls in
traditional monolithic software. In order to be able to evaluate
the potential, the modularity, and the scalability of this new
approach, many tools, such as microservices benchmarking,
have been developed with that objective in mind. Unfortunately,
many of these tend to focus only on the application layer
while not taking the underlying networking infrastructure into
consideration, leading to difficulties in developing and testing
telemetry tools.

In this paper, we introduce and evaluate the performance of a
new modular and scalable tool, MicroServices Topology Generator
(MSTG), that allows one to simulate both the application and
networking layers of a microservices architecture. Based on a
topology described in YAML format, MSTG generates the config-
uration file(s) for deploying the architecture on either Docker
Compose or Kubernetes. Furthermore, MSTG encompasses
telemetry tools, such as Application Performance Monitoring
(APM) relying on OpenTelemetry and in-band telemetry (e.g.,
IOAM). This paper also discusses a use case in whic MSTG finds
a suitable usage.

I. INTRODUCTION

Modern cloud-native applications rely on microservices.
A single request in an application can invoke a lot of mi-
croservices interacting with each other over the network.
Consequently, it is becoming increasingly difficult to monitor
and isolate a problem. This is why Application Performance
Monitoring (APM), based on distributed tracing tools, e.g.,
OpenTelemetry [1] combined with Jaeger [2]), is useful.
APM provides a way to observe and understand a whole chain
of events in a complex interaction between microservices.
However, such an APM appears as useless when the problem is
not application related but rather located at the network level.
Therefore, there is a need for new telemetry tools that would be
able to monitor both the microservices and the network layer
underneath them. Prior to be developed, such tools must be
carefully evaluated in a controlled environment to ensure their
accuracy, efficiency, and that they will not disturb the various
microservices. However, existing microservices benchmark

generators [3], [4], [5], [6] totally ignore network resources
(e.g., routers) required to run microservices in the cloud and
are not dedicated to test integrated telemetry solutions for
microservices.

In this paper, we introduce the MicroServices Topology
Generator (MSTG), an application able to generate a complete
microservice topology that includes both network components,
such as routers, and microservices. In particular, this paper
makes the following contributions:

• we carefully describe MSTG (Sec. II). In a nutshell,
MSTG simulates microservices and network architec-
ture through Docker based on a topology described
in a YAML configuration file. The resulting topology
can be deployed on a single machine with Docker
Compose [7] or distributed with Kubernetes [8];

• we evaluate the performance of MSTG and show it is
flexible and scalable (Sec. III);

• we demonstrate, through a use case (Sec. IV), a suitable
usage of MSTG for evaluating the impact of telemetry
tools in microservices infrastructures;

• finally, our source code and a technical report [9], which
contains more details about MSTG, are made available to
the community.

II. MICROSERVICES TOPOLOGY GENERATOR (MSTG)

The MicroServices Topology Generator (MSTG) facilitates
the simulation of microservices architectures through container
technologies. It relies on a configuration file to build a topol-
ogy, which is a structure of microservices interconnected by
routers. Those microservices can be parameterized at both the
application and network layers.

The primary objective of this tool is to offer a customiz-
able environment for demonstration and testing purposes.
Simulating scalable microservice topologies proves valuable
in various scenarios such as validating the correctness of
an architecture, conducting testing and benchmarking of a
topology, and assisting in the evaluation and integration of
other technologies into a microservices architecture, such as
telemetry or monitoring tools, before their inclusion into a
critical production environment on which a potentially non-
negligible number of users are relying.978-3-903176-64-5 ©2024 IFIP



Fig. 1. MSTG architecture.

A. Architecture and Components

MSTG architecture, depicted in Fig. 1, can be described as
follows. The configuration file, config.yml, serves as the tool
input, containing the topology structure with interconnected
microservices and, optionally, routers with configuration of the
networking layer properties. The generator parses the configu-
ration file and generates the necessary file(s) for deploying on
either Docker Compose or Kubernetes. The microser-
vice is the application (Layer 7) that listens to HTTP or HTTPS
requests and responds to them following the sequential query
of other services based on the configuration file. It can run over
IPV4 or IPV6 and perform telemetry using OpenTelemetry
and sending them to Jaeger [2] for storage and visualization.
The routers (Layer 3) that interconnect the microservices by
forwarding their traffic. The ability to include routers enriches
the topology with an IP layer, enabling the use of lower-
layer monitoring tools such as IOAM for in-band network
telemetry [10], and to have an architecture closer to what one
would find in a datacenter network (DCN) or a cloud network.
Finally, the topology can be deployed on either Docker
Compose or Kubernetes.

The generation process offers options, including
the choice to enable microservices tracing based on
OpenTelemetry [1] with Jaeger [2], and in-band
telemetry with IOAM [10] (IOAM gathers telemetry and
operational information along a path, within IPV6 header
of packets). Those solutions are the basis for developing
advanced telemetry tools for microservices infrastructures.

III. EVALUATION

Our methodology is structured to comprehensively evaluate
MSTG capabilities. It involves two main aspects: firstly, en-
suring the correctness of the tool’s functionality, where input
variables are accurately reflected in the generated topologies,
and secondly, evaluating the tool’s performance.

Unless specified otherwise, all measurements are averages
obtained over ten samples collected over a 30-second in-
terval during 10 distinct executions of the tests to ensure
representativeness of the statistics while the shaded areas
around the curves are standard deviations. All the experiments
were conducted using HTTP for communication between the
microservices to have measurements for the most basic case
(i.e., HTTP) without the overhead introduced by TLS. The
experiments were conducted on a server equipped with an
Intel Xeon CPU E5-2630 v3, 8 cores, 16 threads, 32GB of
RAM, and running Linux 5.17.

The ability to simulate networks having real-world charac-
teristics is dependent on Docker and the Linux Kernel since
MSTG relies on them. To verify the correctness of MSTG, we
focus on the following key configuration options since they
have substantial performance impacts that can be assessed by
performance measurements: microservice packet size, router
link delay, and loss rate. We selected the values of the variables
presented hereafter in order to cover real deployments of
microservices architectures.

As shown in Fig. 2a, the graph represents the influence of
the packet size on the maximum network data input (RX) and
output (TX) for a simple topology with two microservices
connected via a router. As depicted, the network usage is
increasing with the packets’ size, which is the expected result.

We assess the impact of the link delay on the round-trip
time (RTT) and the effect of loss rate on the maximum request
rate attainable, as shown in Fig. 2b and 2c, with the topology
being identical to the previous experiment. Due to the relation
between these variables, we can conclude that MSTG is rightly
simulating a network.

The times to generate, start, and stop an architecture are
all proportional to the size of the topology. Based on our
evaluation, for an architecture compose of 100 entities, it takes,
on average over 100 executions, 85ms to generate it and 12s
to start or stop it while deploying it on Docker Compose
and the aforementioned processor.

IV. HAPROXY USE CASE

MSTG can be used to assess the feasibility of implementing
an intelligent microservice selection mechanism. Usually, in
a microservices architecture, there are many instances of the
same service to increase the availability and provide the best
experience to the end users. In such a case, the instances
are behind a proxy, which is acting as a load-balancer, that
redirects each request to one of the available instances based
on some predefined criteria. This section describes a particular
scenario that combines in-band telemetry (i.e., IOAM [10])
with a load balancer, HAProxy [11].

As illustrated in Fig. 3, a client reaches the microservice
instances through a transparent proxy. The load-balancer is
responsible for sending packets augmented with IOAM data,
which will contain the queue depth of every router along the
path within the datacenter, to every instance at regular time
intervals. Once the instances receive the packets, they extract
the IOAM data, gathered along the hops (routers) between them
and the proxy, and send it to a centralized controller. The con-
troller will reconfigure the proxy by adjusting the distribution
of the packets proportionally to the metrics observed on the
paths and collected by IOAM.

We evaluated this new microservice selection solution by
using MSTG to generate the architecture depicted in Fig. 3
and measured the percentage of the traffic propagated to each
instance over time. At time T=20S, we generated a load
between the load-balancer and the first instance, while at
T=40S, we generate a load twice as high between HAProxy
and the second instance. As observable in Fig. 4, a few



20000 40000 60000 80000 100000
Packet size

0

200

400

600
N

e
tw

o
rk

u
sa

g
e

(M
B

/
s) Mean RX Mean TX

(a) Maximum network utilization (RX & TX) per
packet size.

0 20 40 60 80 100
Link delay (ms)

0.0

0.1

0.2

0.3

0.4

R
T

T
(m

s)

Mean

(b) RTT per link delay.

0 2 4 6 8 10
Packet loss (%)

0

1000

2000

R
e
q
u

e
st

s/
s

Mean

(c) Maximum request rate per loss rate.

Fig. 2. MSTG evaluation.

Fig. 3. Architecture of service selection with HAProxy.

0 10 20 30 40 50 60
Time (s)

0

20

40

%
o
f

tr
a
ffi

c

Instance 1 Instance 2 Instance 3

Fig. 4. Service selection with HAProxy.

seconds after the loads are generated, the collector computes
the new proportion of the traffic forwarded to each instance
and reconfigures HAProxy with these new values. Thus, the
instances on overloaded paths get less of the subsequent traffic
based on the IOAM metadata.

V. CONCLUSION

Microservices architectures are becoming the default
paradigm and can replace monolithic applications in most sce-
narios. Yet, most tools to evaluate different criteria about this
new approach give too few considerations to the networking
layer, which is a critical component for this design pattern.

This paper proposed and evaluated MicroServices Topology
Generator (MSTG), a microservices topology generator that

gives back to the networking layer the attention it deserves
by creating a modular and scalable microservices topology
generator. MSTG offers the possibility to simulate both the
networking and application layers, which are configurable
by the end-users in a configuration file used as input. As
demonstrated by empirical measurements, MSTG provides to
users the ability to easily and rapidly test their microservices
architectures and their integration with other telemetry or mon-
itoring technologies before deploying them on a production
environment on which a significant amount of customers may
depend.

MSTG is an ongoing project. Future works would consider
to add support for switches in the generated topologies, in
order to be even closer to real deployments, and to improve
the user experience of MSTG.

SOFTWARE ARTEFACT & ACKNOWLEDGMENTS

Source code of MSTG is available at https://github.com/
Advanced-Observability/Micro-Services-Topology-Generator.
A technical report of MSTG is available [9] and contains
more details about the inner-workings of MSTG, a more
thorough evaluation, and some interesting use cases.

This work is supported by the CyberExcellence project
funded by the Walloon Region of Belgium, under number
2110186, and the Feder CyberGalaxia project.

REFERENCES

[1] OpenTelemetry, “Effective observability requires high-quality teleme-
try,” see https://opentelemetry.io.

[2] Jaeger, “Open-source, end-to-end distributed tracing,” see https://www.
jaegertracing.io.

[3] Y. Gan, Y. Zhang, D. Cheng, A. Shetty, P. Rathi, N. Katarki, A. Bruno,
J. Hu, B. Ritchken, B. Jackson, K. Hu, M. Pancholi, Y. He, B. Clancy,
C. Colen, F. Wen, C. Leung, S. Wang, L. Zaruvinsky, M. Espinosa,
R. Lin, Z. Liu, J. Padilla, and C. Delimitrou, “An open-source benchmark
suite for microservices and their hardware-software implications for
cloud & edge systems,” in Proc. International Conference on Archi-
tectural Support for Programming Languages and Operating Systems
(ASPLOS), April 2019.

[4] M. R. Saleh Sedghpour, A. Obeso Duque, X. Cai, B. Skubic, E. Elmroth,
C. Klein, and J. Tordsson, “HydraGen: A microservice benchmark
geneartor,” in Proc. IEEE International Conference on Cloud Computing
(CLOUD), July 2023.

[5] A. Sriraman and T. F. Wenisch, “υ-suite: A benchmark suite for
microservices,” in Proc. IEEE International Symposium on Workload
Characterization (IISWC), September 2018.



[6] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevd-
jic, C. Kaynak, A. D. Popescu, A. Ailamaki, and B. Falsafi, “Clear-
ing the clouds: a study of emerging scale-out workloads on modern
hardware,” in Proc. International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), March
2012.

[7] Docker, “Docker compose overview,” [Last Accessed: January 23th,
2024]. [Online]. Available: https://docs.docker.com/compose/

[8] Kubernetes, “Production-grade container orchestration,” [Last Accessed:
January 23th, 2024]. [Online]. Available: https://kubernetes.io/

[9] E. Wansart, M. Goffart, J. Iurman, and B. Donnet, “MSTG: A flex-
ible and scalable microservices infrastructure generator,” arXiv, cs.NI
2404.13665, April 2024.

[10] F. Brockners, S. Bhandari, and T. Mizrahi, “Data fields for in situ oper-
ations, administrations, and maintenance (IOAM),” Internet Engineering
Task Force, RFC 9197, May 2022.

[11] HAProxy, “The reliable, high performance TCP/HTTP load balancer,”
[Last Accessed: January 30th, 2024]. [Online]. Available: https:
//www.haproxy.org/


